Simultaneous Radio Occultation Predictions for Inter-Satellite Comparison of Bending Angle Profiles from COSMIC-2 and GeoOptics
"> Figure 1
<p>Illustration of RO limb sounding configuration and geometric parameters used to predict RO limb sounding opportunities.</p> "> Figure 2
<p>The estimated functional relationship between impact height and direct height as derived from COSMIC-2 RO observations.</p> "> Figure 3
<p>Predicted (thick dashed line) and observed (thin dashed line) RO event ground track comparison for receiver C2E1 and emitter G01 on 1 January 2021. The scatter plots show the mean sea level height as a function of latitude and longitude, as indicated by the colored bar. There are 22 matched pairs between observation and prediction; the view angle for each RO event was also plotted.</p> "> Figure 4
<p>Radio occultation events from the predictions (dash-dot lines) and observations (solid lines) from 15 December 2020 to 15 January 2021 for COSMIC-2 satellite flight modules 2, 3, and 5. Top: GPS satellites; Bottom: GLONASS satellites.</p> "> Figure 5
<p>RO event distribution as a function of the antenna view angle for all COSMIC-2 satellite flight modules 1–6 and GPS satellites. Blue color represents predictions, and red color represents observation. The match rate for each flight module was given in the figure.</p> "> Figure 6
<p>Same as <a href="#remotesensing-13-03644-f005" class="html-fig">Figure 5</a>, but for GLONASS satellites.</p> "> Figure 7
<p>Procedures to obtain the simultaneous limb overpass RO events from two receivers on different LEOs with the same GNSS satellite.</p> "> Figure 8
<p>Occultation point azimuth angle difference for the SRO pairs between COSMIC-2 and GeoOptics. Note that the SRO cases are sorted by the averaged signal-to-noise ratio (SNR) between 60 to 80 km from COSMIC-2 and are separated by GPS (from index 1 to 182) and GLONASS (from index 183 to 289), indicated by the vertical dashed line.</p> "> Figure 9
<p>Occultation point distance for the SRO pairs between COSMIC-2 and GeoOptics. The vertical dashed line separates the GPS from the GLONASS.</p> "> Figure 10
<p>SNR comparison for the SRO pairs between COSMIC-2/GPS (red solid plus line) and GeoOptics/GPS (black-dotted circle line) as well as between COSMIC-2/GLONASS (red solid cross line) and GeoOptics/GLONASS (black-dotted diamond line).</p> "> Figure 11
<p>Penetration depth comparison for the SRO pairs between COSMIC-2/GPS (red solid plus line) and GeoOptics/GPS (black-dotted circle line) as well as between COSMIC-2/GLONASS (red solid cross line) and GeoOptics/GLONASS (black-dotted diamond line).</p> "> Figure 12
<p>Four SRO events between COSMIC-2-FM1 (C2E1) and GeoOptics-01 (GO01) during the comparison period: (<b>left</b>) the horizontal differences with impact height, (<b>middle</b>) bending angle profiles (solid lines for C2E1, and dash-dot lines for GO01 by shifting a fixed amount of 0.01 radian), and (<b>right</b>) refractivity profiles (the GO01 profiles are shifting a fixed amount of 50 N).</p> "> Figure 13
<p>Bending angle profile comparison between COSMIC-2 and GeoOptics for GPS satellites over total 182 SRO cases: (<b>left</b>) mean bending angle profiles for COSMIC-2/GPS (red) and GeoOptics/GPS (black line) as well as mean ± standard deviation profiles (blue lines for COSMIC-2/GPS and green lines for GeoOptics/GPS) and (<b>right</b>) relative bending angle profile between GeoOptics and COSMIC-2 in terms of the mean difference (blue line) and standard deviation (red line).</p> "> Figure 14
<p>This figure is the same as <a href="#remotesensing-13-03644-f013" class="html-fig">Figure 13</a>, but for GLONASS satellites over a total of 107 SRO cases.</p> "> Figure 15
<p>Bending angle profile statistics comparison between COSMIC-2 and GeoOptics for all 289 SRO cases (182 for GPS and 107 for GLONASS): (<b>left</b>) overall relative BA statistics (mean and standard deviation) comparison from GPS (green lines), GLONASS (blue lines), and GNSS satellites (red lines); (<b>right</b>) standard deviation comparison among overall matchup cases between GeoOptics and COSMIC-2 (red line), COSMIC-2 relative dynamic bending angle observation error (DBAOE) (green line), GeoOpitcs DBAOE (blue line) calculated from the bending angle retrieval process, and the expected standard deviation (see text).</p> "> Figure 16
<p>Bending angle profile statistical comparison with simulated BA profiles using ERA5 for all 289 SRO cases (182 for GPS and 107 for GLONASS): (<b>left</b>) overall mean relative BA difference between observation and simulation using ERA5 and (<b>right</b>) standard deviation.</p> ">
Abstract
:1. Introduction
2. A Method to Predict Radio Occultation Event
3. Method Validation Using RO Observations
3.1. Ground Track Comparison (Latitude, Longitude, and Distance)
3.2. Radio Occultation Events from Prediction and Observation
3.3. RO Event Distribution as a Function of Antenna View Angle
4. Simultaneous Limb Overpass RO Matchup for Different LEO/RO Satellites
4.1. SRO Matchup Criteria
4.2. Data
4.3. SRO Inter-Comparison Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kursinski, E.R.; Hajj, G.A.; Schofield, J.T.; Linfield, R.P.; Hardy, K.R. Observing Earth’s Atmosphere with Radio Occultation Measurements Using the Global Positioning System. J. Geophys. Res. Atmos. 1997, 102, 23429–23465. [Google Scholar] [CrossRef]
- Kursinski, E.R.; Hajj, G.A.; Leroy, S.S.; Herman, B. The GPS Radio Occultation Technique. Terr. Atmos. Ocean. Sci. 2000, 11, 53–114. [Google Scholar] [CrossRef] [Green Version]
- Hajj, G.A.; Romans, L.J. Ionospheric electron density profiles obtained with the Global Positioning System: Results from the GPS/MET experiment. Radio Sci. 1998, 33, 175–190. [Google Scholar] [CrossRef] [Green Version]
- Ware, R.; Exner, M.; Feng, D.; Gorbunov, M.; Hardy, K.; Herman, B.; Kuo, Y.; Meehan, T.; Melbourne, W.; Rocken, C.; et al. GPS Sounding of the Atmosphere from Low Earth Orbit: Preliminary Results. Bull. Am. Meteor. Soc. 1996, 77, 19–40. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Zou, X.; Vandenberghe, F.; Wang, B.; Gorbunov, M.E.; Kuo, Y.-H.; Sokolovskiy, S.; Chang, J.C.; Sela, J.G.; Anthes, R.A. A Ray-Tracing Operator and Its Adjoint for the Use of GPS/MET Refraction Angle Measurements. J. Geophys. Res. Atmos. 1999, 104, 22301–22318. [Google Scholar] [CrossRef] [Green Version]
- Healy, S.B.; Jupp, A.M.; Marquardt, C. Forecast Impact Experiment with GPS Radio Occultation Measurements. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef] [Green Version]
- Healy, S.B. Forecast Impact Experiment with a Constellation of GPS Radio Occultation Receivers. Atmos. Sci. Lett. 2008, 9, 111–118. [Google Scholar] [CrossRef]
- Cucurull, L. Improvement in the Use of an Operational Constellation of GPS Radio Occultation Receivers in Weather Forecasting. Weather Forecast 2010, 25, 749–767. [Google Scholar] [CrossRef]
- Cucurull, L.; Derber, J.C.; Purser, R.J. A bending angle forward operator for global positioning system radio occultation measurements. J. Geophys. Res. Atmos. 2013, 118, 14–28. [Google Scholar] [CrossRef]
- Ho, S.; Anthes, R.A.; Ao, C.O.; Healy, S.; Horanyi, A.; Hunt, D.; Mannucci, A.J.; Pedatella, N.; Randel, W.J.; Simmons, A.; et al. The COSMIC/FORMOSAT-3 Radio Occultation Mission after 12 Years: Accomplishments, Remaining Challenges, and Potential Impacts of COSMIC-2. Bull. Am. Meteor. Soc. 2020, 101, E1107–E1136. [Google Scholar] [CrossRef] [Green Version]
- Ruston, B.; Healy, S. Forecast Impact of FORMOSAT-7/COSMIC-2 GNSS Radio Occultation Measurements. Atmos. Sci. Lett. 2021, 22, e1019. [Google Scholar] [CrossRef]
- Ho, S.-P.; Yue, X.; Zeng, Z.; Ao, C.; Huang, C.-Y.; Kursinski, E.R.; Kuo, Y.-H. Applications of COSMIC Radio Occultation Data from the Troposphere to Ionosphere and Potential Impacts of COSMIC-2 Data. Bull. Am. Meteor. Soc. 2013, 94, ES18–ES22. [Google Scholar] [CrossRef]
- Ho, S.-P.; Peng, L.; Anthes, R.A.; Kuo, Y.H.; Lin, H.C. Marine Boundary Layer Heights and Their Longitudinal, Diurnal, and Inter-seasonal Variability in the Southeastern Pacific Using COSMIC, CALIOP, and Radiosonde Data. J. Clim. 2015, 28, 2856–2872. [Google Scholar] [CrossRef] [Green Version]
- Ho, S.-P.; Peng, L.; Mears, C.; Anthes, R.A. Comparison of global observations and trends of total precipitable water derived from microwave radiometers and COSMIC radio occultation from 2006 to 2013. Atmos. Chem. Phys. 2018, 18, 259–274. [Google Scholar] [CrossRef] [Green Version]
- Teng, W.H.; Huang, C.-Y.; Ho, S.-P.; Kuo, Y.-H.; Zhou, X.J. Characteristics of Global Precipitable Water in ENSO Events Revealed by COSMIC Measurements. J. Geophys. Res. Atmos. 2013, 118, 1–15. [Google Scholar] [CrossRef]
- Scherllin-Pirscher, B.; Deser, C.; Ho, S.-P.; Chou, C.; Randel, W.; Kuo, Y.-H. The vertical and spatial structure of ENSO in the upper troposphere and lower stratosphere from GPS radio occultation measurements. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Z.; Ho, S.-P.; Sokolovskiy, S. The Structure and Evolution of Madden- Julian Oscillation from FORMOSAT-3/COSMIC Radio Occultation Data. J. Geophys. Res. Atmos. 2012, 117, D22108. [Google Scholar] [CrossRef]
- Rieckh, T.; Anthes, R.A.; Randel, W.; Ho, S.-P.; Foelsche, U. Tropospheric dry layers in the tropical western Pacific: Comparisons of GPS radio occultation with multiple data sets. Atmos. Meas. Tech. 2017, 10, 1093–1110. [Google Scholar] [CrossRef] [Green Version]
- Xue, Y.H.; Li, J.; Menzel, P.; Borbas, E.; Ho, S.-P.; Li, Z. 2018: Impact of Sampling Biases on the Global Trend of Total Precipitable Water Derived from the Latest 10-Year Data of COSMIC, SSMIS and HIRS Observations. J. Geophys. Res. Atmos. 2018, 124, 6966–6981. [Google Scholar] [CrossRef] [Green Version]
- Mears, C.; Ho, S.-P.; Bock, O.; Zhou, X.; Nicolas, J. Total Column Water Vapor, [In “States of the Climate in 2018“]. Bull. Am. Meteor. Sci. 2019, 100, S27–S28. [Google Scholar] [CrossRef] [Green Version]
- Sun, B.; Reale, T.; Schroeder, S.; Pettey, M.; Smith, R. On the accuracy of Vaisala RS41 versus RS92 upper-air temperature observations. J. Atmos. Ocean. Technol. 2019, 36, 635–653. [Google Scholar] [CrossRef]
- Shao, X.; Ho, S.-P.; Zhang, B.; Zhou, X.; Kireev, S.; Chen, Y.; Cao, C. Comparison of COSMIC-2 Radio Occultation Retrieval Products with Vaisala RS41 and RS92 Radiosonde Water Vapor and Upper-air Temperature Measurements. Terrestrial, Atmospheric and Oceanic Sciences: Special issue on COSMIC-2. 2021. under review. Available online: http://tao.cgu.org.tw/index.php/special-issue-all/call-for-papers (accessed on 10 September 2021).
- Cao, C.; Wang, W.; Lynch, E.; Bai, Y.; Ho, S.-P.; Zhang, B. Simultaneous Radio Occultation for intersatellite comparison of bending angle toward more accurate atmospheric sounding. J. Atmos. Ocean. Technol. 2020, 37, 2307–2320. [Google Scholar] [CrossRef]
- Cao, C.; Weinreb, M.; Xu, H. Predicting simultaneous nadir overpasses among polar-orbiting meteorological satellites for the inter-satellite calibration of radiometers. J. Atmos. Ocean. Technol. 2004, 21, 537–542. [Google Scholar] [CrossRef]
- Cao, C.; Xu, H.; Sullivan, J.; McMillin, L.; Ciren, P.; Hou, Y. Intersatellite radiance biases for the High Resolution Infrared Radiation Sounders (HIRS) on board NOAA-15, -16, and -17 from simultaneous nadir observations. J. Atmos. Ocean. Technol. 2005, 22, 381–395. [Google Scholar] [CrossRef]
- Wang, L.; Goldberg, M.; Wu, X.; Cao, C.; Iacovazzi, R.; Yu, F.; Li, Y. Consistency assessment of Atmospheric Infrared Sounder and Infrared Atmospheric Sounding Interferometer radiances: Double differences versus simultaneous nadir over-passes. J. Geophys. Res. Atmos. 2011, 116, D11111. [Google Scholar] [CrossRef]
- Vallado, D.A.; Crawford, P.; Hujsak, R.; Kelso, T.S. Revisiting Spacetrack Report #3. In Proceedings of the AIAA/AAS Astrodynamics Specialist Conference, Keystone, CO, USA, 21–24 August 2006. [Google Scholar]
- Gorbunov, M.E.; Shmakov, A.V.; Leroy, S.S.; Lauritsen, K.B. COSMIC Radio Occultation Processing: Cross-Center Comparison and Validation. J. Atmos. Ocean. Technol. 2011, 28, 737–751. [Google Scholar] [CrossRef]
- Andrea, K.S.; Ladstädter, F.; Ao, C.O.; Gleisner, H.; Ho, S.-P.; Hunt, D.; Schmidt, T.; Foelsche, U.; Kirchengast, G.; Kuo, Y.-H.; et al. Consistency and structural uncertainty of multi-mission GPS radio occultation records. Atmos. Meas. Tech. 2020, 13, 2547–2575. [Google Scholar] [CrossRef]
- Sokolovskiy, S.C. Standard RO Inversions in the Neutral Atmosphere 2013–2020. University Corporation for Atmospheric Research (UCAR), 2021. Available online: https://www.cosmic.ucar.edu/media/filer_public/6f/48/6f487681-5a1f-4d3e-8145-13e3eb0514bd/cdaac_ro_retrieval_description_v1.pdf (accessed on 4 August 2021).
- Schreiner, W.S.; Weiss, J.P.; Anthes, R.A.; Braun, J.; Chu, V.; Fong, J.; Hunt, D.; Kuo, Y.-H.; Meehan, T.; Serafino, W.; et al. COSMIC-2 Radio Occultation Constellation: First Results. Geophys. Res. Lett. 2020, 47, e2019GL086841. [Google Scholar] [CrossRef]
- Ho, S.-P.; Zhou, X.; Shao, X.; Zhang, B.; Adhikari, L.; Kireev, S.; He, Y.; Yoe, J.G.; Xia-Serafino, W.; Lynch, E. Initial Assessment of the COSMIC-2/FORMOSAT-7 Neutral Atmosphere Data Quality in NESDIS/STAR Using In Situ and Satellite Data. Remote Sens. 2020, 12, 4099. [Google Scholar] [CrossRef]
- Poe, G.L.; Giraud, K.L.; Loomis, J.B. Computational methods for measuring the difference of empirical distributions. Am. J. Agric. Econ. 2005, 87, 353–365. [Google Scholar] [CrossRef]
- Liu, H.; Kuo, Y.-H.; Sokolovskiy, S.; Zou, X.; Zeng, Z.; Hsiao, L.-F.; Ruston, B. A quality control procedure based on bending angle measurement uncertainty for radio occultation data assimilation in the tropical lower troposphere. J. Atmos. Ocean. Technol. 2018, 35, 2117–2131. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Sokolovskiy, S.; Rocken, C.; Schreiner, W.; Hunt, D. On the uncertainty of radio occultation inversions in the lower troposphere. J. Geophys. Res. Atmos. 2010, 115, D22111. [Google Scholar] [CrossRef] [Green Version]
Impact Height (km) | GPS | GLONASS | All (GPS and GLONASS) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | STD | Cases | Mean | STD | Cases | Mean | STD | STD Exp. | Cases | |
40–45 | 0.06 | 7.16 | 182 | 1.10 | 9.25 | 107 | 0.44 | 8.01 | N/A | 289 |
35–40 | −0.13 | 3.44 | 182 | −0.48 | 4.31 | 107 | −0.26 | 3.78 | N/A | 289 |
30–35 | −0.11 | 2.02 | 182 | −0.41 | 2.36 | 107 | −0.22 | 2.16 | N/A | 289 |
20–30 | −0.24 | 1.54 | 182 | −0.18 | 1.33 | 107 | −0.22 | 1.47 | N/A | 289 |
10–20 | −0.08 | 1.78 | 182 | −0.13 | 1.85 | 107 | −0.10 | 1.81 | 1.98 | 289 |
6–10 | 0.24 | 5.85 | 181 | 0.38 | 5.85 | 106 | 0.29 | 5.85 | 4.60 | 287 |
4–6 | −0.02 | 12.93 | 173 | 0.96 | 13.65 | 100 | 0.34 | 13.20 | 13.97 | 273 |
2–4 | −0.20 | 16.10 | 97 | 0.13 | 14.60 | 59 | −0.17 | 15.54 | 20.18 | 156 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Shao, X.; Cao, C.; Ho, S.-p. Simultaneous Radio Occultation Predictions for Inter-Satellite Comparison of Bending Angle Profiles from COSMIC-2 and GeoOptics. Remote Sens. 2021, 13, 3644. https://doi.org/10.3390/rs13183644
Chen Y, Shao X, Cao C, Ho S-p. Simultaneous Radio Occultation Predictions for Inter-Satellite Comparison of Bending Angle Profiles from COSMIC-2 and GeoOptics. Remote Sensing. 2021; 13(18):3644. https://doi.org/10.3390/rs13183644
Chicago/Turabian StyleChen, Yong, Xi Shao, Changyong Cao, and Shu-peng Ho. 2021. "Simultaneous Radio Occultation Predictions for Inter-Satellite Comparison of Bending Angle Profiles from COSMIC-2 and GeoOptics" Remote Sensing 13, no. 18: 3644. https://doi.org/10.3390/rs13183644
APA StyleChen, Y., Shao, X., Cao, C., & Ho, S.-p. (2021). Simultaneous Radio Occultation Predictions for Inter-Satellite Comparison of Bending Angle Profiles from COSMIC-2 and GeoOptics. Remote Sensing, 13(18), 3644. https://doi.org/10.3390/rs13183644