Synergy between Low Earth Orbit (LEO)—MODIS and Geostationary Earth Orbit (GEO)—GOES Sensors for Sargassum Monitoring in the Atlantic Ocean
"> Figure 1
<p>Study area (white box): The Antilles archipelago in the North Atlantic Ocean (13–17°N and 60–63°W).</p> "> Figure 2
<p>(<b>a</b>) Example of color composite from Moderate Resolution Imaging Spectroradiometer (MODIS) (RGB) (left panel) and (<b>b</b>) GOES (Near Infra-Red (NIR)-G-B) (right panel) acquired on 8 August 2018 at 14:35 and 14:30 UTC respectively i.e., ca. 10:30 local solar time.</p> "> Figure 3
<p>Flowchart of the overall methodology used to exploit the synergy between MODIS and GOES data for the characterization of <span class="html-italic">Sargassum</span> occurrence and dynamics.</p> "> Figure 4
<p>Alternative Floating Algae Index (AFAI) deviation (δAFAI) estimated from Terra-MODIS on 8 August 2018 at 14:35 UTC (ca. 10:30 local solar time).</p> "> Figure 5
<p>NDVI (Normalized Difference Vegetation Index) deviation (δNDVI) obtained from GOES hourly product on 8 August 2018 between 13:30 and 18:30 UTC (ca. 10:30 and 15:30 local solar time).</p> "> Figure 6
<p>(<b>a</b>) NDVI deviation (δNDVI) calculated from GOES hourly data on 8 August 2018 at 16:30 UTC (left panel) and (<b>b</b>) application of the non-local means filtering technique (right panel). The white box indicates the location of the study area.</p> "> Figure 7
<p>(<b>a</b>) <span class="html-italic">Sargassum</span> identification using MODIS (δAFAI >1.79 10<sup>−4</sup>), (<b>b</b>) GOES (δNDVI > 0.003), and (<b>c</b>) the 2D scatterplot δNDVI <span class="html-italic">=</span> f(δAFAI), over the δAFAI <span class="html-italic">></span> 1.79 × 10<sup>−4</sup> range.</p> "> Figure 8
<p>Superimposition of hourly GOES <span class="html-italic">Sargassum</span> identification (δNDVI > 0.003) over the course of 8 August 2018 to enhance the visualization of the <span class="html-italic">Sargassum</span> aggregation motion. The dot color indicates the time of observation. Some examples of <span class="html-italic">Sargassum</span> motion are enlarged.</p> "> Figure 9
<p><span class="html-italic">Sargassum</span> aggregations motion (speed and direction) calculated from GOES hourly data over the course of 5 h; the arrows highlight the occurrence of an eddy (in the west part of the image at 62.2°W) and a northwestward drift (in the east part of the image at 61.5°W): (<b>a</b>) On 8 August 2018 (red arrows) and (<b>b</b>) on 9 August 2018 (purple arrows).</p> "> Figure 10
<p>Comparison between the NDVI deviation (δNDVI) (i.e., <span class="html-italic">Sargassum</span> optical signature) measured from GOES data on 8 August 2018 at 16:30 UTC (<b>left panel</b>) with a similar observation made 24 h after, on 9 August 2018 at 16:30 UTC (<b>right panel</b>). The white arrows link four identified aggregations from one day to the other.</p> "> Figure 11
<p>(<b>a</b>) Modeled Oscar Third Degree Sea Surface Velocity, (<b>b</b>) GHRSST (Group for High Resolution Sea Surface Temperature) of the water mass on 8 August 2018, and (<b>c</b>) GHRSST temperature of the water mass on 9 August 2018.</p> "> Figure 12
<p>Modeled surface velocity (combining large scale current velocity, wind velocity, Stokes velocity): (<b>a</b>) On 8 August 2018 and (<b>b</b>) on 9 August 2018; speed and direction are shown using color scale and white arrows respectively. The drift of aggregations derived from GOES data (red and purple arrows for 8 and 9 August, respectively) was superimposed to ease the comparison between observed and modeled motion.</p> ">
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Satellite Data
2.3. Environmental Data
2.4. Methodology
3. Results
3.1. AFAI Deviation from MODIS
3.2. NDVI Deviation from GOES Hourly Product
3.3. GOES Noise Filtering
3.4. δNDVI Threshold Detection
3.5. Performance of GOES Algorithm for Sargassum Identification
4. Discussion
4.1. Impact of the Hourly GOES Product on the Noise Filtering and on the δNDVI Value
4.2. Sargassum Aggregation Tracking
4.3. Consistency of Observed Drift with Satellite Derived Current and Temperature Data
4.4. Pertinence of GOES Sargassum Product for Transport Models
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gower, J.; Hu, C.; Borstad, G.; King, S. Ocean Color Satellites Show Extensive Lines of Floating Sargassum in the Gulf of Mexico. IEEE Trans. Geosci. Remote. Sens. 2006, 44, 3619–3625. [Google Scholar] [CrossRef]
- Gower, J.; King, S.; Goncalves, P. Global monitoring of plankton blooms using MERIS MCI. Int. J. Remote. Sens. 2008, 29, 6209–6216. [Google Scholar] [CrossRef]
- Gower, J.F.; King, S.A. Distribution of floating Sargassum in the Gulf of Mexico and the Atlantic Ocean mapped using MERIS. Int. J. Remote Sens. 2011, 32, 1917–1929. [Google Scholar] [CrossRef]
- Gower, J.; Young, E.; King, S. Satellite images suggest a new Sargassum source region in 2011. Remote Sens. Lett. 2013, 4, 764–773. [Google Scholar] [CrossRef]
- Gower, J.; King, S. The distribution of pelagic Sargassum observed with OLCI. Int. J. Remote Sens. 2019, 41, 1–11. [Google Scholar] [CrossRef]
- Hu, C. A novel ocean color index to detect floating algae in the global oceans. Remote. Sens. Environ. 2009, 113, 2118–2129. [Google Scholar] [CrossRef]
- He, M.X.; Liu, J.; Yu, F.; Li, D.; Hu, C. Monitoring green tides in Chinese marginal seas. In Handbook of Satellite Remote Sensing Image Interpretation: Applications for Marine Living Resources Conservation and Management; Morales, J., Stuart, V., Platt, T., Sathyendranath, S., Eds.; EU PRESPO and IOCCG: Dartmouth, NS, Canada, 2011; pp. 111–124. [Google Scholar]
- Hu, C.; Li, D.; Chen, C.; Ge, J.; Muller-Karger, F.E.; Liu, J.; Yu, F.; He, M.X. On the recurrent Ulva prolifera blooms in the Yellow Sea and East China Sea. J. Geophys. Res. Ocean. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Hu, C.; Feng, L.; Hardy, R.F.; Hochberg, E.J. Spectral and spatial requirements of remote measurements of pelagic Sargassum macroalgae. Remote. Sens. Environ. 2015, 167, 229–246. [Google Scholar] [CrossRef]
- Wang, M.; Hu, C. Mapping and quantifying Sargassum distribution and coverage in the Central West Atlantic using MODIS observations. Remote Sens. Environ. 2016, 183, 350–367. [Google Scholar] [CrossRef]
- Ody, A.; Thibaut, T.; Berline, L.; Changeux, T.; André, J.-M.; Chevalier, C.; Blanfuné, A.; Blanchot, J.; Ruitton, S.; Stiger-Pouvreau, V.; et al. From In Situ to satellite observations of pelagic Sargassum distribution and aggregation in the Tropical North Atlantic Ocean. PLoS ONE 2019, 14, e0222584. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Hu, C.; Cannizzaro, J.; English, D.; Han, X.; Naar, D.; Lapointe, B.; Brewton, R.; Hernandez, F. Remote Sensing of Sargassum Biomass, Nutrients, and Pigments. Geophys. Res. Lett. 2018, 45, 12–359. [Google Scholar] [CrossRef]
- Kwon, K.; Choi, B.-J.; Kim, K.Y.; Kim, K. Tracing the trajectory of pelagic Sargassum using satellite monitoring and Lagrangian transport simulations in the East China Sea and Yellow Sea. ALGAE 2019, 34, 315–326. [Google Scholar] [CrossRef] [Green Version]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ. 1974, 351, 309. [Google Scholar]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote. Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- van Tussenbroek, B.I.; Arana, H.A.; Rodríguez-Martínez, R.E.; Espinoza-Avalos, J.; Canizales-Flores, H.M.; González-Godoy, C.E.; Barba-Santos, M.G.; Vega-Zepeda, A.; Collado-Vides, L. Severe impacts of brown tides caused by Sargassum spp. on near-shore Caribbean seagrass communities. Mar. Pollut. Bull. 2017, 122, 272–281. [Google Scholar] [CrossRef]
- Resiere, D.; Mehdaoui, H.; Florentin, J.; Gueye, P.; Lebrun, T.; Blateau, A.; Viguier, J.; Valentino, R.; Brouste, Y.; Kallel, H.; et al. Sargassum seaweed health menace in the Caribbean: Clinical characteristics of a population exposed to hydrogen sulfide during the 2018 massive stranding. Clin. Toxicol. 2021, 59, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Berline, L.; Ody, A.; Jouanno, J.; Chevalier, C.; André, J.-M.; Thibaut, T.; Ménard, F. Hindcasting the 2017 dispersal of Sargassum algae in the Tropical North Atlantic. Mar. Pollut. Bull. 2020, 158, 111431. [Google Scholar] [CrossRef] [PubMed]
- Savtchenko, A. Terra and Aqua MODIS products available from NASA GES DAAC. Adv. Space Res. 2004, 34, 710–714. [Google Scholar] [CrossRef]
- Kalluri, S.; Alcala, C.; Carr, J.; Griffith, P.; Lebair, W.; Lindsey, D.; Race, R.; Wu, X.; Zierk, S. From Photons to Pixels: Processing Data from the Advanced Baseline Imager. Remote. Sens. 2018, 10, 177. [Google Scholar] [CrossRef] [Green Version]
- Aminou, D.M.A.; Ottenbacher, A.; Hanson, C.G.; Pili, P.; Müller, J.; Blancke, B.; Jacquet, B.; Bianchi, S.; Coste, P.; Pasternak, F.; et al. Meteosat Second Generation: The MSG-1 imaging radiometer performance results at the end of the commissioning phase. In Proceedings of the Earth Observing Systems VIII; Optical Science and Technology, SPIE’s 48th Annual Meeting, San Diego, CA, USA, 10 November 2003; Volume 5151, pp. 599–608. [Google Scholar]
- Bonjean, F.; Lagerloef, G.S. Diagnostic model and analysis of the surface currents in the tropical Pacific Ocean. J. Phys. Oceanogr. 2002, 32, 2938–2954. [Google Scholar] [CrossRef]
- Jouanno, J.; Benshila, R.; Berline, L.; Soulié, A.; Radenac, M.H.; Morvan, G.; Diaz, F.; Sheinbaum, J.; Chevalier, C.; Thibaut, T.; et al. A NEMO-based model of Sargassum distribution in the Tropical Atlantic: Description of the model and sensitivity analysis (NEMO-Sarg1. 0). Geosci. Model Dev. Discuss 2020, 1–30. [Google Scholar] [CrossRef]
- Von Schuckmann, K.; Le Traon, P.-Y.; Alvarez-Fanjul, E.; Axell, L.; Balmaseda, M.; Breivik, L.-A.; Brewin, R.J.W.; Bricaud, C.; Drevillon, M.; Drillet, Y.; et al. The Copernicus Marine Environment Monitoring Service Ocean State Report. J. Oper. Oceanogr. 2016, 9, s235–s320. [Google Scholar] [CrossRef]
- Siegel, D.A.; Wang, M.; Maritorena, S.; Robinson, W. Atmospheric correction of satellite ocean color imagery: The black pixel assumption. Appl. Opt. 2000, 39, 3582–3591. [Google Scholar] [CrossRef]
- Parker, J.A.; Kenyon, R.V.; Troxel, D.E. Comparison of Interpolating Methods for Image Resampling. IEEE Trans. Med Imaging 1983, 2, 31–39. [Google Scholar] [CrossRef]
- Buades, A.; Coll, B.; Morel, J.-M. A review of image denoising algorithms, with a new one. SIAM Multiscale Modeling Simul. 2005, 4, 490–530. [Google Scholar] [CrossRef]
- Buades, A.; Coll, B. Non-local means denoising. Image Process. Line 2011, 1, 208–212. [Google Scholar] [CrossRef] [Green Version]
Drift Velocity m·s−1 | Drift Distance | Drift Velocity m·s−1 | |||
---|---|---|---|---|---|
8 August— t = 5 h | 9 August— t = 5 h | t = 19 h (from 18:30 on 8 August to 13:30 on 9 August) | Averaged Over the 2 Days | Direction | |
Aggregation 1 (R1) | 0.4 | 0.8 | 41 km | 0.6 | along the eddy |
Aggregation 2 (R2) | 0.6 | 1 | 55 km | 0.80 | along the eddy |
Aggregation 3 (R3) | 0.5 | 1 | 51 km | 0.75 | along the eddy |
Aggregation 4 (R4) | 0.5 | 1.2 | 58 km | 0.85 | northwestward |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minghelli, A.; Chevalier, C.; Descloitres, J.; Berline, L.; Blanc, P.; Chami, M. Synergy between Low Earth Orbit (LEO)—MODIS and Geostationary Earth Orbit (GEO)—GOES Sensors for Sargassum Monitoring in the Atlantic Ocean. Remote Sens. 2021, 13, 1444. https://doi.org/10.3390/rs13081444
Minghelli A, Chevalier C, Descloitres J, Berline L, Blanc P, Chami M. Synergy between Low Earth Orbit (LEO)—MODIS and Geostationary Earth Orbit (GEO)—GOES Sensors for Sargassum Monitoring in the Atlantic Ocean. Remote Sensing. 2021; 13(8):1444. https://doi.org/10.3390/rs13081444
Chicago/Turabian StyleMinghelli, Audrey, Cristele Chevalier, Jacques Descloitres, Léo Berline, Philippe Blanc, and Malik Chami. 2021. "Synergy between Low Earth Orbit (LEO)—MODIS and Geostationary Earth Orbit (GEO)—GOES Sensors for Sargassum Monitoring in the Atlantic Ocean" Remote Sensing 13, no. 8: 1444. https://doi.org/10.3390/rs13081444
APA StyleMinghelli, A., Chevalier, C., Descloitres, J., Berline, L., Blanc, P., & Chami, M. (2021). Synergy between Low Earth Orbit (LEO)—MODIS and Geostationary Earth Orbit (GEO)—GOES Sensors for Sargassum Monitoring in the Atlantic Ocean. Remote Sensing, 13(8), 1444. https://doi.org/10.3390/rs13081444