Evaluation of Crop Type Classification with Different High Resolution Satellite Data Sources
<p>The S2 composite image of the study area showing the landscape and its geographical location in China.</p> "> Figure 2
<p>The field samples in the study area for 2017 (<b>left</b>) and 2018 (<b>right</b>).</p> "> Figure 3
<p>The accuracies of experiment 1.</p> "> Figure 3 Cont.
<p>The accuracies of experiment 1.</p> "> Figure 4
<p>The accuracies of experiment 2.</p> "> Figure 4 Cont.
<p>The accuracies of experiment 2.</p> "> Figure 5
<p>The accuracies of experiment 3.</p> "> Figure 5 Cont.
<p>The accuracies of experiment 3.</p> "> Figure 6
<p>The full capability of crop type map of three satellite data sources.</p> ">
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Satellite Data and Processing
2.3. Field Data and Training Samples
3. Methodology
3.1. Classification Algorithm
3.2. Increasing Features
3.3. Validation Methods
4. Results and Analysis
4.1. Accuracy Analysis for the Different Experiments of Input Data
4.2. The Full Capability of Data Sources for the Crop Type Classification
5. Discussions
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhao, S.H.; Wang, Q.; Yang, Y.P.; Zhu, L.; Wang, Z.T.; Jiang, D. The demonstration research of GF-1 satellite data monitoring environment application. Satell. Appl. 2015, 3, 37–40. [Google Scholar]
- ESA Sentinels—Sentinel-2: Operations Ramp-up Phase. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-2/operations-ramp-up-phase (accessed on 10 December 2020).
- USGS. Landsat Missions. Available online: https://www.usgs.gov/core-science-systems/nli/landsat (accessed on 28 February 2021).
- ESA. Sentinel-2 User Handbook; ESA: Paris, France, 2015. [Google Scholar]
- Landsat 8 (L8) Data Users Handbook Version 5.0; USGS: Sioux Falls, SD, USA, 2019.
- Reynolds, C.A.; Yitayew, M.; Slack, D.C.; Hutchinson, C.F.; Huete, A.; Petersen, M.S. Estimating crop yields and production by integrating the FAO crop specific water balance model with real-time satellite data and ground-based ancillary data. Int. J. Remote Sens. 2000, 21, 3487–3508. [Google Scholar] [CrossRef]
- Jinlong, F.; Mingwei, Z. Supporting Agricultural Monitoring in APEC with FengYun Satellite data. In Proceedings of the Workshop on the Application of Remote Sensing and GIS on Crops Productivity among APEC Economies, Beijing, China, 30–31 July 2012. [Google Scholar]
- Sakamoto, T.; Gitelson, A.A.; Arkebauer, T.J. Near real-time prediction of U.S. corn yields based on time-series MODIS data. Remote Sens. Environ. 2014, 147, 219–231. [Google Scholar] [CrossRef]
- Defourny, P.; Bontemps, S.; Bellemans, N.; Cara, C.; Dedieu, G.; Guzzonato, E.; Hagolle, O.; Inglada, J.; Nicola, L.; Rabaute, T.; et al. Near real-time agriculture monitoring at national scale at parcel resolution: Performance assessment of the Sen2-Agri automated system in various cropping systems around the world. Remote Sens. Environ. 2019, 221, 551–568. [Google Scholar] [CrossRef]
- Shelestov, A.; Lavreniuk, M.; Kussul, N.; Novikov, A.; Skakun, S. Large Scale Crop Classification Using Google Earth Engine Platform. In Proceedings of the 2017 IEEE International Geoscience & Remote Sensing Symposium, Fort Worth, TX, USA, 23–28 July 2017. [Google Scholar]
- Xiong, J.; Thenkabail, P.S.; Gumma, M.K.; Teluguntla, P.; Poehnelt, J.; Congalton, R.G.; Yadav, K.; Thau, D. Automated cropland mapping of continental Africa using Google Earth Engine cloud computing. ISPRS J. Photogramm. Remote Sens. 2017, 126, 225–244. [Google Scholar] [CrossRef] [Green Version]
- Lunetta, R.S.; Johnson, D.M.; Lyon, J.G.; Crotwell, J. Impacts of imagery temporal frequency on land-cover change detection monitoring. Remote Sens. Environ. 2004, 89, 444–454. [Google Scholar] [CrossRef]
- Carrão, H.; Gonc¸alves, P.; Caetano, M. Contribution of multispectral and multitemporal information from MODIS images to land cover classification. Remote Sens. Environ. 2008, 112, 986–997. [Google Scholar] [CrossRef]
- Griffiths, P.; Nendel, C.; Hostert, P. Intra-annual reflectance composites from sentinel-2 and Landsat for national-scale crop and land cover mapping. Remote Sens. Environ. 2019, 220, 135–151. [Google Scholar] [CrossRef]
- Bauer, M.E.; Cipra, J.; Anuta, P.E.; Etheridge, J.B. Identification and Area Estimation of Agricultural Crops by Computer Classification of LANDSAT MSS Data. Remote Sens. Environ. 1979, 8, 77–92. [Google Scholar] [CrossRef]
- Badhwar, G.B. Automatic corn-soybean classification using Landsat MSS data. II. Early season crop proportion estimation. Remote Sens. Environ. 1984, 14, 31–37. [Google Scholar] [CrossRef]
- Conrad, C.; Machwitz, M.; Schorcht, G.; Löw, F.; Fritsch, S.; Dech, S. Potentials of Rapid Eye time series for improved classification of crop rotations in heterogeneous agricultural landscapes: experiences from irrigation systems in Central Asia. SPIE Remote Sens. 2011, 8174, 817412. [Google Scholar] [CrossRef]
- Liu, M.W.; Ozdogan, M.; Zhu, X. Crop type classification by simultaneous use of satellite images of different resolutions. IEEE Trans. Geosci. Remote Sens. 2014, 52, 3637–3649. [Google Scholar] [CrossRef]
- Fan, X.S.; Xu, W.B.; Fan, J.L. Mapping winter wheat growing areas in the North China Plain with FY-3 250 m resolution data. J. Remote Sens. 2015, 19, 586–593. [Google Scholar] [CrossRef]
- Fan, J. Updates on the FY-3 MERSI satellite data processing and delivering. In Proceedings of the SIGMA Project Annual Meeting, Brussels, Belgium, 9–13 November 2015. [Google Scholar]
- Hao, P.; Wang, L.; Zhan, Y.; Niu, Z.; Wu, M. Using historical NDVI time series to classify crops at 30m spatial resolution: A case in Southeast Kansas. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 6316–6319. [Google Scholar] [CrossRef]
- Walter, V. Object-based classification of remote sensing data for change detection. ISPRS J. Photogramm. Remote Sens. 2004, 58, 225–238. [Google Scholar] [CrossRef]
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef] [Green Version]
- Mao, D.; Wang, Z.; Du, B.; Li, L.; Tian, Y.; Jia, M.; Zeng, Y.; Song, K.; Jiang, M.; Wang, Y. A new product resulting from object-based and hierarchical classification of Landsat 8 OLI images. ISPRS J. Photogramm. Remote Sens. 2020, 164, 11–25. [Google Scholar] [CrossRef]
- Liu, D.; Xia, F. Assessing object-based classification: Advantages and limitations. Remote Sens. Lett. 2010, 1, 187–194. [Google Scholar] [CrossRef]
- Lobell, D.B.; Asner, G.P. Cropland distributions from temporal unmixing of MODIS data. Remote Sens. Environ. 2004, 93, 412–422. [Google Scholar] [CrossRef]
- Verbeiren, S.; Eerens, H.; Piccard, I.; Bauwens, I.; van Orshoven, J. Sub-pixel classification of SPOT-VEGETATION time series for the assessment of regional crop areas in Belgium. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 486–497. [Google Scholar] [CrossRef]
- Westbrook, J.; Hung, I.; Unger, D.; Zhang, Y. Sub-Pixel Classification of Forest Cover Types in East Texas; Faculty Publications, 2012; p. 5. Available online: https://scholarworks.sfasu.edu/spatialsci/5 (accessed on 28 February 2021).
- Durgun, Y.Ö.; Gobin, A.; Van De Kerchove, R.; Tychon, B. Crop Area Mapping Using 100-m Proba-V Time Series. Remote Sens. 2016, 8, 585. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Li, J.; Li, S.; Plaza, A. Subpixel Component Analysis for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5564–5579. [Google Scholar] [CrossRef]
- Osman, J.; Inglada, J.; Dejoux, J.-F. Assessment of a Markov logic model of crop rotations for early crop mapping. Comput. Electron. Agric. 2015, 113, 234–243. [Google Scholar] [CrossRef] [Green Version]
- Gómez, C.; White, J.C.; Wulder, M.A. Optical remotely sensed time series data for land cover classification: A review. ISPRS J. Photogramm. Remote Sens. 2016, 116, 55–72. [Google Scholar] [CrossRef] [Green Version]
- Pelletiera, C.; Valeroa, S.; Ingladaa, J.; Championb, N.; Dedieua, G. Assessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas. Remote Sens. Environ. 2016, 187, 156–168. [Google Scholar] [CrossRef]
- Fan, J.; Defourny, P.; Dong, Q.; Zhang, X.; De Vroey, M.; Belleman, N.; Xu, Q.; Li, Q.; Zhang, L.; Gao, H. Sent2Agri System Based Crop Type Mapping in Yellow River Irrigation Area. J. Geod. Geoinf. Sci. 2020, 3, 110–117. [Google Scholar] [CrossRef]
- Blaes, X.; Vanhalle, L.; Defourny, P. Efficiency of crop identification based on optical and SAR image time series. Remote Sens. Environ. 2005, 96, 352–365. [Google Scholar] [CrossRef]
- Zhao, W.; Qu, Y.; Chen, J.; Yuan, Z. Deeply synergistic optical and SAR time series for crop dynamic monitoring. Remote Sens. Environ. 2020, 247, 111952. [Google Scholar] [CrossRef]
- Orynbaikyzy, A.; Gessner, U.; Mack, B.; Conrad, C. Crop Type Classification Using Fusion of Sentinel-1 and Sentinel-2 Data: Assessing the Impact of Feature Selection, Optical Data Availability, and Parcel Sizes on the Accuracies. Remote Sens. 2020, 12, 2779. [Google Scholar] [CrossRef]
- Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.-C.; Skakun, S.V.; Justice, C. The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sens. Environ. 2018, 219, 145–161. [Google Scholar] [CrossRef]
- Chaves, M.E.D.; Picoli, M.C.A.; Sanches, I.D. Recent Applications of Landsat 8/OLI and Sentinel-2/MSI for Land Use and Land Cover Mapping: A Systematic Review. Remote Sens. 2020, 12, 3062. [Google Scholar] [CrossRef]
- Skakun, S.; Vermote, E.; Roger, J.C.; Franch, B. Combined use of Landsat-8 and Sentinel-2A images for winter crop mapping and winter wheat yield assessment at regional scale. AIMS Geosci. 2017, 3, 163–186. [Google Scholar] [CrossRef]
- Zhan, Z.; Yu, L.; Li, Z.; Ren, L.; Gao, B.; Wang, L.; Luo, Y. Combining GF-2 and Sentinel-2 Images to Detect Tree Mortality Caused by Red Turpentine Beetle during the Early Outbreak Stage in North China. Forests 2020, 11, 172. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, M.D.; Baez-Villanueva, O.M.; Bui, D.D.; Nguyen, P.T.; Ribbe, L. Harmonization of Landsat and Sentinel 2 for Crop Monitoring in Drought Prone Areas: Case Studies of Ninh Thuan (Vietnam) and Bekaa (Lebanon). Remote Sens. 2020, 12, 281. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Li, J.; Jin, T.; Chang, X.; Zhu, Y.; Li, Y.; Sun, J.; Li, D. Comparative Analysis of Landsat-8, Sentinel-2, and GF-1 Data for Retrieving Soil Moisture over Wheat Farmlands. Remote Sens. 2020, 12, 2708. [Google Scholar] [CrossRef]
- NERC; ESRC; DFID. China Ecosystem Services and Poverty Alleviation Situation Analysis and Research Strategy-Ningxia Case Study Ningxia Statistics Bureau, 2017, Ningxia Statistical Yearbook; China Statistics Press: Beijing, China, 2017. [Google Scholar]
- Wei, J.; Guojin, H.; Huichan, L.; Tengfei, L.; Wei, W.; Shouzhu, Z.; Xiaoxiao, M. Research on China’s land image mosaicking and mapping technology based on GF-1 satellite WFV data. Remote Sens. Land Resour. 2017, 29, 190–196. [Google Scholar] [CrossRef]
- Liu, J.; Wang, L.; Yang, L.; Teng, F.; Shao, J.; Yang, F.; Fu, C. GF-1 satellite image atmospheric correction based on 6S model and its effect. Trans. Chin. Soc. Agric. Eng. 2015, 31, 159–168. [Google Scholar]
- Sentinel-2 for Agriculture. Available online: http://www.esa-sen2agri.org/ (accessed on 10 December 2020).
- Orfeo ToolBox. Available online: https://www.orfeo-toolbox.org/ (accessed on 10 December 2020).
- Martins, V.S.; Barbosa, C.C.F.; de Carvalho, L.A.S.; Jorge, D.S.F.; Lobo, F.L.; Novo, E.M.L.M. Assessment of Atmospheric Correction Methods for Sentinel-2 MSI Images Applied to Amazon Floodplain Lakes. Remote Sens. 2017, 9, 322. [Google Scholar] [CrossRef] [Green Version]
- Prieto-Amparan, J.A.; Villarreal-Guerrero, F.; Martinez-Salvador, M.; Manjarrez-Domínguez, C.; Santellano-Estrada, E.; Pinedo-Alvarez, A. Atmospheric and Radiometric Correction Algorithms for the Multitemporal Assessment of Grasslands Productivity. Remote Sens. 2018, 10, 219. [Google Scholar] [CrossRef] [Green Version]
- Bégué, A.; Arvor, D.; Bellón, B.; Betbeder, J.; de Abelleyra, D.; Ferraz, R.; Lebourgeois, V.; Lelong, C.; Simoes, M.; Verón, S. Remote Sensing and Cropping Practices: A Review. Remote Sens. 2018, 10, 99. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random Forests for land cover classification. Pattern Recognit. Lett. 2006, 27, 294–300. [Google Scholar] [CrossRef]
- Pal, M. Random Forests for Land Cover Classification. Proc. Int. Geosci. Remote Sens. Symp. 2003, 2003, 3510–3512. [Google Scholar]
- Polikar, R. Ensemble based systems in decision making. IEEE Circuits Syst. Mag. 2006, 6, 21–45. [Google Scholar] [CrossRef]
- Forkuor, G.; Conrad, C.; Thiel, M.; Ullmann, T.; Zoungrana, E. Integration of Optical and Synthetic Aperture Radar Imagery for Improving Crop Mapping in Northwestern Benin, West Africa. Remote Sens. 2014, 6, 6472–6499. [Google Scholar] [CrossRef] [Green Version]
- Inglada, J.; Arias, M.; Tardy, B.; Hagolle, O.; Valero, S.; Morin, D.; Dedieu, G.; Sepulcre, G.; Bontemps, S.; Defourny, P.; et al. Assessment of an Operational System for Crop Type Map Production Using High Temporal and Spatial Resolution Satellite Optical Imagery. Remote Sens. 2015, 7, 12356–12379. [Google Scholar] [CrossRef] [Green Version]
Band Number | Central Wavelength (nm) | Bandwidth (nm) | Resolution (m) | Central Wavelength (nm) | Bandwidth (nm) | Resolution (m) | Central Wavelength (nm) | Bandwidth (nm) | Resolution (m) |
---|---|---|---|---|---|---|---|---|---|
GF-1 WFV | S2A/B MSI | L8 OLI | |||||||
1 | 443 | 20 | 60 | 443 | 16 | 30 | |||
2 | 485 | 70 | 16 | 490 | 65 | 10 | 482 | 60 | 30 |
3 | 555 | 70 | 16 | 560 | 35 | 10 | 562 | 57 | 30 |
4 | 660 | 60 | 16 | 665 | 30 | 10 | 655 | 37 | 30 |
5 | 705 | 15 | 20 | ||||||
6 | 740 | 15 | 20 | ||||||
7 | 783 | 20 | 20 | ||||||
8 | 830 | 120 | 16 | 842 | 115 | 10 | |||
8a | 865 | 20 | 20 | 865 | 28 | 30 | |||
9 | 945 | 20 | 60 | ||||||
10 | 1375 | 30 | 60 | 1372 | 21 | 30 | |||
11 | 1610 | 90 | 20 | 1609 | 85 | 30 | |||
12 | 2190 | 180 | 20 | 2200 | 187 | 30 |
GF | L8 | S2 | ||||
---|---|---|---|---|---|---|
2017 | 2018 | 2017 | 2018 | 2017 | 2018 | |
May | 20170526 | 20180502 20180514 20180530 | 20170517 | 20180504 20180511 20180520 20180527 | 20170517 | 20180502 20180515 20180517 20180522 20180530 |
June | 20170616 20170628 | 20180627 | 20170625 | 20180605 20180612 20180621 20180628 | 20170606 20170626 | 20180604 20180609 20180614 |
July | 20170701 20170706 20170710 20170731 | 20180705 20180722 | 20170704 | 20180714 20180730 | 20170709 20170711 20170729 20170731 | 20180704 20180711 20180719 20180721 |
August | 20170804 20170816 | 20180804 20180815 | 20170805 | 20180808 20180815 20180824 | ||
September | 20170906 20170922 20170929 |
Class Name | Forage Grass | Corn | Grape | Greenhouse | Sward | Medlar | Rice | Vegetable | Wheat |
---|---|---|---|---|---|---|---|---|---|
Pixel Counts 2017 | 2094 | 2433 | 1302 | 1642 | 494 | 281 | 7681 | 991 | 509 |
Pixel Counts 2018 | 1258 | 4631 | 1366 | 1451 | 103 | 167 | 4134 | 1727 | 1793 |
Proportion 2017 | 12.0 | 14.0 | 7.5 | 9.4 | 2.8 | 1.6 | 44.1 | 5.7 | 2.9 |
Proportion 2018 | 7.6 | 27.8 | 8.2 | 8.7 | 0.6 | 1.0 | 24.9 | 10.4 | 10.8 |
Classified | |||||
---|---|---|---|---|---|
j = 1 | j = 2 | … | j = J | ||
Ground Truth | i = 1 | N11 | N12 | N1J | |
i = 2 | N21 | N22 | N2J | ||
… | |||||
i = J | NJ1 | NJ2 | NJJ |
Experiment | Bands/Features | GF-1 WFV | S2A/B MSI | L8 OLI |
---|---|---|---|---|
1 | Used Bands | 485, 555, 660, 830 | 490, 560,665,865 | 482,562, 655, 865 |
Increased Features | 0 | 0 | 0 | |
2 | Used Bands | 485, 555, 660, 830 | 490, 560,665,865 | 482,562, 655, 865 |
Increased Features | 6 | 6 | 6 | |
3 | Used Bands | 485, 555, 660, 830 | 490, 560,665,705,740, 783, 842, 865,1610,2190 | 443, 482,562, 655, 865, 1609, 2200 |
Increased Features | 6 | 45 | 21 |
GF 2017 | GF 2018 | L8 2017 | L8 2018 | S2 2017 | S2 2018 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Commission | Omission | Commission | Omission | Commission | Omission | Commission | Omission | Commission | Omission | Commission | Omission | |
Forage Grass | 6.5 | 12.0 | 1.0 | 7.7 | 2.6 | 5.0 | 1.2 | 6.4 | 0.7 | 4.3 | 1.1 | 10.3 |
Corn | 9.8 | 3.8 | 9.7 | 4.8 | 10.7 | 11.3 | 4.4 | 3.0 | 3.0 | 3.5 | 4.6 | 1.5 |
Grape | 14.9 | 9.2 | 4.2 | 12.0 | 3.2 | 5.5 | 5.0 | 7.2 | 1.2 | 1.8 | 1.4 | 6.2 |
Greenhouse | 2.1 | 1.2 | 2.3 | 0.7 | 2.9 | 1.6 | 2.1 | 0.9 | 2.0 | 0.1 | 1.9 | 0.3 |
Sward | 36.1 | 39.2 | 0.0 | 24.2 | 2.1 | 6.0 | 25.0 | 52.6 | 3.1 | 10.9 | 38.1 | 8.1 |
Medlar | 1.8 | 53.9 | 3.4 | 30.1 | 6.1 | 3.6 | 0.0 | 14.9 | 2.1 | 3.8 | 2.8 | 8.8 |
Rice | 0.8 | 0.9 | 1.0 | 1.1 | 2.9 | 2.5 | 0.0 | 0.2 | 0.8 | 0.3 | 0.5 | 0.3 |
Vegetable | 6.5 | 3.7 | 5.4 | 16.4 | 9.7 | 5.3 | 10.8 | 10.1 | 1.1 | 1.3 | 2.3 | 6.8 |
Wheat | 32.3 | 23.0 | 17.0 | 8.8 | 7.2 | 11.1 | 5.1 | 2.3 | 9.5 | 3.3 | 7.4 | 5.3 |
GF-2017 | L8-2017 | S2-2017 | GF-2018 | L8-2018 | S2-2018 | |
---|---|---|---|---|---|---|
OA | 94.4 | 96.4 | 98.4 | 93.9 | 97.2 | 96.7 |
Kappa | 93.0 | 95.0 | 98.0 | 93.0 | 97.0 | 96.0 |
F1-score | 84.6 | 95.2 | 97.0 | 91.2 | 95.1 | 94.0 |
Forage Grass | 90.7 | 95.1 | 97.5 | 95.5 | 97.5 | 94.1 |
Corn | 93.1 | 92.2 | 96.7 | 92.7 | 97.5 | 96.9 |
Grape | 87.9 | 96.6 | 98.5 | 91.7 | 94.6 | 96.1 |
Greenhouse | 98.3 | 98.2 | 98.9 | 98.5 | 99.5 | 98.9 |
Sward | 62.3 | 95.0 | 92.8 | 86.2 | 86.6 | 74.0 |
Medlar | 62.7 | 96.0 | 97.0 | 81.1 | 93.0 | 94.1 |
Rice | 99.1 | 98.3 | 99.4 | 98.9 | 100.0 | 99.6 |
Vegetable | 94.9 | 94.6 | 98.8 | 88.8 | 90.7 | 95.4 |
Wheat | 72.1 | 90.3 | 93.5 | 86.9 | 96.2 | 95.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, J.; Zhang, X.; Zhao, C.; Qin, Z.; De Vroey, M.; Defourny, P. Evaluation of Crop Type Classification with Different High Resolution Satellite Data Sources. Remote Sens. 2021, 13, 911. https://doi.org/10.3390/rs13050911
Fan J, Zhang X, Zhao C, Qin Z, De Vroey M, Defourny P. Evaluation of Crop Type Classification with Different High Resolution Satellite Data Sources. Remote Sensing. 2021; 13(5):911. https://doi.org/10.3390/rs13050911
Chicago/Turabian StyleFan, Jinlong, Xiaoyu Zhang, Chunliang Zhao, Zhihao Qin, Mathilde De Vroey, and Pierre Defourny. 2021. "Evaluation of Crop Type Classification with Different High Resolution Satellite Data Sources" Remote Sensing 13, no. 5: 911. https://doi.org/10.3390/rs13050911
APA StyleFan, J., Zhang, X., Zhao, C., Qin, Z., De Vroey, M., & Defourny, P. (2021). Evaluation of Crop Type Classification with Different High Resolution Satellite Data Sources. Remote Sensing, 13(5), 911. https://doi.org/10.3390/rs13050911