Combining GF-2 and Sentinel-2 Images to Detect Tree Mortality Caused by Red Turpentine Beetle during the Early Outbreak Stage in North China
<p>(<b>a</b>) Liaoning Province in China; (<b>b</b>) true-color Gaofen-2 (GF2) image from 2018; (<b>c</b>) the study areas and field plots in the right and left corner of the GF2 image; (<b>d</b>) unmanned aerial vehicle (UAV) images in one of the study areas.</p> "> Figure 2
<p>Examples of green trees (<b>a</b>), red trees (<b>b</b>), and gray trees (<b>c</b>) in UAV images.</p> "> Figure 3
<p>Flowchart of operations used to classify GF2 and S2 images.</p> "> Figure 4
<p>Overall accuracy (OA) of classification for different combinations of resolutions and algorithms using GF2 images, for which the significance level was 0.05. a: 1 m resolution images based on the object method; b: 1 m resolution images based on the pixel method; c: 4 m resolution images. Error bars indicate the standard deviations of 10 classifications. A–D: pairwise differences among combinations of resolutions and algorithms in the classification performance.</p> "> Figure 5
<p>Detail example of the image classification of study areas. (<b>a</b>) 1m resolution image based on the pixel method and SVM algorithm; (<b>b</b>) 1m resolution image based on the pixel method and RF algorithm; (<b>c</b>) 1m resolution image based on the pixel method and C50 algorithm; (<b>d</b>) 1m resolution image based on the object method and SVM algorithm; (<b>e</b>) 4m resolution image based on the SVM algorithm; (<b>f</b>) GF2 true color image; (<b>g</b>) UAV image.</p> "> Figure 6
<p>OA of classification for combinations of resolutions and algorithms using S2 images. a: 10 m resolution images; b: 20 m resolution images. Error bars indicate the standard deviations of ten classifications. A–C: pairwise differences among combinations of resolutions and algorithms in the classification performance.</p> "> Figure 7
<p>Subset of selected samples from GF2 1 m resolution images: (<b>a</b>) based on the object method; (<b>b</b>) based on the pixel method. bluepolygons correspond to delineated trees from UAV images, dark green corresponds to green trees, purple to red trees, white to gray trees, olive green to tree canopy areas, cyan to herbaceous, and black to shadow.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Reference Data
2.3. Satellite Image Preparation
2.4. Extraction of Tree Mortality at a Single-Tree Scale
2.5. Extraction of the Percentage of Tree Mortality at a Forest Stand Scale
2.6. Classification
3. Results
3.1. Comparisons of Classification on a Single-Tree Scale
3.2. Comparisons of Classification at a Forest Stand Scale
4. Discussion
4.1. Extraction of Tree Mortality at a Single-Tree Scale
4.2. Extraction of Tree Mortality at a Forest Stand Scale
4.3. Feature Variables and Classification Algorithm
5. Conclusions
- (1)
- Different scales of RTB-caused tree mortality could be accurately detected in the early stage of outbreak using GF2 imagery and S2 imagery;
- (2)
- SVM and RF performed well in the extraction of tree mortality; nevertheless, SVM achieved a relatively higher overall accuracy and was considered to be a useful algorithm for small training samples;
- (3)
- In classification with the early stage of tree mortality, spectral information was more important than index and texture information.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yan, Z.; Sun, J.H.; Don, O.; Zhang, Z. The red turpentine beetle, Dendroctonus valens LeConte (Scolytidae): An exotic invasive pest of pine in China. Biodivers. Conserv. 2005, 14, 1735–1760. [Google Scholar] [CrossRef]
- Pan, J.; Wang, T.; Wen, J.B.; Luo, Y.Q.; Zong, S.X. Changes in invasion characteristics of Dendroctonus valens after introduction into China. Acta Ecol. Sin. 2011, 31, 1970–1975. [Google Scholar]
- Pan, J.; Wang, T.; Zong, S.X.; Wen, J.B.; Luo, Y.Q. Geostatistical analysis and sampling technique on spatial distribution pattern of Dendroctonus valens population. Acta Ecol. Sin. 2011, 31, 0195–0202. [Google Scholar]
- Zhao, Z.Y.; Shen, F.Y.; Liu, J.L. Red turpentine beetle are threatening China’s forestry production. Plant. Quar. 2002, 16, 86–88. [Google Scholar] [CrossRef]
- Xu, H.R.; Li, N.C.; Li, Z.Y. The analysis of outbreak reason and spread directions of Dendroctonus valens. Plant. Quar. 2006, 20, 278–280. [Google Scholar] [CrossRef]
- Tao, G.Z.; Cong, X.W.; Liu, S.S. Effective pre-endanger management and control mechanism and technology scheme for Dendroctonus valens. J. Hebei For. Sci. Technol. 2019, 1, 68–70. [Google Scholar] [CrossRef]
- Yao, J. Study on the behavior trend of bark of four Conifers by Dendroctonus valens. Plant. Quar. 2011, 25, 1–5. [Google Scholar] [CrossRef]
- Hart, S.J.; Veblen, T.T. Detection of spruce beetle-induced tree mortality using high-and medium-resolution remotely sensed imagery. Remote Sens. Environ. 2015, 168, 134. [Google Scholar] [CrossRef] [Green Version]
- Wulder, M.; Dymond, C.; White, J.; Leckie, D.; Carroll, A. Surveying mountain pine beetle damage of forests: A review of remote sensing opportunities. For. Ecol. Manag. 2006, 221, 27–41. [Google Scholar] [CrossRef]
- Wulder, M.A.; White, J.C.; Bentz, B.; Alvarez, M.F.; Coops, N.C. Estimating the probability of mountain pine beetle red-attack damage. Remote Sens. Environ. 2006, 101, 150–166. [Google Scholar] [CrossRef]
- White, J.; Wulder, M.; Brooks, D.; Reich, R.; Wheate, R. Detection of red attack stage mountain pine beetle infestation with high spatial resolution satellite imagery. Remote Sens. Environ. 2005, 96, 340–351. [Google Scholar] [CrossRef]
- Coops, N.C.; Johnson, M.; Wulder, M.A.; White, J.C. Assessment of QuickBird high spatial resolution imagery to detect red attack damage due to mountain pine beetle infestation. Remote Sens. Environ. 2006, 103, 67–80. [Google Scholar] [CrossRef]
- Wulder, M.A.; White, J.C.; Coops, N.C.; Butson, C.R. Multi-Temporal analysis of high spatial resolution imagery for disturbance monitoring. Remote Sens. Environ. 2008, 112, 2729–2740. [Google Scholar] [CrossRef]
- Hicke, J.A.; Logan, J. Mapping whitebark pine mortality caused by a mountain pine beetle outbreak with high spatial resolution satellite imagery. Int. J. Remote Sens. 2009, 30, 4427–4441. [Google Scholar] [CrossRef]
- DeRose, R.J.; Long, J.; Ramsey, R. Combining dendrochronological data and the disturbance index to assess Engelmann spruce mortality caused by a spruce beetle outbreak in southern Utah, USA. Remote Sens. Environ. 2011, 115, 2342–2349. [Google Scholar] [CrossRef]
- Makoto, K.; Tani, H.; Kamata, N. High-Resolution multispectral satellite image and a postfire ground survey reveal prefire beetle damage on snags in Southern Alaska. Scand. J. For. Res. 2013, 28, 1–5. [Google Scholar] [CrossRef]
- Raffa, K.F.; Aukema, B.H.; Bentz, B.J.; Carroll, A.L.; Hicke, J.A.; Turner, M.G.; Romme, W.H. Cross-Scale drivers of natural disturbances prone to anthropogenic amplification: The dynamics of bark beetle eruptions. BioScience 2008, 58, 501–517. [Google Scholar] [CrossRef] [Green Version]
- Meddens, A.; Hicke, J.; Vierling, L. Evaluating the potential of multispectral imagery to map multiple stages of tree mortality. Remote Sens. Environ. 2011, 115, 1632–1642. [Google Scholar] [CrossRef]
- Dennison, P.E.; Brunelle, A.R.; Carter, V.A. Assessing canopy mortality during a mountain pine beetle outbreak using GeoEye-1 high spatial resolution satellite data. Remote Sens. Environ. 2010, 114, 2431–2435. [Google Scholar] [CrossRef]
- Franklin, S.; Wulder, M.; Skakun, R.S.; Carroll, A.L. Mountain pine beetle red-attack forest damage classification using stratified landsat TM data in British Columbia, Canada. Photogramm. Eng. Remote Sens. 2003, 69, 283–288. [Google Scholar] [CrossRef]
- Skakun, R.; Wulder, M.; Franklin, S. Sensitivity of the thematic mapper enhanced wetness difference index to detect mountain pine beetle red-attack damage. Remote Sens. Environ. 2003, 86, 433–443. [Google Scholar] [CrossRef]
- Meddens, A.; Hicke, J.; Vierling, L.; Hudak, A.T. Evaluating methods to detect bark beetle-caused tree mortality using single-date and multi-date Landsat imagery. Remote Sens. Environ. 2013, 132, 49–58. [Google Scholar] [CrossRef]
- Pu, R.; Landry, S. A comparative analysis of high spatial resolution IKONOS and WorldView-2 imagery for mapping urban tree species. Remote Sens. Environ. 2012, 124, 516–533. [Google Scholar] [CrossRef]
- Yu, Q.; Gong, P.; Clinton, N.; Biging, G.; Kelly, M. Object-Based detailed vegetation classification with airborne high spatial resolution remote sensing imagery. Photogramm. Eng. Remote Sens. 2006, 72, 799–811. [Google Scholar] [CrossRef] [Green Version]
- Heurich, M.; Ochs, T.; Andresen, T.; Schneider, T. Object-Orientated image analysis for the semi-automatic detection of dead trees following a spruce bark beetle (Ips typographus) outbreak. Eur. J. For. Res. 2009, 129, 313–324. [Google Scholar] [CrossRef]
- Coggins, S.; Coops, N.C.; Wulder, M.A. Initialization of an insect infestation spread model using tree structure and spatial characteristics derived from high spatial resolution digital aerial imagery. Can. J. Remote Sens. 2008, 34, 485–502. [Google Scholar] [CrossRef]
- China Meteorological Data Service Center. Available online: http://data.cma.cn/ (accessed on 10 October 2018).
- Agisoft PhotoScan. Available online: http://www.agisoft.com/ (accessed on 11 September 2018).
- China Centre for Resources Satellite Data and Application. Available online: http://www.cresda.com/CN/ (accessed on 9 June 2019).
- Copernicus Open Access Hub. Available online: https://scihub.copernicus.eu/ (accessed on 9 August 2019).
- Müller-Wilm, U.; Louis, J.; Richter, R.; Gascon, F.; Niezette, M. Sentinel-2 level-2A pototype processor: Architecture, algorithms and first results. In Proceedings of the ESA Living Planet Symposium, Edinburgh, UK, 9–13 September 2013. [Google Scholar]
- Multiresolution Segmentation—An Optimization Approach for High Quality Multi-Scale Image Segmentation. Available online: http://www.isprs.org/proceedings/xxxviii/4-c7/pdf/Happ_143.pdf (accessed on 20 August 2019).
- Benz, U.; Hofmann, P.; Willhauck, G.; Lingenfelder, I.; Heynen, M. Multi-Resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J. Photogramm. Remote Sens. 2004, 58, 239–258. [Google Scholar] [CrossRef]
- Waser, L.; Küchler, M.; Jütte, K.; Stampfer, T. Evaluating the potential of WorldView-2 data to classify tree species and different levels of Ash mortality. Remote Sens. 2014, 6, 4515–4545. [Google Scholar] [CrossRef] [Green Version]
- Torres-Sánchez, J.; Peña-Barragán, J.M.; De Castro, A.; López-Granados, F. Multi-Temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV. Comput. Electron. Agric. 2014, 103, 104–113. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, 3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Latifi, H.; Fassnacht, F.E.; Schumann, B.; Dech, S. Object-Based extraction of bark beetle (Ips typographus L.) infestations using multi-date LANDSAT and SPOT satellite imagery. Prog. Phys. Geogr. 2014, 38, 755–785. [Google Scholar] [CrossRef]
- Everitt, B.S. Classification and regression trees. In Encyclopedia of Statistics in Behavioral Science; Everitt, B.S., Howell, D.C., Eds.; John Wiley & Sons Ltd.: Chichester, UK, 2005; pp. 287–290. ISBN 978-0-470-86080-9. [Google Scholar]
- Bittencourt, H.R.; Clarke, R.T. Use of classification and regression trees (CART) to classify remotely-sensed digital images. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 21–25 July 2003; pp. 3751–3753. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Q.Y.; Peng, D.L. The time phase and method selection of tree species classification based on GF-2 remote sensing images. Chin. J. Appl. Ecol. 2019, 30, 4059–4070. [Google Scholar] [CrossRef]
- Reference Book of eCognition Developer. Available online: http://www.ecognition.com/ (accessed on 20 October 2018).
- Tucker, C. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Hilker, T.; Wulder, M.A.; Coops, N.C. A new data fusion model for high spatial-and temporal-resolution mapping of forest disturbance based on Landsat and MODIS. Remote Sens. Environ. 2009, 113, 1613–1627. [Google Scholar] [CrossRef]
- Wilson, E.; Sader, S. Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sens. Environ. 2002, 80, 385–396. [Google Scholar] [CrossRef]
- Rock, B.N.; Vogelmann, J.E.; Williams, D.L. Field and airborne spectral characterization of suspected damage in Red Spruce (Picea rubens) from Vermont. In Proceedings of the 11th International Symposium on Machine Processing of Remotely Sensed Data, West Lafayette, IN, USA, 25–27 June 1985; pp. 71–81. [Google Scholar]
- Bellhouse, D.R. Area estimation by point-counting techniques. Biometrics 1981, 37, 303–312. [Google Scholar] [CrossRef]
- Long, J.A.; Lawrence, R.L. Mapping percent tree mortality due to mountain pine beetle damage. For. Sci. 2016, 62, 392–402. [Google Scholar] [CrossRef] [Green Version]
- Goodwin, N.; Magnussen, S.; Coops, N.; Wulder, M. Curve fitting of time-series Landsat imagery for characterizing a mountain pine beetle infestation. Int. J. Remote Sens. 2010, 31, 3263–3271. [Google Scholar] [CrossRef]
- Yu, L.F.; Huang, J.X.; Zong, S.X.; Huang, H.G.; Luo, Y.Q. Detecting shoot beetle damage on Yunnan Pine using Landsat time-series data. Forests 2018, 9, 39. [Google Scholar] [CrossRef] [Green Version]
- Jing, W.; Yang, Y.; Yue, X.; Zhao, X. Mapping urban areas with integration of DMSP/OLS nighttime light and MODIS data using machine learning techniques. Remote Sens. 2015, 7, 12419–12439. [Google Scholar] [CrossRef] [Green Version]
- Kaszta, Ż.; Van De Kerchove, R.; Ramoelo, A.; Cho, M.; Madonsela, S.; Mathieu, R.; Wolff, E. Seasonal separation of african savanna components using WorldView-2 imagery: A comparison of pixel-and object-based approaches and selected classification algorithms. Remote Sens. 2016, 8, 763. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Cortes, C.; Vapnik, V.N. Support vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Congalton, R. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fassnacht, F.E.; Latifi, H.; Ghosh, A.; Joshi, P.K.; Koch, B. Assessing the potential of hyperspectral imagery to map bark beetle-induced tree mortality. Remote Sens. Environ. 2014, 140, 533–548. [Google Scholar] [CrossRef]
- Abdel-Rahman, E.M.; Mutanga, O.; Adam, E.; Ismail, R. Detecting Sirex noctilio grey-attacked and lightning-struck pine trees using airborne hyperspectral data, random forest and support vector machines classifiers. ISPRS J. Photogramm. Remote Sens. 2014, 88, 48–59. [Google Scholar] [CrossRef]
- Lawrence, R.; Wood, S.; Sheley, R. Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (RandomForest). Remote Sens. Environ. 2006, 100, 356–362. [Google Scholar] [CrossRef]
- Abdullah, H.; Darvishzadeh, R.; Skidmore, A.K.; Heurich, M. Sensitivity of Landsat-8 OLI and TIRS data to foliar properties of early stage bark beetle (Ips typographus, L.) infestation. Remote Sens. 2019, 11, 398. [Google Scholar] [CrossRef] [Green Version]
Code | Class Name | Tree Status |
---|---|---|
1 | Green tree | Live or current beetle attack; needles green |
2 | Red tree | Beetle attack of about two years; needles orange or red |
3 | Gray tree | Beetle attack of more than three years; no needles |
GF-2 | Sentinel-2 | ||
---|---|---|---|
Spatial Resolution (m) | Spectral Band (μm) | Spatial Resolution (m) | Spectral Band (μm) |
1 | Pan: 045–0.90 | 10 | Blue: 0.490 |
Green: 0.560 | |||
4 | Blue: 0.45–0.52 | Red: 0.665 | |
NIR: 0.842 | |||
Green: 0.52–0.59 | 20 | VEG1: 0.705 | |
VEG2: 0.740 | |||
Red: 0.63–0.69 | VEG3: 0.783 | ||
VEG4: 0.865 | |||
NIR: 0.77–0.89 | SWIR1: 1.610 | ||
SWIR2: 2.190 |
Category | Feature | Description | Reference |
---|---|---|---|
Spectral information | Mean | Mean of values in objects/pixels of each band | [41] |
Ratio | Band mean divided by sum of all bands | [41] | |
Transformed HSI | The bands of RGB were color transformed to HSI into the channel hue (H), saturation (S), and intensity (I) | [34] | |
Indices | NDVI | Normalized difference vegetation index: (NIR − RED)/(NIR + RED) | [42] |
RVI | Ratio vegetation index: NIR/RED | [43] | |
RGI | Red–green index: RED/GREEN | [12] | |
NDMI * | Normalized difference moisture index: (NIR −MIR)/(NIR + MIR) | [44] | |
MSI * | Moisture stress index: MIR/NIR | [45] | |
Textural information | GLCM_H | GLCM homogeneity of all directions | [36] |
GLCM_Con | GLCM contrast of all directions | [36] | |
GLCM_D | GLCM dissimilarity of all directions | [36] | |
GLCM_E | GLCM entropy of all directions | [36] | |
GLCM_S | GLCM standard deviation of all directions | [36] | |
GLCM_Cor | GLCM correlation of all directions | [36] |
1 m-Object | 1 m-Pixel | 4 m | 10 m | 20 m | |||||
---|---|---|---|---|---|---|---|---|---|
Feature | Import. | Feature | Import. | Feature | Import. | Feature | Import. | Feature | Import. |
HSI_H | 1 | HSI_H | 1 | Mean red | 1 | Mean red | 1 | Mean VEG1 | 1 |
Ratio blue | 0.73 | Ratio blue | 0.69 | Ratio green | 0.51 | HSI_H | 0.53 | HSI_S | 0.98 |
RGI | 0.61 | HSI_S | 0.57 | HSI_H | 0.36 | Ratio red | 0.51 | HSI_H | 0.70 |
HSI_S | 0.39 | Mean NIR | 0.55 | Ratio red | 0.29 | Ratio green | 0.47 | GLCM_Cor | 0.48 |
Mean NIR | 0.37 | Ratio red | 0.42 | GLCM_H | 0.23 | RGI | 0.45 | Ratio NIR | 0.41 |
GLCM_Con | 0.24 | Ratio green | 0.42 | Ratio NIR | 0.21 | HSI_S | 0.44 | GLCM_E | 0.37 |
Mean red | 0.22 | Mean red | 0.39 | Mean green | 0.16 | Ratio NIR | 0.29 | Ratio green | 0.31 |
Mean green | 0.19 | RGI | 0.17 | GLCM_E | 0.16 | GLCM_E | 0.28 | Ratio SWIR1 | 0.26 |
RVI | 0.18 | HSI_S | 0.14 | Ratio blue | 0.16 | Ratio red | 0.25 | ||
GLCM_D | 0.11 | Mean blue | 0.14 | HSI_I | 0.24 | ||||
Ratio red | 0.10 | Ratio VEG1 | 0.18 | ||||||
Mean green | 0.17 | ||||||||
Ratio VEG2 | 0.10 |
Green Tree | Red Tree | Gray Tree | Total | UA | |
---|---|---|---|---|---|
Green tree | 875 | 130.4 | 86 | 1091.4 | 0.802 |
Red tree | 106.5 | 545.8 | 76.9 | 729.2 | 0.748 |
Gray tree | 5.5 | 3.8 | 2.1 | 11.4 | 0.184 |
Total | 987 | 680 | 165 | 1832 | |
PA | 0.887 | 0.803 | 0.013 | OA | 0.777 |
Kappa | 0.58 |
Resolution | Damage Percentage | OA | Kappa | PA for Damage | UA for Damage |
---|---|---|---|---|---|
10 m | <15% | 0.749 | 0.49 | 0.684 | 0.722 |
>15% | 0.810 | 0.62 | 0.777 | 0.798 | |
20 m | <15% | 0.676 | 0.31 | 0.543 | 0.599 |
>15% | 0.715 | 0.35 | 0.555 | 0.560 |
0 | <15% | >15% | Total | UA | |
---|---|---|---|---|---|
0 | 48.9 | 12.5 | 8.3 | 69.7 | 0.702 |
<15% | 9.3 | 17.4 | 12.2 | 38.9 | 0.447 |
>15% | 5.8 | 19.1 | 32.5 | 57.4 | 0.566 |
Total | 64 | 49 | 53 | 166 | |
PA | 0.764 | 0.355 | 0.613 | OA | 0.595 |
Kappa | 0.39 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhan, Z.; Yu, L.; Li, Z.; Ren, L.; Gao, B.; Wang, L.; Luo, Y. Combining GF-2 and Sentinel-2 Images to Detect Tree Mortality Caused by Red Turpentine Beetle during the Early Outbreak Stage in North China. Forests 2020, 11, 172. https://doi.org/10.3390/f11020172
Zhan Z, Yu L, Li Z, Ren L, Gao B, Wang L, Luo Y. Combining GF-2 and Sentinel-2 Images to Detect Tree Mortality Caused by Red Turpentine Beetle during the Early Outbreak Stage in North China. Forests. 2020; 11(2):172. https://doi.org/10.3390/f11020172
Chicago/Turabian StyleZhan, Zhongyi, Linfeng Yu, Zhe Li, Lili Ren, Bingtao Gao, Lixia Wang, and Youqing Luo. 2020. "Combining GF-2 and Sentinel-2 Images to Detect Tree Mortality Caused by Red Turpentine Beetle during the Early Outbreak Stage in North China" Forests 11, no. 2: 172. https://doi.org/10.3390/f11020172
APA StyleZhan, Z., Yu, L., Li, Z., Ren, L., Gao, B., Wang, L., & Luo, Y. (2020). Combining GF-2 and Sentinel-2 Images to Detect Tree Mortality Caused by Red Turpentine Beetle during the Early Outbreak Stage in North China. Forests, 11(2), 172. https://doi.org/10.3390/f11020172