ALS as Tool to Study Preferred Stem Inclination Directions
"> Figure 1
<p>Overview map of the study area Hunsrück-Hochwald National Park.</p> "> Figure 2
<p>Tree species distribution within the study area Hunsrück-Hochwald National Park (<b>left</b>) and digital elevation model derived from ALS point clouds (<b>right</b>). The ALS point clouds have been provided by <span class="html-italic">LVermGeo</span>, while the tree species classification is the result of Stoffels et al. [<a href="#B31-remotesensing-12-03744" class="html-bibr">31</a>]. Coordinates are shown in ETRS89/UTM system (EPSG 25832).</p> "> Figure 3
<p>ALS flight lines and study area Hunsrück-Hochwald National Park. Coordinates are shown in ETRS89/UTM system (EPSG 25832).</p> "> Figure 4
<p>Fifteen year average (1989–2012) of the wind direction and wind speed in the study area (<b>left</b>) and wind rose diagram of the same area and time window (<b>right</b>). Both figures have been derived from daily wind models provided by Krähenmann et al. [<a href="#B34-remotesensing-12-03744" class="html-bibr">34</a>]. Coordinates are shown in ETRS89/UTM system (EPSG 25832).</p> "> Figure 5
<p>Dominating soil substrates (<b>left</b>) and soil moisture regimes (<b>right</b>) in the study area. Coordinates are shown in ETRS89/UTM system (EPSG 25832).</p> "> Figure 6
<p>A duplicate point filter with filtering radius <span class="html-italic">R</span> is applied to points associated with vegetation (<b>left</b>). The resulting filtered point cloud serves as the input for a density filter (<b>center</b>). Points with more than 3 neighboring points within radius <span class="html-italic">R</span> are omitted. Working principle of the vertical line filter with maximum horizontal distance <span class="html-italic">R</span> and z-axis scaled by factor 4 (<b>right</b>).</p> "> Figure 7
<p>The filtered point cloud serves as the input for the clustering algorithm (<b>left</b>). A point is assigned to the most frequent class of its neighboring points within radius 1.5<math display="inline"><semantics> <mrow> <mspace width="0.166667em"/> <mi>·</mi> <mspace width="0.166667em"/> </mrow> </semantics></math><span class="html-italic">R</span>. To prefer linear structures, the z-axis is scaled by factor <math display="inline"><semantics> <mrow> <mn>1</mn> <mo>/</mo> <mn>4</mn> </mrow> </semantics></math>. A regression vector is fitted to each trunk cluster (<b>center</b>). Implausible vectors are omitted from further analyses. Each regression vector defines a local coordinate system, with axes <span class="html-italic">v</span>, <span class="html-italic">z</span> and <span class="html-italic">a</span> (<b>right</b>). The black dots represent the trunk points, while the red dot corresponds to the trunk root.</p> "> Figure 8
<p>Relative direct solar radiation depending on site aspect for differing site slopes at solar noon in summer at a geographic latitude of 50°N.</p> "> Figure 9
<p>Density plots of the trunk inclination (<b>left</b>) and trunk orientation (<b>right</b>) grouped by differing significance levels of the trunk inclination. For each group, the mean trunk orientation is marked with a cross.</p> "> Figure 10
<p>Site aspect in relation to slope (<b>left</b>), scan compass direction in relation to the scan zenith angle (<b>center</b>) and trunk orientation in relation to the trunk inclination (<b>right</b>).</p> "> Figure 11
<p>Density of the tree trunks for the explanatory variables wind direction (<b>left</b>), site aspect (<b>center</b>) and scan direction (<b>right</b>) grouped by tree species.</p> "> Figure 12
<p>Pearson’s product moment correlation coefficients for scalar variables (<b>left</b>) and directed variables (<b>right</b>).</p> "> Figure 13
<p>Influence of the tree species on the trunk inclination (<b>left</b>) and trunk orientation (<b>right</b>). The deciduous trees tend to lean to the South, while the conifers tend to lean to the East. The orientation follows the site aspect, while a general trend to the South can be observed.</p> "> Figure 14
<p>Influence of the slope on the tree inclination (<b>left</b>) and effect of the aspect on the trunk orientation (<b>right</b>).</p> "> Figure 15
<p>Effect of the site aspect on differing tree species.</p> "> Figure 16
<p>Permutation feature importance of the Random Forest regressor <b>(left</b>) and regression coefficients of selected linear trunk inclination models (<b>right</b>). The coefficients are scaled by <math display="inline"><semantics> <mroot> <mspace width="3.33333pt"/> <mn>3</mn> </mroot> </semantics></math> to display them in the same plot. The given 98% and 80% confidence intervals are based on bootstrapping.</p> "> Figure 17
<p>Permutation feature importance of the Random Forest regressor (<b>left</b>) and regression coefficients of selected linear trunk orientation models (<b>right</b>). The coefficients are scaled by <math display="inline"><semantics> <mroot> <mspace width="3.33333pt"/> <mn>3</mn> </mroot> </semantics></math> to display them in the same plot. The given 98% and 80% confidence intervals are based on bootstrapping.</p> "> Figure 18
<p>Residuals of the linear trunk orientation model <span class="html-italic">Azimuth 6</span> depending on observed trunk orientation (<b>top-left</b>), tree species (<b>top-right</b>), site aspect (<b>bottom-left</b>) and scan direction (<b>bottom-right</b>).</p> ">
Abstract
:1. Introduction
1.1. Motivation
1.2. Causes for Tree Inclination
1.3. Stem Detection Using ALS
1.4. Related Work
2. Objectives
3. Materials and Methods
3.1. Study Area
3.2. Data
3.2.1. ALS Data
3.2.2. Terrain and Canopy Models
3.2.3. Scan Direction
3.2.4. Tree Species
3.2.5. Wind
3.2.6. Soil Properties
3.3. Methods
3.3.1. Stem Detection
3.3.1.1. Point Filtering
3.3.1.2. Clustering
3.3.1.3. Vector Fitting
3.3.1.4. Vector Uncertainty
3.3.2. Trunk Features
3.3.3. Regression Models
3.3.4. Feature Selection
3.3.5. Training and Validation
4. Results
4.1. Stem Detection
4.2. Selection of Trunks
4.3. Stand Characteristics
4.4. Preliminary Analysis
4.5. Regression Models
4.5.1. Trunk Inclination
4.5.2. Trunk Orientation
5. Discussion
5.1. Strengths and Limitations
5.2. Future Research
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ALS | Airborne Laser Scanning |
GPS | Global Positioning System |
IoU | Intersection over Union |
LiDAR | Light Detection And Ranging |
LVermGeo | Landesamt für Vermessung und Geobasisinformation Rheinland-Pfalz |
NNE | North-North-East |
ENE | East-North-East |
ESE | East-South-East |
SSE | South-South-East |
SSW | South-South-West |
WSW | West-South-West |
WNW | West-North-West |
NNW | North-North-West |
I | Relative direct solar radiation. |
Solar declination angle in . | |
Geographic latitude in . | |
Hour of the day. | |
Slope of the surface in . | |
Site aspect in . | |
Declination angle . | |
h | True sun height . |
Apparent sun height . | |
DOY | Day of year. |
Appendix A. Solar Radiation
References
- Lamprecht, S.; Stoffels, J.; Dotzler, S.; Haß, E.; Udelhoven, T. aTrunk—An ALS-Based Trunk Detection Algorithm. Remote Sens. 2015, 7, 9975. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Rosen, E.; Masson, P.H. Gravitropism in Higher Plants. Plant Physiol. 1999, 120, 343–350. [Google Scholar] [CrossRef] [Green Version]
- Christie, J.M.; Murphy, A.S. Shoot phototropism in higher plants: New light through old concepts. Am. J. Bot. 2013, 100, 35–46. [Google Scholar] [CrossRef]
- Iino, M. Phototropism in higher plants. In Photomovement; Elsevier: Amsterdam, The Netherlands, 2001; pp. 659–811. [Google Scholar] [CrossRef]
- Johns, J.W.; Yost, J.M.; Nicolle, D.; Igic, B.; Ritter, M.K. Worldwide hemisphere-dependent lean in Cook pines. Ecology 2017, 98, 2482–2484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuzaki, J.; Masumori, M.; Tange, T. Stem Phototropism of Trees: A Possible Significant Factor in Determining Stem Inclination on Forest Slopes. Ann. Bot. 2006, 98, 573–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishii, R.; Higashi, M. Tree coexistence on a slope: An adaptive significance of trunk inclination. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1997, 264, 133–139. [Google Scholar] [CrossRef] [Green Version]
- Wistuba, M.; Malik, I.; Gärtner, H.; Kojs, P.; Owczarek, P. Application of eccentric growth of trees as a tool for landslide analyses: The example of Picea abies Karst. in the Carpathian and Sudeten Mountains (Central Europe). CATENA 2013, 111, 41–55. [Google Scholar] [CrossRef]
- Gardiner, B.; Berry, P.; Moulia, B. Review: Wind impacts on plant growth, mechanics and damage. Plant Sci. 2016, 245, 94–118. [Google Scholar] [CrossRef]
- Schindler, D.; Bauhus, J.; Mayer, H. Wind effects on trees. Eur. J. For. Res. 2011, 131, 159–163. [Google Scholar] [CrossRef] [Green Version]
- Telewski, F.W.; Jaffe, M.J. Thigmomorphogenesis: Field and laboratory studies of Abies fraseri in response to wind or mechanical perturbation. Physiol. Plant. 1986, 66, 211–218. [Google Scholar] [CrossRef]
- Telewski, F.W. Is windswept tree growth negative thigmotropism? Plant Sci. 2012, 184, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Nicoll, B.C.; Ray, D. Adaptive growth of tree root systems in response to wind action and site conditions. Tree Physiol. 1996, 16, 891–898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Planck, N.R.V.; MacFarlane, D.W. Branch mass allocation increases wind throw risk for Fagus grandifolia. For. Int. J. For. Res. 2019, 92, 490–499. [Google Scholar] [CrossRef]
- Gardiner, B.; Byrne, K.; Hale, S.; Kamimura, K.; Mitchell, S.J.; Peltola, H.; Ruel, J.C. A review of mechanistic modelling of wind damage risk to forests. Forestry 2008, 81, 447–463. [Google Scholar] [CrossRef] [Green Version]
- Smiley, E.T.; Key, A.; Greco, C. Root barriers and windthrow potential. J. Arboric. 2000, 26, 213–217. [Google Scholar]
- Fourcaud, T.; Ji, J.N.; Zhang, Z.Q.; Stokes, A. Understanding the Impact of Root Morphology on Overturning Mechanisms: A Modelling Approach. Ann. Bot. 2007, 101, 1267–1280. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Guo, Q.; Li, W.; Flanagan, J. A bottom-up approach to segment individual deciduous trees using leaf-off lidar point cloud data. ISPRS J. Photogramm. Remote Sens. 2014, 94, 1–12. [Google Scholar] [CrossRef]
- Polewski, P.; Yao, W.; Heurich, M.; Krzystek, P.; Stilla, U. Free shape context descriptors optimized with genetic algorithm for the detection of dead tree trunks in als point clouds. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 1, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Shendryk, I.; Broich, M.; Tulbure, M.G.; Alexandrov, S.V. Bottom-up delineation of individual trees from full-waveform airborne laser scans in a structurally complex eucalypt forest. Remote Sens. Environ. 2016, 173, 69–83. [Google Scholar] [CrossRef]
- Amiri, N.; Polewski, P.; Yao, W.; Krzystek, P.; Skidmore, A.K. Detection of Single Tree Stems in Forested Areas from High Density Als Point Clouds Using 3D Shape Descriptors. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, IV-2/W4, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Windrim, L.; Bryson, M. Detection, Segmentation, and Model Fitting of Individual Tree Stems from Airborne Laser Scanning of Forests Using Deep Learning. Remote Sens. 2020, 12, 1469. [Google Scholar] [CrossRef]
- Chen, W.; Hu, X.; Chen, W.; Hong, Y.; Yang, M. Airborne LiDAR Remote Sensing for Individual Tree Forest Inventory Using Trunk Detection-Aided Mean Shift Clustering Techniques. Remote Sens. 2018, 10, 1078. [Google Scholar] [CrossRef] [Green Version]
- Zhen, Z.; Quackenbush, L.J.; Zhang, L. Trends in Automatic Individual Tree Crown Detection and Delineation—Evolution of LiDAR Data. Remote Sens. 2016, 8, 333. [Google Scholar] [CrossRef] [Green Version]
- Bucksch, A.; Lindenbergh, R.; Menenti, M. SkelTre. Vis. Comput. 2010, 26, 1283–1300. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.H.; Huang, T.S. A survey of construction and manipulation of octrees. Comput. Vis. Graph. Image Process. 1988, 43, 409–431. [Google Scholar] [CrossRef]
- Reeb, G. Sur les points singuliers d‘une forme de Pfaff compltèment intégrable ou d‘une fonction numérique. C. R. Hebd. Sances Acad. Sci. 1946, 222, 847–849. [Google Scholar]
- Razak, K.A.; Bucksch, A.; Straatsma, M.; Westen, C.J.V.; Bakar, R.A.; de Jong, S.M. High density airborne lidar estimation of disrupted trees induced by landslides. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium—IGARSS, Melbourne, Australia, 21–26 July 2013. [Google Scholar] [CrossRef] [Green Version]
- Kini, A.U.; Popescu, S.C. TreeVaW: A Versatile Tool for Analyzing Forest Canopy LIDAR Data: A Preview with an Eye towards Future; ASPRS: Kansas City, MO, USA, 2004. [Google Scholar]
- MUEEF. Daten der Forstlichen Standortkartierung—InGrid-Portal. 2013. Available online: https://www.portalu.rlp.de/trefferanzeige?docuuid=54C251AF-542E-11D7-B776-0002A5CE70F9 (accessed on 23 July 2020).
- Stoffels, J.; Hill, J.; Sachtleber, T.; Mader, S.; Buddenbaum, H.; Stern, O.; Langshausen, J.; Dietz, J.; Ontrup, G. Satellite-Based Derivation of High-Resolution Forest Information Layers for Operational Forest Management. Forests 2015, 6, 1982–2013. [Google Scholar] [CrossRef]
- RIEGL. LMS-Q560. Available online: http://www.riegl.com/uploads/tx_pxpriegldownloads/10_DataSheet_Q560_20-09-2010_01.pdf (accessed on 27 September 2016).
- Lamprecht, S. Pyoints: A Python package for point cloud, voxel and raster processing. J. Open Source Softw. 2019, 4, 990. [Google Scholar] [CrossRef]
- Krähenmann, S.; Walter, A.; Brienen, S.; Imbery, F.; Matzarakis, A. Monthly, daily and hourly grids of 12 commonly used meteorological variables for Germany estimated by the Project TRY Advancement. Theor. Appl. Climatol. 2016. [Google Scholar] [CrossRef]
- Landesamt für Geologie und Bergbau Rheinland-Pfalz. Bodenübersichtskarte 1:200.000 (BÜK200)—CC6302 Trier. 2019. Available online: https://www.lgb-rlp.de/karten-und-produkte/online-karten/online-bodenkarten.html (accessed on 17 December 2019).
- Torr, P.; Zisserman, A. MLESAC: A New Robust Estimator with Application to Estimating Image Geometry. Comput. Vis. Image Underst. 2000, 78, 138–156. [Google Scholar] [CrossRef] [Green Version]
- Cressman, G.P. An Operational Objective Analysis System. Mon. Weather Rev. 1959, 87, 367–374. [Google Scholar] [CrossRef]
- Gassel, A. Beiträge zur Berechnung Solarthermischer und Exergieeffizienter Energiesysteme. Ph.D. Thesis, Fakultät Maschinenwesender Technischen Universität Dresden, Dresden, Germany, 1996. [Google Scholar]
- Sheather, S.J.; Jones, M.C. A Reliable Data-Based Bandwidth Selection Method for Kernel Density Estimation. J. R. Stat. Soc. Ser. B 1991, 53, 683–690. [Google Scholar] [CrossRef]
- Wright, M.N.; Ziegler, A. Ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R. J. Stat. Softw. 2017, 77. [Google Scholar] [CrossRef] [Green Version]
- Mardia, K.V. Statistics of Directional Data; Academic Press: London, UK, 1972. [Google Scholar] [CrossRef]
- Agostinelli, C.; Lund, U. R Package Circular: Circular Statistics (Version 0.4-93); Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University: Venice, Italy; Department of Statistics, California Polytechnic State University: San Luis Obispo, CA, USA, 2017. [Google Scholar]
- Jammalamadaka, S.R.; SenGupta, A. Topics in Circular Statistics; World Scientific: Singapore, 2001. [Google Scholar] [CrossRef]
- Gardiner, B.; Schuck, A.; Schelhaas, M.; Orazio, C.; Blennow, K.; Nicoll, B. (Eds.) Living with Storm Damage to Forests; Number 3 in What Science Can Tell Us; European Forest Institute: Joensuu, Finland, 2013. [Google Scholar]
Beech | Douglas | Oak | Pine | Spruce | |
---|---|---|---|---|---|
Area of classification layer | 36.8% | 11.4% | 13.9% | 9.8% | 28.1% |
Number of detected stems | 40.7% | 6.5% | 11.5% | 8.3% | 32.9% |
Tree Species | ||||||
---|---|---|---|---|---|---|
Soil Property | Beech | Douglas | Oak | Pine | Spruce | |
Soil substrate | Quarzite | 73.5% | 72.2% | 70.7% | 68.8% | 67.4% |
Quarzite & Shales | 26.2% | 27.5% | 27.8% | 30.5% | 32.4% | |
Shales | 0.3% | 0.3% | 1.5% | 0.6% | 0.2% | |
Soil moisture | dry | 3.1% | 5.4% | 10.0% | 5.6% | 3.7% |
moist | 82.2% | 84.3% | 85.8% | 83.4% | 81.8% | |
very moist | 14.7% | 10.3% | 4.2% | 11.0% | 14.4% |
Beech | Douglas | Oak | Pine | Spruce | Average | |
---|---|---|---|---|---|---|
± | ± | ± | ± | ± | ± | |
± | ± | ± | ± | ± | ± |
Inclination Direction | |||||
---|---|---|---|---|---|
Group | Southward | Down-Slope | Leeward | in Scan Direction | |
Species | Beech | 70.8% | 77.2% | 39.9% | 40.3% |
Douglas | 56.2% | 60.5% | 61.0% | 50.4% | |
Oak | 65.5% | 74.1% | 44.5% | 42.9% | |
Pine | 54.5% | 63.4% | 58.8% | 43.1% | |
Spruce | 53.6% | 51.8% | 67.5% | 53.7% | |
Species Type | Conifer | 54.3% | 56.3% | 64.1% | 50.2% |
Deciduous | 69.6% | 76.5% | 40.9% | 40.9% | |
Root System | Flat | 53.6% | 51.8% | 67.5% | 53.7% |
Heart | 69.7% | 75.9% | 41.6% | 41.1% | |
Tap | 61.6% | 70.3% | 49.6% | 43.0% | |
Total | 66.0% | 71.3% | 46.8% | 43.3% |
Zenith 1 | Zenith 2 | Zenith 3 | Zenith 4 | Zenith 5 | Zenith 6 | |
---|---|---|---|---|---|---|
(Intercept) | 0.010 | 0.000 | 0.000 | 0.096 | ||
se_z | 0.308 | 0.314 | 0.312 | 0.312 | 0.311 | 0.307 |
se_a | 0.020 | 0.021 | 0.025 | 0.025 | 0.025 | 0.024 |
n | 0.002 | 0.003 | ||||
scan_horizontal_std | 0.009 | 0.010 | 0.011 | 0.011 | 0.011 | 0.010 |
scan_vertical_std | 0.000 | 0.000 | ||||
scan_zenith | 0.001 | 0.001 | ||||
wind_mean_speed | 0.000 | 0.000 | ||||
solar_direct | 0.001 | 0.001 | ||||
height | 0.076 | 0.067 | 0.074 | 0.074 | 0.075 | 0.083 |
slope | 0.018 | 0.013 | 0.013 | 0.013 | 0.013 | 0.018 |
species:moisture:soil_substrate | 0.004 | 0.004 | ||||
species | 0.001 | 0.098 | ||||
moisture | 0.000 | |||||
soil_substrate | 0.001 | |||||
Total | 0.573 | 0.590 | 0.586 | 0.581 | 0.578 | 0.570 |
Azimuth 1 | Azimuth 2 | Azimuth 3 | Azimuth 4 | Azimuth 5 | Azimuth 6 | |
---|---|---|---|---|---|---|
terrain | 8.9% | |||||
terrain:species | 8.5% | 8.3% | 8.4% | 8.5% | 8.5% | |
solar | 4.1% | |||||
solar:species | 6.2% | 6.3% | 6.3% | 6.1% | ||
solar:species_type | 6.2% | |||||
wind | −0.1% | |||||
wind:species | 2.9% | 3.2% | 3.2% | |||
wind:species:height | 3.6% | 3.6% | ||||
south | 0.3% | −0.1% | ||||
south:species | 0.5% | |||||
scan | 0.9% | 0.8% | 0.8% | 0.8% | 0.8% | 0.8% |
Total | 14.0% | 18.8% | 18.5% | 18.6% | 19.1% | 19.1% |
RF | Azimuth 1 | Azimuth 2 | Azimuth 3 | Azimuth 4 | Azimuth 5 | Azimuth 6 | |
---|---|---|---|---|---|---|---|
82.8% | 71.9% | 74.7% | 75.0% | 75.0% | 75.3% | 75.3% |
Beech | Douglas | Oak | Pine | Spruce | Conifer | Deciduous | Total | |
---|---|---|---|---|---|---|---|---|
terrain:species | 11.4% | 3.2% | 9.8% | 5.7% | 0.3% | 2.2% | 11.1% | 8.4% |
solar:species_type | 9.0% | 0.2% | 8.0% | 0.3% | 0.0% | 0.1% | 8.8% | 6.1% |
wind:species:height | 2.0% | 5.7% | 0.6% | 4.1% | 11.1% | 8.3% | 1.7% | 3.7% |
scan | 1.2% | 0.0% | 0.8% | 0.8% | −0.4% | −0.0% | 1.1% | 0.8% |
Total | 23.7% | 9.1% | 19.2% | 10.9% | 11.0% | 10.7% | 22.7% | 19.0% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lamprecht, S.; Stoffels, J.; Udelhoven, T. ALS as Tool to Study Preferred Stem Inclination Directions. Remote Sens. 2020, 12, 3744. https://doi.org/10.3390/rs12223744
Lamprecht S, Stoffels J, Udelhoven T. ALS as Tool to Study Preferred Stem Inclination Directions. Remote Sensing. 2020; 12(22):3744. https://doi.org/10.3390/rs12223744
Chicago/Turabian StyleLamprecht, Sebastian, Johannes Stoffels, and Thomas Udelhoven. 2020. "ALS as Tool to Study Preferred Stem Inclination Directions" Remote Sensing 12, no. 22: 3744. https://doi.org/10.3390/rs12223744
APA StyleLamprecht, S., Stoffels, J., & Udelhoven, T. (2020). ALS as Tool to Study Preferred Stem Inclination Directions. Remote Sensing, 12(22), 3744. https://doi.org/10.3390/rs12223744