Portable and Easily-Deployable Air-Launched GPR Scanner
"> Figure 1
<p>Picture of the portable setup for air-launched Ground Penetrating Radar (GPR) imaging.</p> "> Figure 2
<p>Picture of the payload.</p> "> Figure 3
<p>Scheme of the subsystems and devices of the air-launched GPR.</p> "> Figure 4
<p>Flowchart of the GPR system processing algorithm.</p> "> Figure 5
<p>Example of measured Real Time Kinematics (RTK) positions for a single 2D acquisition grid with the portable setup. XY plane before (blue) and after (red) coordinate system transformation (<b>a</b>). Height above ground for each measurement position (<b>b</b>).</p> "> Figure 6
<p>Example of measured values of roll (<b>a</b>), pitch (<b>b</b>), and yaw (<b>c</b>) angles provided by the IMU on-board the controller for a single 2D acquisition grid with the portable setup. The solid black line represents the average value.</p> "> Figure 7
<p>Picture of the mortar grenade (<b>a</b>). Reflectivity normalized amplitude, in dB: cut <span class="html-italic">z</span> = −36 cm (<b>b</b>), cut <span class="html-italic">y</span> = 40 cm (<b>c</b>), cut <span class="html-italic">x</span> = −2 cm (<b>d</b>).</p> "> Figure 8
<p>Representation of the selected measurement positions (red dots) superimposed to the reflectivity image in the XY plane for the mortar grenade.</p> "> Figure 9
<p>Picture of the mortar grenade (<b>a</b>). Reflectivity normalized amplitude, in dB, after equalizing the frequency response of the GPR system: cut <span class="html-italic">z</span> = -36 cm (<b>b</b>), cut <span class="html-italic">y</span> = 40 cm (<b>c</b>), cut <span class="html-italic">x</span> = -2 cm (<b>d</b>).</p> "> Figure 10
<p>Picture of the scenario under test. Dashed red line indicates the placement of the filled hole with no objects in it (<b>a</b>). Reflectivity normalized amplitude, in dB: cut <span class="html-italic">z</span> = −36 cm (<b>b</b>), cut <span class="html-italic">y</span> = 40 cm (<b>c</b>), cut <span class="html-italic">x</span> = −2 cm (<b>d</b>).</p> "> Figure 11
<p>Picture of the anti-personnel plastic landmine (<b>a</b>). Reflectivity normalized amplitude, in dB: cut <span class="html-italic">z</span> = −36 cm (<b>b</b>), cut <span class="html-italic">y</span> = 42 cm (<b>c</b>), cut <span class="html-italic">x</span> = −4 cm (<b>d</b>).</p> "> Figure 12
<p>Measurements in sandy soil. Picture of the portable measurement setup in the selected scenario (<b>a</b>). Picture of the 18 cm diameter metallic disk, buried 18–20 cm deep (<b>b</b>). Picture of the 18 cm diameter plastic disk, buried 16–18 cm deep (<b>c</b>). Synthetic Aperture Radar (SAR) images, normalized reflectivity: cut <span class="html-italic">z</span> = -28 cm (<b>d</b>), cut <span class="html-italic">y</span> = 22 cm (<b>e</b>), and cut <span class="html-italic">x</span> = 18 cm (<b>f</b>).</p> "> Figure 13
<p>Picture of the portable air-launched GPR measurement with the Log-Periodic Antennas (LPA) antennas.</p> "> Figure 14
<p>Measurement setup of the Vivaldi antenna (<b>a</b>) and the LPA (<b>b</b>) at a spherical range in the anechoic chamber using a UWB probe antenna. Position of the phase center for the Vivaldi antenna (<b>c</b>) and the LPA (<b>d</b>). The amplitude of the measured field for the Vivaldi antenna (<b>e</b>) and the LPA (<b>f</b>). The blue line corresponds to the E-plane and the red line corresponds to the H-plane.</p> "> Figure 15
<p>Phase center compensation for the LPA. Picture of the measurement setup with the metallic reference objects (<b>a</b>). Reflectivity along <span class="html-italic">z</span>-axis (range) for a position located on top of a flat metallic object (<b>b</b>). Sub-bands of 250 MHz (∆R = 60 cm) are considered.</p> "> Figure 16
<p>Picture of the metallic box buried at 17 cm depth (<b>a</b>). Reflectivity normalized amplitude, in dB, calculated after applying the LPA phase center compensation. Cut <span class="html-italic">z</span> = −140 cm (<b>b</b>), cut <span class="html-italic">x</span> = 40 cm (<b>c</b>), cut <span class="html-italic">y</span> = −42 cm (<b>d</b>). The <span class="html-italic">z</span> = 0 position is defined at the plane where the LPA antennas are attached to the payload.</p> "> Figure 17
<p>Reflectivity normalized amplitude, in dB. Metal box buried at 25 cm depth. Applying LPA phase center compensation: cut <span class="html-italic">z</span> = −160 cm (<b>a</b>), cut x = 40 cm (<b>b</b>), cut <span class="html-italic">y</span> = -42 cm (<b>c</b>). Without applying LPA phase center compensation: cut <span class="html-italic">z</span> = −160 cm (<b>d</b>), cut <span class="html-italic">x</span> = 40 cm (<b>e</b>), cut <span class="html-italic">y</span> = −42 cm (<b>f</b>). The <span class="html-italic">z</span> = 0 position is defined at the plane where the LPA antennas are attached to the payload.</p> ">
Abstract
:1. Introduction
1.1. Background
1.2. Aim and Scope
2. Working Principle of the Portable Setup
2.1. Hardware Description
2.2. GPR-SAR Processing
3. Results
3.1. Detection of Metallic and Plastic Targets Buried in Loamy Soil
3.2. Test in A Dry Soil
3.3. Testing of Antennas Exhibiting Large Displacement of the Phase Center
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jol, H.M. Ground Penetrating Radar Theory and Applications; Elsevier Science: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Santos-Assunçao, S.; Perez-Gracia, V.; Caselles, O.; Clapes, J.; Salinas, V. Assessment of Complex Masonry Structures with GPR Compared to Other Non-Destructive Testing Studies. Remote Sens. 2014, 6, 8220–8237. [Google Scholar] [CrossRef] [Green Version]
- Morris, I.; Abdel-Jaber, H.; Glisic, B. Quantitative Attribute Analyses with Ground Penetrating Radar for Infrastructure Assessments and Structural Health Monitoring. Sensors 2019, 19, 1637. [Google Scholar] [CrossRef] [Green Version]
- Conyers, L.B. Ground-Penetrating Radar Mapping Using Multiple Processing and Interpretation Methods. Remote Sens. 2016, 8, 562. [Google Scholar] [CrossRef] [Green Version]
- Ribolini, A.; Bini, M.; Isola, I.; Coschino, F.; Baroni, C.; Salvatore, M.C.; Zanchetta, G.; Fornaciari, A. GPR versus Geoarchaeological Findings in a Complex Archaeological Site (Badia, Pozzeveri, Italy). Archaeol. Prospection. 2016, 24. [Google Scholar] [CrossRef]
- Lippl, S.; Blindow, N.; Fürst, J.J.; Marinsek, S.; Seehaus, T.C.; Braun, M.H. Uncertainty Assessment of Ice Discharge Using GPR-Derived Ice Thickness from Gourdon Glacier, Antarctic Peninsula. Geosciences 2020, 10, 12. [Google Scholar] [CrossRef] [Green Version]
- Hislop, G. Limitations of characterizing layered earth with off-ground GPR. J. Geophys. Eng. 2016, 13, S1–S8. [Google Scholar] [CrossRef]
- De Chiara, F.; Fontul, S.; Fortunato, E. GPR Laboratory Tests for Railways Materials Dielectric Properties Assessment. Remote Sens. 2014, 6, 9712–9728. [Google Scholar] [CrossRef] [Green Version]
- Kwang, H.K.; Gyubin, J.; Kyungmi, P.; Kangwook, K. GPR-Based Landmine Detection and Identification Using Multiple Features. Int. J. Antennas Propag. 2012, 8226404, 7. [Google Scholar]
- Lombardi, F.; Lualdi, M.; Picetti, F.; Bestagini, P.; Janszen, G.; Di Landro, L.A. Ballistic Ground Penetrating Radar Equipment for Blast-Exposed Security Applications. Remote Sens. 2020, 12, 717. [Google Scholar] [CrossRef] [Green Version]
- Núñez-Nieto, X.; Solla, M.; Gómez-Pérez, P.; Lorenzo, H. GPR Signal Characterization for Automated Landmine and UXO Detection Based on Machine Learning Techniquse. Remote Sens. 2014, 6, 9729–9748. [Google Scholar] [CrossRef] [Green Version]
- Daniels, D.J. A review of GPR for landmine detection. Sens. Imaging Int. J. 2006, 7, 90–123. [Google Scholar] [CrossRef]
- Przemyslaw, K.; Godziuk, A.; Kapruziak, M.; Olech, B. Fast Analysis of C-Scans From Ground Penetrating Radar via 3-D Haar-Like Features With Application to Landimne Detection. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3996–4009. [Google Scholar]
- Garcia-Fernandez, M.; Alvarez-Lopez, Y.; Las Heras, F. Autonomous Airborne 3D SAR Imaging System for Subsurface Sensing: UWB-GPR on Board a UAV for Landmine and IED Detection. Remote Sens. 2019, 11, 2357. [Google Scholar] [CrossRef] [Green Version]
- Šipoš, D.; Gleich, D. A Lightweight and Low-Power UAV-Borne Ground Penetrating Radar Design for Landmine Detection. Sensors 2020, 20, 2234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colorado, J.; Perez, M.; Mondragon, I.; Mendez, D.; Parra, C.; Devia, C.; Martinez-Moritz, J.; Neira, L. An integrated aerial system for landmine detection: SDR-based Ground Penetrating Radar onboard an autonomous drone. Adv. Robot. 2017, 31, 791–808. [Google Scholar] [CrossRef]
- Schreiber, E.; Heinzel, A.; Peichl, M.; Engel, M.; Wiesbeck, W. Advanced Buried Object Detection by Multichannel, UAV/Drone Carried Synthetic Aperture Radar. In Proceedings of the 2019 13th European Conference on Antennas and Propagation (EuCAP), Krakow, Poland, 31 March–5 April 2019; pp. 1–5. [Google Scholar]
- Schartel, M.; Burr, R.; Mayer, W.; Docci, N.; Waldschmidt, C. UAV-Based Ground Penetrating Synthetic Aperture Radar. In Proceedings of the 2018 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), Munich, Germany, 15–17 April 2018; pp. 1–4. [Google Scholar]
- Diamanti, N.; Annan, P. Air-launched and ground-coupled GPR data. In Proceedings of the 2017 11th European Conference on Antennas and Propagation (EUCAP), Paris, France, 19–24 March 2017. [Google Scholar]
- Comite, D.; Galli, A.; Catapano, I.; Soldovieri, F. Advanced imaging for down-looking contactless GPR systems. In Proceedings of the International Applied Computational Electromagnetics Society Symposium—Italy (ACES), Florence, Italy, 26–30 March 2017. [Google Scholar]
- Gonzalez-Diaz, M.; Garcia-Fernandez, M.; Alvarez-Lopez, Y.; Las Heras, F. Improvement of GPR SAR-based techniques for accurate detection and imaging of buried objects. IEEE Trans. Instrum. Meas. 2019. [Google Scholar] [CrossRef] [Green Version]
- Ardekani, S.; Lambot, S. Full-wave calibration of time- and frequency-domain Ground-Penetrating Radar in far-field conditions. IEEE Trans. Geosci. Remote Sens. 2013, 52, 664–668. [Google Scholar] [CrossRef]
- Zhang, Y.; Orfeo, D.; Burns, D.; Miller, J.; Huston, D.; Tian, X. Buried nonmetallic object detection using bistatic ground penetrating radar with variable antenna elevation angle and height. In Proceedings of the Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, and Civil Infrastructure, Portland, OR, USA, 26–29 March 2017; p. 10169. [Google Scholar] [CrossRef]
- Topcon B111 Receiver. Available online: https://www.topconpositioning.com/oem-components-technology/gnss-components/b111 (accessed on 9 May 2020).
- Johansson, E.M.; Mast, J.E. Three-dimensional ground-penetrating radar imaging using synthetic aperture time-domain focusing. In Proceedings of the International Symposium on Optics, Imaging, and Instrumentation, International Society for Optics and Photonics, San Diego, CA, USA, 14 September 1994. [Google Scholar]
- TSA-600 Ultra-Wideband PCB Tapered Slot Antenna. Available online: http://rfspace.com/RFSPACE/Antennas_files/TSA600.pdf (accessed on 9 May 2020).
- LPDAMAX Wideband PCB Log Periodic Antenna. Available online: http://rfspace.com/RFSPACE/Antennas_files/LPDA-MAX.pdf (accessed on 10 May 2020).
- Crocker, D.A.; Scott, W.R., Jr. Compensation of Dispersion in Sinuous Antennas for Polarimetric Ground Penetrating Radar Applications. Remote Sens. 2019, 11, 1937. [Google Scholar] [CrossRef] [Green Version]
- Miller, T.; Borchers, B.; Hendrickx, J.M.H.; Hong, S.-H.; Lensen, H.A.; Schwering, P.B.W.; Rhebergen, J. Effect of soil moisture on landmine detection using Ground Penetrating Radar. In Proceedings of the SPIE, Voulme 4742, Detection and Remediation Technologies for Mines and Minelike Targets VII. Event: AeroSense 2002, Orlando, FL, USA, 1–5 April 2002. [Google Scholar] [CrossRef]
Section | Target (size, cm) | Depth (cm) | Soil | GPR Antennas (Working BW) | Reflectivity |
---|---|---|---|---|---|
3.1 | Mortar grenade (30 × 8) | 15 | Loamy (εr ∈ [5.0, 7.0], moisture ∈ [30, 50]%) | Vivaldi 600–3000 MHz | −10 dB |
3.1. | Hole filled with loamy soil, no target in it | 20 | Loamy (εr ∈ [5.0, 7.0], moisture ∈ [30, 50]%) | Vivaldi 600–3000 MHz | −20 dB |
3.1 | Plastic landmine (Ø 16) | 15 | Loamy (εr ∈ [5.0, 7.0], moisture ∈ [30, 50]%) | Vivaldi 600–3000 MHz | −13 dB |
3.2 | Metallic disk (Ø 18) | 18–20 | Sandy (εr ∈ [2.0, 3.0], moisture < 30%) | Vivaldi 600–3000 MHz | +2 dB |
3.2 | Plastic disk (Ø 18) | 16–18 | Sandy (εr ∈ [2.0, 3.0], moisture < 30%) | Vivaldi 600–3000 MHz | −7 dB |
3.3 | Metallic box (Ø 20) | 17 | Loamy (εr ∈ [5.0, 7.0], moisture ∈ [30, 50]%) | LPA 400–1200 MHz | −10 dB |
3.3 | Metallic box (Ø 20) | 25 | Loamy (εr ∈ [5.0, 7.0], moisture ∈ [30, 50]%) | LPA 400–1200 MHz | −13 dB |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Fernández, M.; Álvarez López, Y.; De Mitri, A.; Castrillo Martínez, D.; Álvarez-Narciandi, G.; Las-Heras Andrés, F. Portable and Easily-Deployable Air-Launched GPR Scanner. Remote Sens. 2020, 12, 1833. https://doi.org/10.3390/rs12111833
García-Fernández M, Álvarez López Y, De Mitri A, Castrillo Martínez D, Álvarez-Narciandi G, Las-Heras Andrés F. Portable and Easily-Deployable Air-Launched GPR Scanner. Remote Sensing. 2020; 12(11):1833. https://doi.org/10.3390/rs12111833
Chicago/Turabian StyleGarcía-Fernández, María, Yuri Álvarez López, Alessandro De Mitri, David Castrillo Martínez, Guillermo Álvarez-Narciandi, and Fernando Las-Heras Andrés. 2020. "Portable and Easily-Deployable Air-Launched GPR Scanner" Remote Sensing 12, no. 11: 1833. https://doi.org/10.3390/rs12111833
APA StyleGarcía-Fernández, M., Álvarez López, Y., De Mitri, A., Castrillo Martínez, D., Álvarez-Narciandi, G., & Las-Heras Andrés, F. (2020). Portable and Easily-Deployable Air-Launched GPR Scanner. Remote Sensing, 12(11), 1833. https://doi.org/10.3390/rs12111833