Exceptional Drought across Southeastern Australia Caused by Extreme Lack of Precipitation and Its Impacts on NDVI and SIF in 2018
"> Figure 1
<p>Australia’s climatic zones and land-cover types.</p> "> Figure 2
<p>Drought events identification based on run theory.</p> "> Figure 3
<p>Determination of Australian drought duration in 2018 based on run theory.</p> "> Figure 4
<p>Changes in the drought area of Australia using times-series analysis. In (<b>a</b>), the accumulated area percentages for the different drought levels over the past decade were shown. The legend “Moderate up to Exceptional droughts” in (<b>a</b>) represents the area percentage that accounts for the total drought area including grid cells affected by moderate up to exceptional droughts. Similarly, “Middle up to Exceptional droughts” represents the area percentage that accounts for the total drought area affected by middle up to exceptional droughts, “Severe up to Exceptional droughts” represents the area percentage that accounts for the total drought area affected by severe up to exceptional droughts, and “Exceptional drought” represents the area percentage that accounts for the total drought area affected by exceptional drought. In (<b>b</b>), the area percentages for the different drought levels from April to December of 2018 are shown.</p> "> Figure 5
<p>The spatiotemporal drought evolution for the entire drought duration period. In (<b>a</b>), the spatiotemporal distribution during the drought duration period was showed month by month. In (<b>b</b>), the drought area (above the level of moderate drought) relative to the total area of each district is shown. In (<b>c</b>), the drought intensity for Australia in 2018 was presented.</p> "> Figure 6
<p>Southern oscillation index (SOI) values from January to December 2018.</p> "> Figure 7
<p>Anomaly for annual maximum temperature (<b>a</b>), and anomaly percentages for the other meteorological factors in 2018 were presented, compared with the past three decades (1989–2018): (<b>b</b>) Total annual precipitation, (<b>c</b>) annual maximum evaporation, and (<b>d</b>) soil moisture in the upper 5 cm of soil.</p> "> Figure 8
<p>Comparison of mean NDVI values for (<b>a</b>) all land-cover types, (<b>b</b>) cropland, (<b>c</b>) grassland and (<b>d</b>) forest from April to December 2018 and for the same period over the past decade in Australia (the black line with a solid circle represents the mean value from April to December 2018, and the black line with a hollow circle represents the 10-year mean value from 2009 to 2018).</p> "> Figure 9
<p>The standardized anomalies Z-score for NDVI from April to December 2018 and for the same period over the past decade in Australia.</p> "> Figure 10
<p>A comparison of the mean SIF values for (<b>a</b>) all land-cover types, (<b>b</b>) cropland, (<b>c</b>) grassland, and (<b>d</b>) forest from April to December 2018 and for the same period over the past decade in Australia (the black line with a solid circle represents the mean value from April to December 2018, and the black line with a hollow circle represents the 10-year mean value from 2009 to 2018).</p> "> Figure 11
<p>The standardized anomalies Z-score for SIF from April to December 2018 and for the same period over the past decade in Australia.</p> "> Figure 12
<p>The correlation curve between SPEI and the Z-score of NDVI for (<b>a</b>) cropland, (<b>b</b>) grassland, and (<b>c</b>) forest land, SIF for (<b>d</b>) cropland, (<b>e</b>) grassland, and (<b>f</b>) forest land (the black line represents the linear fit).</p> "> Figure 13
<p>The response differences of NDVI between irrigated croplands and rainfed croplands to drought. In (<b>a</b>), the location of the two selected sampling areas was shown, and in (<b>b</b>,<b>c</b>), the NDVI comparison between irrigated croplands and rainfed croplands in the east side and west side of the Great Dividing Range were presented, respectively (the black line with a solid circle represents the mean value for rainfed croplands from April to December in 2018, and the black line with a hollow circle represents the mean value for irrigated cropland from April to December in 2018).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.2.1. Southern Oscillation Index
2.2.2. Remote Sensing Data
2.3. Methods
2.3.1. Run Theory
2.3.2. Coefficient of Variation
2.3.3. Anomaly Index
2.3.4. Z-Score Method
3. Results
3.1. Monitoring and Evolution of the 2018 Drought Event in Australia
3.2. Drought Cause Analysis
3.3. Drought Impacts on Vegetation Growth
3.3.1. Drought Impacts on NDVI
3.3.2. Drought Impacts on SIF
3.3.3. Diverse Droughts Responses by NDVI and SIF
4. Discussion
4.1. Drought Characteristics and Cause
4.2. Drought Impacts
4.3. Response Revelation of the Exceptional Drought to SDGs
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ghil, M.; Vautard, R. Interdecadal oscillations and the warming trend in global temperature time series. Nature 1991, 350, 324–327. [Google Scholar] [CrossRef]
- Solomon, S.; Plattner, G.K.; Knutti, R.; Friedlingstein, P. Irreversible climate change due to carbon dioxide emissions. Proc. Natl. Acad. Sci. USA 2009, 106, 1704–1709. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Special Report on Global Warming of 1.5 °C; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Prospero, J.M.; Nees, R.T. Impact of the North African drought and EI-Niño on mineral dust in the Barbados trade winds. Nature 1986, 320, 735–738. [Google Scholar] [CrossRef]
- Cai, W.J.; Santoso, A.; Wang, G.J.; Yeh, S.W.; An, S.I.; Cobb, K.M.; Collins, M.; Guilyardi, E.; Jin, F.F.; Kug, J.S.; et al. ENSO and greenhouse warming. Nat. Clim. Chang. 2015, 5, 849–859. [Google Scholar] [CrossRef]
- Madadgar, S.; Moradkhani, H. Spatio-temporal drought forecasting within Bayesian networks. J. Hydrol. 2014, 512, 134–146. [Google Scholar] [CrossRef]
- Dehghani, M.; Saghafian, B.; Saleh, F.N.; Farokhnia, A.; Noorie, R. Uncertainty analysis of streamflow drought forecast using artificial neural networks and Monte-Carlo simulation. Int. J. Climatol. 2014, 34, 1169–1180. [Google Scholar] [CrossRef]
- Held, I.M.; Soden, B.J. Robust responses of the hydrological cycle to global warming. J. Clim. 2006, 19, 5686–5699. [Google Scholar] [CrossRef]
- Seager, R.; Vecchi, G.A. Greenhouse warming and the 21st century hydroclimate of southwestern North America. Proc. Natl. Acad. Sci. USA 2010, 107, 21277–21282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, H.; Zhang, M. Global land moisture trends: Drier in dry and wetter in wet over land. Sci. Rep. 2015, 5, 18018. [Google Scholar] [CrossRef] [PubMed]
- Zuo, D.P.; Cai, S.Y.; Xu, Z.X.; Peng, D.Z.; Kan, G.Y.; Sun, W.C.; Pang, B.; Yang, H. Assessment of meteorological and agricultural droughts using in-situ observations and remote sensing data. Agric. Water Manag. 2019, 222, 125–138. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Feng, P.Y.; Wang, B.; Liu, D.L.; Yu, Q. Machine learning-based integration of remotely-sensed drought factors can improve the estimation of agricultural drought in South-Eastern Australia. Agric. Syst. 2019, 173, 303–316. [Google Scholar] [CrossRef]
- Mpelasoka, F.; Awange, J.L.; Goncalves, R.M. Accounting for dynamics of mean precipitation in drought projections: A case study of Brazil for the 2050 and 2070 periods. Sci. Total Environ. 2018, 622–623, 1519–1531. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.Y.; Carbone, G.J.; Grego, J.M. Uncertainty and hotspots in 21st century projections of agricultural drought from CMIP5 models. Sci. Rep. 2019, 9, 4922. [Google Scholar] [CrossRef]
- Haile, G.G.; Tang, Q.H.; Sun, S.; Huang, Z.W.; Zhang, X.J.; Liu, X.C. Droughts in East Africa: Causes, impacts and resilience. Earth Sci. Rev. 2019, 193, 146–161. [Google Scholar] [CrossRef]
- Shiru, M.S.; Shahid, S.; Chung, E.S.; Alias, N. Changing characteristics of meteorological droughts in Nigeria during 1901–2010. Atmos. Res. 2019, 223, 60–73. [Google Scholar] [CrossRef]
- Howden, M.; Schroeter, S.; Crimp, S.; Hanigan, I. The changing roles of science in managing Australian droughts: An agricultural perspective. Weather Clim. Extrem. 2014, 3, 80–89. [Google Scholar] [CrossRef] [Green Version]
- Tweed, S.; Leblanc, M.; Cartwright, I. Groundwater–surface water interaction and the impact of a multi-year drought on lakes conditions in South-East Australia. J. Hydrol. 2009, 379, 41–53. [Google Scholar] [CrossRef]
- Ciais, P.; Reichstein, M.; Viovy, N.; Granier, A.; Ogee, J.; Allard, V.; Aubinet, M.; Buchmann, N.; Bernhofer, C.; Carrara, A.; et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 2005, 437, 529–533. [Google Scholar] [CrossRef]
- Van der Velde, M.; Tubiello, F.N.; Vrieling, A.; Bouraoui, F. Impacts of extreme weather on wheat and maize in France: Evaluating regional crop simulations against observed data. Clim. Chang. 2012, 113, 751–765. [Google Scholar] [CrossRef] [Green Version]
- Schwalm, C.R.; Anderegg, W.R.L.; Michalak, A.M.; Fisher, J.B.; Biondi, F.; Koch, G.; Litvak, M.; Ogle, K.; Shaw, J.D.; Wolf, A.; et al. Global patterns of drought recovery. Nature 2017, 548, 202–205. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Y.; Li, Y.; Chen, A.P.; Gao, M.D.; Slette, I.J.; Piao, S.L. The impact of the 2009/2010 drought on vegetation growth and terrestrial carbon balance in Southwest China. Agric. For. Meteorol. 2019, 269–270, 239–248. [Google Scholar] [CrossRef]
- Ji, L.; Peters, A.J. Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices. Remote Sens. Environ. 2003, 87, 85–98. [Google Scholar] [CrossRef]
- Liu, L.Z.; Yang, X.; Zhou, H.K.; Liu, S.S.; Zhou, L.; Li, X.H.; Yang, J.H.; Han, X.Y.; Wu, J.J. Evaluating the utility of solar-induced chlorophyll fluorescence for drought monitoring by comparison with NDVI derived from wheat canopy. Sci. Total Environ. 2018, 625, 1208–1217. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Guanter, L.; Guan, K.Y.; You, L.Z.; Huete, A.; Ju, W.M.; Zhang, Y.G. Satellite sun-induced chlorophyll fluorescence detects early response of winter wheat to heat stress in the Indian Indo-Gangetic Plains. Glob. Chang. Biol. 2018, 24, 4023–4037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multi-scalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index–SPEI. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Palmer, W.C. Keeping track of crop moisture conditions, nationwide: The new crop moisture index. Weatherwise 1968, 21, 156–161. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. Presented at the 8th Conference on Applied Climatology, Boston, MA, USA, 17–22 January 1993; American Meteorological Society: Anaheim, CA, USA, 1993. [Google Scholar]
- Liu, W.T.; Kogan, F.N. Monitoring regional drought using the vegetation condition index. Int. J. Remote Sens. 1996, 17, 2761–2782. [Google Scholar] [CrossRef]
- Sandholi, I.; Rasmussen, K.; Ersen, J. A simple interpretation of the surface temperature vegetation index space for assessment of surface moisture status. Remote Sens. Environ. 2002, 79, 213–214. [Google Scholar] [CrossRef]
- Lewis, S.L.; Brando, P.M.; Phillips, O.L.; Van der Heijden, G.M.F.; Nepstad, D. The 2010 Amazon Drought. Science 2011, 331, 554. [Google Scholar] [CrossRef]
- Ci, H.; Zhang, Q.; Xiao, M.Z. Evaluation and comparability of four meteorological drought indices during drought monitoring in Xinjiang. Acta Sci. Nat. Univ. Sunyatseni 2016, 55, 124–133. [Google Scholar]
- Pritchard, H.D. Asia’s shrinking glaciers protect large populations from drought stress. Nature 2019, 569, 649–654. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhu, Y.; Xu, R.G.; Liu, J.T. Drought severity change in China during 1961–2012 indicated by SPI and SPEI. Nat. Hazards 2015, 75, 2437–2451. [Google Scholar] [CrossRef]
- Kamali, B.; Abbaspour, K.C.; Wehrli, B.; Yang, H. Drought vulnerability assessment of maize in Sub-Saharan Africa: Insights from physical and social perspectives. Glob. Planet. Chang. 2018, 162, 266–274. [Google Scholar] [CrossRef] [Green Version]
- Leng, G.Y.; Hall, J. Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future. Sci. Total Environ. 2019, 654, 811–821. [Google Scholar] [CrossRef] [PubMed]
- Dai, A.G. Drought under global warming: A review. WIREs Clim. Chang. 2011, 2, 45–65. [Google Scholar] [CrossRef] [Green Version]
- Forootan, E.; Khaki, M.; Schumacher, M.; Wulfmeyer, V.; Mehrnegar, N.; Van Dijk, A.I.J.M.; Brocca, L.; Farzaneh, S.; Akinluyi, F.; Ramillien, G.; et al. Understanding the global hydrological droughts of 2003–2016 and their relationships with teleconnections. Sci. Total Environ. 2019, 650, 2587–2604. [Google Scholar] [CrossRef] [Green Version]
- Wilhite, D.A.; Glantz, M.H. Understanding: The drought phenomenon: The role of definitions. Water Int. 1985, 10, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Spinoni, J.; Barbosa, P.; Jager, A.D.; McCormick, N.; Naumann, G.; Vogt, J.V.; Magni, D.; Masante, D.; Mazzeschi, M. A new global database of meteorological drought events from 1951 to 2016. J. Hydrol. Reg. Stud. 2019, 22, 100593. [Google Scholar] [CrossRef]
- Kirono, D.G.C.; Kent, D.M.; Hennessy, K.J.; Mpelasoka, F. Characteristics of Australian droughts under enhanced greenhouse conditions: Results from 14 global climate models. J. Arid Environ. 2011, 75, 566–575. [Google Scholar] [CrossRef]
- Kim, T.W.; Valdes, J.B.; Nijssen, B.; Roncayolo, D. Quantification of linkages between large-scale climatic patterns and precipitation in the Colorado River Basin. J. Hydrol. 2006, 321, 173–186. [Google Scholar] [CrossRef]
- Wang, X.M.; Zhang, K.F.; Wu, S.Q.; Li, Z.S.; Cheng, Y.Y.; Li, L.; Yuan, H. The correlation between GNSS-derived precipitable water vapor and sea surface temperature and its responses to El Niño–Southern Oscillation. Remote Sens. Environ. 2018, 216, 1–12. [Google Scholar] [CrossRef]
- Zhao, H.Y.; Gao, G.; An, W.; Zhou, X.K.; Li, H.T.; Hou, M.T. Timescale differences between SC-PDSI and SPEI for drought monitoring in China. Phys. Chem. Earth 2017, 102, 48–58. [Google Scholar] [CrossRef]
- Soh, Y.W.; Koo, C.H.; Huang, Y.F.; Fung, K.F. Application of artificial intelligence models for the prediction of standardized precipitation evapotranspiration index (SPEI) at Langat River Basin, Malaysia. Comput. Electron. Agric. 2018, 144, 164–173. [Google Scholar] [CrossRef]
- Van Hateren, T.C.; Sutanto, S.J.; Van Lanen, H.A.J. Evaluating skill and robustness of seasonal meteorological and hydrological drought forecasts at the catchment scale—Case Catalonia (Spain). Environ. Int. 2019, 133, 105206. [Google Scholar] [CrossRef]
- Guo, H.; Bao, A.M.; Liu, T.; Jiapaer, G.; Ndayisaba, F.; Jiang, L.L.; Kurban, A.; Maeyer, P.D. Spatial and temporal characteristics of droughts in Central Asia during 1966–2015. Sci. Total Environ. 2018, 624, 1523–1538. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P.; Desai, V.R. Drought characterization: A probabilistic approach. Stoch. Environ. Res. Risk Assess. 2009, 23, 41–55. [Google Scholar] [CrossRef]
- Jenks, G.F. The data model concept in statistical mapping. Int. Yearb. Cartogr. 1967, 7, 186–190. [Google Scholar]
- Jenks, G.F.; Fred, C.C. Error on Chloroplethic Maps: Definition, Measurement, Reduction. Ann. Assoc. Am. Geogr. 1971, 61, 217–244. [Google Scholar] [CrossRef]
- McMaster, R. In Memoriam: George, F. Jenks (1916–1996). Cartogr. Geogr. Inf. Sci. 1997, 24, 56–59. [Google Scholar] [CrossRef]
- Shaaban, A.S.A.; Wahbi, A.; Sinclair, T.R. Sowing date and mulch to improve water use and yield of wheat and barley in the Middle East environment. Agric. Syst. 2018, 165, 26–32. [Google Scholar] [CrossRef]
- Kiem, A.S.; Franks, S.W. Multi-decadal variability of drought risk, eastern Australia. Hydrol. Process. 2004, 18, 2039–2050. [Google Scholar] [CrossRef]
- Spinoni, J.; Naumann, G.; Carrao, H.; Barbosa, P.; Vogt, J. World drought frequency, duration, and severity for 1951–2010. Int. J. Climatol. 2014, 34, 2792–2804. [Google Scholar] [CrossRef] [Green Version]
- Nandintsetseg, B.; Shinoda, M.; Du, C.L.; Munkhjargal, E. Cold-season disasters on the Eurasian steppes: Climate-driven or man-made. Sci. Rep. 2018, 8, 14769. [Google Scholar] [CrossRef] [PubMed]
- Nanzad, L.; Zhang, J.H.; Tuvdendorj, B.; Nabil, M.; Zhang, S.; Bai, Y. NDVI anomaly for drought monitoring and its correlation with climate factors over Mongolia from 2000 to 2016. J. Arid Environ. 2019, 164, 69–77. [Google Scholar] [CrossRef]
- Di, L.P.; Rundquist, D.C.; Han, L.H. Modeling relationships between NDVI and precipitation during vegetative growth cycles. Int. J. Remote Sens. 1994, 15, 2121–2136. [Google Scholar] [CrossRef]
- Doughty, R.; Xiao, X.M.; Wu, X.C.; Zhang, Y.; Bajgain, B.; Zhou, Y.T.; Qin, Y.W.; Zou, Z.H.; McCarthy, H.; Friedman, J.; et al. Responses of gross primary production of grasslands and croplands under drought, pluvial, and irrigation conditions during 2010–2016, Oklahoma, USA. Agric. Water Manag. 2018, 204, 47–59. [Google Scholar] [CrossRef]
- Liu, L.Z.; Yang, X.; Zhou, H.K.; Liu, S.S.; Zhou, L.; Li, X.H.; Yang, J.H.; Wu, J.J. Relationship of root zone soil moisture with solar-induced chlorophyll fluorescence and vegetation indices in winter wheat: A comparative study based on continuous ground-measurements. Ecol. Indic. 2018, 90, 9–17. [Google Scholar] [CrossRef]
- Kiem, A.S.; Austin, E.K. Drought and the future of rural communities: Opportunities and challenges for climate change adaptation in regional Victoria, Australia. Glob. Environ. Chang. 2013, 23, 1307–1316. [Google Scholar] [CrossRef] [Green Version]
- Jones, H.G.; Sirault, X.R.R. Scaling of Thermal Images at Different Spatial Resolution: The Mixed Pixel Problem. Agronomy 2014, 4, 380–396. [Google Scholar] [CrossRef] [Green Version]
- Wilhite, D.A.; Sivakumar, M.V.K.; Pulwarty, R. Managing drought risk in a changing climate: The role of national drought policy. Weather Clim. Extrem. 2014, 3, 4–13. [Google Scholar] [CrossRef] [Green Version]
- Puma, M.J.; Cook, B.I. Effects of irrigation on global climate during the 20th century. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
Value Range | SPEI ≤ −2 | −2 < SPEI ≤ −1.5 | −1.5 < SPEI ≤ −1 | −1 < SPEI ≤ −0.5 | SPEI > −0.5 |
---|---|---|---|---|---|
Levels | Exceptional drought | Severe drought | Middle drought | Moderate drought | Non-drought |
Data Type | Data Name | Resolution | Time Range | Data Source | |
---|---|---|---|---|---|
Spatial | Temporal | ||||
SPEI03 | 0.5° × 0.5° | Monthly | 2009–2018 | SPEI Global drought monitor | |
Land cover | MCD12Q1 | 500 × 500 m | Yearly | 2018 | NASA LPDAAC |
NDVI | MOD13A3 | 1 × 1 km | Monthly | 2009–2018 | |
Temperature | ERA5 monthly averaged data on single levels | 0.25° × 0.25° | Monthly | 1989–2018 | ECMWF |
Precipitation | |||||
Evaporation | |||||
SIF | GOME-02 | 0.5° × 0.5° | Monthly | 2009–2018 | AVDC |
Soil moisture | ESA soil moisture gridded dataset | 0.25° × 0.25° | Monthly | 1989–2018 | ECMWF |
SOI | Southern Oscillation Index | Monthly | 2018 | Bureau of Meteorology Australia |
Meteorological Factors | Annual Maximum Temperature | Total Annual Precipitation | Maximum Annual Evaporation | Soil Moisture in the Upper 5 cm of Soil |
---|---|---|---|---|
CV | 0.09 | 0.38 | 0.31 | 0.12 |
Z-score | 0.98 | −2.39 | −0.71 | −1.16 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, F.; Wu, J.; Liu, L.; Leng, S.; Yang, J.; Zhao, W.; Shen, Q. Exceptional Drought across Southeastern Australia Caused by Extreme Lack of Precipitation and Its Impacts on NDVI and SIF in 2018. Remote Sens. 2020, 12, 54. https://doi.org/10.3390/rs12010054
Tian F, Wu J, Liu L, Leng S, Yang J, Zhao W, Shen Q. Exceptional Drought across Southeastern Australia Caused by Extreme Lack of Precipitation and Its Impacts on NDVI and SIF in 2018. Remote Sensing. 2020; 12(1):54. https://doi.org/10.3390/rs12010054
Chicago/Turabian StyleTian, Feng, Jianjun Wu, Leizhen Liu, Song Leng, Jianhua Yang, Wenhui Zhao, and Qiu Shen. 2020. "Exceptional Drought across Southeastern Australia Caused by Extreme Lack of Precipitation and Its Impacts on NDVI and SIF in 2018" Remote Sensing 12, no. 1: 54. https://doi.org/10.3390/rs12010054
APA StyleTian, F., Wu, J., Liu, L., Leng, S., Yang, J., Zhao, W., & Shen, Q. (2020). Exceptional Drought across Southeastern Australia Caused by Extreme Lack of Precipitation and Its Impacts on NDVI and SIF in 2018. Remote Sensing, 12(1), 54. https://doi.org/10.3390/rs12010054