Abstract
The El Niño/Southern Oscillation (ENSO) is the dominant climate phenomenon affecting extreme weather conditions worldwide. Its response to greenhouse warming has challenged scientists for decades, despite model agreement on projected changes in mean state. Recent studies have provided new insights into the elusive links between changes in ENSO and in the mean state of the Pacific climate. The projected slow-down in Walker circulation is expected to weaken equatorial Pacific Ocean currents, boosting the occurrences of eastward-propagating warm surface anomalies that characterize observed extreme El Niño events. Accelerated equatorial Pacific warming, particularly in the east, is expected to induce extreme rainfall in the eastern equatorial Pacific and extreme equatorward swings of the Pacific convergence zones, both of which are features of extreme El Niño. The frequency of extreme La Niña is also expected to increase in response to more extreme El Niños, an accelerated maritime continent warming and surface-intensified ocean warming. ENSO-related catastrophic weather events are thus likely to occur more frequently with unabated greenhouse-gas emissions. But model biases and recent observed strengthening of the Walker circulation highlight the need for further testing as new models, observations and insights become available.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
£139.00 per year
only £11.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
McPhaden, M. J., Zebiak, S. E. & Glantz, M. H. ENSO as an integrating concept in Earth science. Science 314, 1740–1745 (2006).
Neelin, J. D. et al. ENSO theory. J. Geophys. Res. 103, 14261–14290 (1998).
Jin, F.-F. An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci. 54, 811–829 (1997).
Sun, D.-Z. El Niño: a coupled response to radiative heating? Geophys. Res. Lett. 24, 2031–2034 (1997).
Ropelewski, C. F. & Halpert, M. S. Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Weath. Rev. 115, 1606–1626 (1987).
Philander, S. G. H. Anomalous El Niño of 1982–83. Nature 305, 16 (1983).
Bove, M. C., O'Brien, J. J., Eisner, J. B., Landsea, C. W. & Niu, X. Effect of El Niño on US landfalling hurricanes, revisited. Bull. Am. Meteorol. Soc. 79, 2477–2482 (1998).
McPhaden, M. J. El Niño: The child prodigy of 1997–98. Nature 398, 559–562 (1999).
Wu, M. C., Chang, W. L. & Leung, W. M. Impact of El Niño–Southern Oscillation Events on tropical cyclone landfalling activities in the western North Pacific. J. Clim. 17, 1419–1428 (2004).
Cai, W. et al. More extreme swings of the South Pacific convergence zone due to greenhouse warming. Nature 488, 365–369 (2012).
Glynn, P. W. & de Weerdt, W. H. Elimination of two reef-building hydrocorals following the 1982–83 El Niño. Science 253, 69–71 (1991).
Bell, G. D. et al. Climate assessment for 1998. Bull. Am. Meteorol. Soc. 80, 1040–1040 (1999).
McPhaden, M. J. & Zhang, X. Asymmetry in zonal phase propagation of ENSO sea surface temperature anomalies. Geophys. Res. Lett. 36, L13703 (2009).
Santoso, A. et al. Late-twentieth-century emergence of the El Niño propagation asymmetry and future projections. Nature 504, 126–130 (2013).
Valle, C. A. et al. The impact of the 1982–1983 E1 Niño–Southern Oscillation on seabirds in the Galapagos Islands, Ecuador. J. Geophys. Res. 92, 14437–14444 (1987).
Collins, M. et al. The impact of global warming on the tropical Pacific Ocean and El Niño. Nature Geosci. 3, 391–397 (2010).
DiNezio, P. N. et al. Mean climate controls on the simulated response of ENSO to increasing greenhouse gases. J. Clim. 25, 7399–7420 (2012).
Kim, S.-T. et al. Response of El Niño sea surface temperature variability to greenhouse warming. Nature Clim. Change 4, 786–790 (2014).
Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).
Kug, J.-S., Ham, Y.-G., Lee, J.-Y. & Jin, F.-F. Improved simulation of two types of El Niño in CMIP5 models. Environ. Res. Lett. 7, 034002 (2012).
Bellenger, H. et al. ENSO representation in climate models: From CMIP3 to CMIP5. Clim. Dynam. 42, 1999–2018 (2014).
Hoerling, M. P., Kumar, A. & Zhong, M. El Niño, La Niña, and the nonlinearity of their teleconnections. J. Clim. 10, 1769–1786 (1997).
Rodgers, K. B., Friederichs, P. & Latif, M. Tropical pacific decadal variability and its relation to decadal modulations of ENSO. J. Clim. 17, 3761–3774 (2004).
Yu, J.-Y. & Kim, S. T. Reversed spatial asymmetries between El Niño and La Niña and their linkage to decadal ENSO modulation in CMIP3 models. J. Clim. 24, 5423–5434 (2011).
Takahashi, K., Montecinos, A., Goubanova, K. & Dewitte, B. ENSO regimes: Reinterpreting the canonical and Modoki El Niño. Geophys. Res. Lett. 38, L10704 (2011). Proposes that the first two empirical orthogonal function modes of tropical Pacific sea surface temperature anomalies do not describe different phenomena (that is, El Niño–Southern Oscillation and 'El Niño Modoki') but rather the nonlinear evolution of ENSO.
Takahashi, K. & Dewitte, B. Strong and moderate nonlinear El Niño regimes. Clim. Dynam. http://dx.doi.org/10.1007/s00382-015-2665-3 (2015).
Choi, K.-Y., Vecchi, G. A. & Wittenberg, A. T. ENSO transition, duration, and amplitude asymmetries: role of the nonlinear wind stress coupling in a conceptual model. J. Clim. 26, 9462–9476 (2013).
Timmermann, A. & Jin, F.-F. A nonlinear theory for El Niño bursting. J. Atmos. Sci. 60, 152–165 (2003).
An, S.-I. & Jin, F.-F. Nonlinearity and asymmetry of ENSO. J. Clim. 17, 2399–2412 (2004).
Hong, L.-C., LinHo & Jin, F.-F. A Southern Hemisphere booster of super El Niño. Geophys. Res. Lett. 41, 2142–2149 (2014). Shows that preceding a super El Niño event is a transverse circulation characterized by a low-level equatorward flow, which spins off from a high sea-level-pressure anomaly around Australia and merges into the deep convection anomalies over the central Pacific, with westerly anomalies that reinforce the El Niño.
Cai, W. et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nature Clim. Change 4, 111–116 (2014).
Cai, W. et al. More frequent extreme La Niña events under greenhouse warming. Nature Clim. Change 5, 132–137 (2015). Proposes that to examine dynamics associated with extreme La Niña, Niño4 surface temperature is a more appropriate index.
Capotondi, A. et al. Understanding ENSO diversity. Bull. Am. Meteorol. Soc. 96, 921–938 (2015). Uses observations, ocean reanalysis and climate models to provide a comprehensive review of dynamics associated with different ENSO types, and to show that the basic physical processes underlying the different ENSO types are not completely distinct.
Kao, H. Y. & Yu, J. Y. Contrasting Eastern-Pacific and Central-Pacific types of ENSO. J. Clim. 22, 615–632 (2009).
Yeh, S.-W. et al. El Niño in a changing climate. Nature 461, 511–514 (2009).
Ashok, K., Behera, S. K., Rao, S. A., Weng, H. & Yamagata, T. El Niño Modoki and its possible teleconnection. J. Geophys. Res. 112, C11007 (2007). Suggests that El Niño Modoki, with an anomaly centre in the central equatorial Pacific, is a different type of event independent from the canonical El Niño, which has an anomaly centre in the eastern equatorial Pacific.
Hua, L., Yu, Y. & D.-Z. Sun, D.-Z. A further study of ENSO rectification: Results from an OGCM with a seasonal cycle. J. Clim. 28, 1362–1382 (2015). Shows that the rectification effect of ENSO is to cool the western Pacific warm pool and warm the eastern equatorial Pacific.
Sun, D.-Z., Zhang, T., Sun, Y. & Y. Yu, Y. Rectification of El Niño–Southern Oscillation into climate anomalies of decadal and longer time-scales: Results from forced ocean GCM experiments. J. Clim. 27, 2545–2561 (2014).
Liu, Z., Vavrus, S., He, F., Wen, N. & Zhong, Y. Rethinking tropical ocean response to global warming: The enhanced equatorial warming. J. Clim. 18, 4684–4700 (2005).
Vecchi, G. A. et al. Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 441, 73–76 (2006).
Xie, S.-P. et al. Global warming pattern formation: Sea surface temperature and rainfall. J. Clim. 23, 966–986 (2010).
An, S.-I., Kug, J.-S., Ham, Y.-G. & Kang, I.-S. Successive modulation of ENSO to the future greenhouse warming. J. Clim. 21, 3–21 (2008).
Watanabe, M. et al. Uncertainty in the ENSO amplitude change from the past to the future. Geophys. Res. Lett. 39, L20703 (2012).
Tokinaga, H., Xie, S.-P., Deser, C., Kosaka, Y. & Okumura, Y. M. Slowdown of the Walker circulation driven by tropical Indo-Pacific warming. Nature 491, 439–443 (2012).
An, S.-I. et al. Recent and future sea surface temperature trends in tropical Pacific warm pool and cold tongue regions. Clim. Dynam. 39, 1373–1383 (2012).
Luo, J. J., Sasaki, W. & Masumoto, Y. Indian Ocean warming modulates Pacific climate change. Proc. Natl Acad. Sci. USA 109, 18701–18706 (2012).
McGregor, S. et al. Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nature Clim. Change 4, 888–892 (2014).
Solomon, A. & Newman, M. Reconciling disparate twentieth-century Indo-Pacific ocean temperature trends in the instrumental record. Nature Clim. Change 2, 691–699 (2012).
Dong, B. W. & Lu, R. Y. Interdecadal enhancement of the Walker circulation over the Tropical Pacific in the late 1990s. Adv. Atmos. Sci. 30, 247–262 (2013).
England, M. H. et al. Recently intensified Pacific Ocean wind-driven circulation and the ongoing warming hiatus. Nature Clim. Change 4, 222–227 (2014).
L'Heureux, M., Lee, S. & Lyon, B. Recent multidecadal strengthening of the Walker circulation across the tropical Pacific. Nature Clim. Change 3, 571–576 (2013).
Kosaka, Y. & Xie, S.-P. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501, 403–407 (2013).
Timmermann, A., McGregor, S. & Jin, F.-F. Wind effects on past and future regional sea level trends in the Southern Indo-Pacific. J. Clim. 23, 4429–4437 (2010).
McPhaden, M. J., Lee, T. & McClurg, D. El Niño and its relationship to changing background conditions in the tropical Pacific Ocean. Geophys. Res. Lett. 38, L15709 (2011).
Wittenberg, A. T., Rosati, A., Delworth, T. L., Vecchi, G. A. & Zeng, F. ENSO modulation: Is it decadally predictable? J. Clim. 27, 2667–2681 (2014).
Xiang, B., Wang, B. & Li, T. A new paradigm for the predominance of standing Central Pacific warming after the late 1990s. Clim. Dynam. 41, 327–340 (2013).
An, S.-I. & Wang, B. Interdecadal change of the structure of the ENSO mode and its impact on the ENSO frequency. J. Clim. 13, 2044–2055 (2000).
Fedorov, A. & Philander, S. G. Is El Niño changing? Science 288, 1997–2002 (2000).
Zhang, T. & Sun, D.-Z. ENSO Asymmetry in CMIP5 models. J. Clim. 27, 4070–4093 (2014). Shows that most models underestimate ENSO asymmetry, and that the underestimation primarily results from a weaker SST warm anomaly over the eastern Pacific and a westward shift of the centre of the anomaly.
Ohba, M. & Ueda, H. Role of nonlinear atmospheric response to SST on the asymmetric transition process of ENSO. J. Clim. 22, 177–192 (2009).
Okumura, Y. M. & Deser, C. Asymmetry in the duration of El Niño and La Niña. J. Clim. 23, 5826–5843 (2010).
Burgers, G. & Stephenson, D. B. The 'normality' of El Niño. Geophys. Res. Lett. 26, 1027–1030 (1999).
Trenberth, K. E. & Stepaniak, D. P. Indices of El Niño evolution, J. Clim. 14, 1697–1701 (2001).
Lengaigne, M. & Vecchi, G. A. Contrasting the termination of moderate and extreme El Niño events in Coupled General Circulation Models. Clim. Dynam. 35, 299–313 (2010). Proposes that a large rainfall anomaly in the eastern equatorial Pacific can be used to examine whether a model is able to generate an extreme El Niño.
Chiodi, A. M. & Harrison, D. E. El Niño impacts on seasonal US atmospheric circulation, temperature, and precipitation anomalies: The OLR-event perspective. J. Clim. 26, 822–837 (2013). Shows that since 1979 most of the US seasonal weather impact of El Niño events has been associated with the few events identified by the behaviour of outgoing longwave radiation (OLR) over the eastern equatorial Pacific, suggesting the utility of OLR to define El Niño.
Frauen, C. & Dommenget, D. El Niño and La Niña amplitude asymmetry caused by atmospheric feedbacks. Geophys. Res. Lett. 37, L18801 (2010).
Gebbie, G., Eisenman, I., Wittenberg, A. & Tziperman, E. Modulation of westerly wind bursts by sea surface temperature: A semistochastic feedback for ENSO. J. Atmos. Sci. 64, 3281–3295 (2007).
Lengaigne, M. et al. The March 1997 Westerly Wind Event and the onset of the 1997/98 El Niño: Understanding the role of the atmospheric response. J. Clim. 16, 3330–3343 (2003).
An, S.-I. & Jin, F.-F. Collective role of thermocline and zonal advective feedbacks in the ENSO mode. J. Clim. 14, 3421–3432 (2001).
Kim, W. & Cai, W. The importance of the eastward zonal current for generating extreme El Niño. Clim. Dynam. 42, 3005–3014 (2014). Finds that the eastward zonal current, seen only during extreme El Niño, plays an important role in making an El Niño event extreme.
Jin, F.-F., An, S.-I., Timmermann, A. & Zhao, J. Strong El Niño events and nonlinear dynamical heating. Geophys. Res. Lett. 30, 1120 (2003).
Lübbecke, J. & McPhaden, M. J. Assessing the twenty-first-century shift in ENSO variability in terms of the Bjerknes stability index. J. Clim. 27, 2577–2587 (2014).
Newman, M., Alexander, M. A. & Scott, J. D. An empirical model of tropical ocean dynamics. Clim. Dynam. 37, 1823–1841 (2011).
Chung, C. T. Y., Power, S. B., Arblaster, J. M., Rashid, H. A. & Roff, G. L. Nonlinear precipitation response to El Niño and global warming in the Indo-Pacific. Clim. Dynam. 42, 1837–1856 (2013).
Power, S. B., Delage, F., Chung, C. T. Y., Kociuba, G. & Keay, K. Robust twenty-first century projections of El Niño and related precipitation variability. Nature 502, 541–547 (2014).
Johnson, N. C. & Xie, S.-P. Changes in the sea surface temperature threshold for tropical convection. Nature Geosci. 3, 842–845 (2010). Demonstrates that under global warming, surface temperature threshold for tropical atmospheric convection increases commensurately with mean temperature over the tropics.
Cai, W. et al. Increased frequency of extreme Indian Ocean Dipole events due to greenhouse warming. Nature 510, 254–258 (2014).
Sen Gupta, A., Ganachaud, A., McGregor, S., Brown, J. N. & Muir, L. Drivers of the projected changes to the Pacific Ocean equatorial circulation. Geophys. Res. Lett. 39, L09605 (2012).
Gill, A. E. Some simple solutions for heat-induced tropical circulation. Q. J. R. Meteorol. Soc. 106, 447–462 (1980).
Hoskins, B. J. & Karoly, D. J. The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci. 38, 1179–1196 (1981).
Horel, J. D. & Wallace, J. M. Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Weath. Rev. 109, 813–829 (1981).
Karoly, D. J. Southern Hemisphere circulation features associated with El Niño–Southern Oscillation events. J. Clim. 2, 1239–1252 (1989).
Cai, W., van Rensch, P., Cowan, T. & Hendon, H. H. Teleconnections pathways of ENSO and IOD and the mechanisms for impacts on Australian rainfall. J. Clim. 24, 3910 (2011).
Okumura, Y. M., Ohba, M., Deser, C. & Ueda, H. A proposed mechanism for the asymmetric duration of El Niño and La Niña. J. Clim. 24, 3822–3829 (2011).
DiNezio, P. N. & Deser, C. Nonlinear controls on the persistence of La Niña. J. Clim. 27, 7335–7355 (2014).
Zhang, W. J., Jin, F.-F., Ren, H.-L., Li, J. & Zhao, J.-X. Differences in teleconnection over the North Pacific and rainfall shift over the USA associated with two types of El Niño during boreal autumn. J. Meteorol. Soc. Jpn 90, 535–552 (2012).
Kug, J.-S., An, S.-I., Ham, Y.-G. & Kang, I.-S. Changes in El Niño and La Niña teleconnections over North Pacific-America in the global warming simulations. Theor. Appl. Climatol. 100, 275–282 (2010).
Meehl, G. A. & Teng, H. Multi-model changes in El Niño teleconnections over North America in a future warmer climate. Clim. Dynam. 29, 779–790, (2007).
Stevenson, S. L. Significant changes to ENSO strength and impacts in the twenty-first century: Results from CMIP5. Geophy. Res. Lett. 39, L17703 (2012).
Zhou, Z.-Q. et al. Global warming-induced changes in El Niño teleconnections over the North Pacific and North America. J. Clim. 27, 9050–9064 (2014).
Seager, R., Naik, N. & Vogel, L. Does global warming cause intensified interannual hydroclimate variability? J. Clim. 25, 3355–3372 (2012).
McGregor, S., Timmermann, A., England, M. H., Elison Timm, O. & Wittenberg, A. T. Inferred changes in El Niño–Southern Oscillation variance over the past six centuries. Clim. Past 9, 2269–2284 (2013).
Li, J. et al. El Niño modulations over the past seven centuries. Nature Clim. Change 3, 822–826 (2013).
Cobb, K. M. et al. Highly variable El Niño–Southern Oscillation throughout the Holocene. Science 339, 67–70 (2013).
Cane, M. A. et al. Twentieth century sea surface temperature trends. Science 275, 957–960 (1997).
Li, G. & Xie, S.-P. Tropical biases in CMIP5 multimodel ensemble: The excessive equatorial Pacific cold tongue and double ITCZ problems. J. Clim. 27, 1765–1780 (2014).
Bellucci, A., Gualdi, S. & Navarra, A. The double-ITCZ syndrome in coupled general circulation models: The role of large-scale vertical circulation regimes. J. Clim. 23, 1127–1145 (2009).
Bony, S. & Dufresne, J. L. Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett. 32, L20806 (2005).
Izumo, T. et al. Influence of the state of the Indian Ocean Dipole on the following year's El Niño. Nature Geosci. 3, 168–172 (2010).
Ham, Y. G., Kug, J. S., Park, J. Y. & Jin, F. F. Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nature Geosci. 6, 112–116 (2013).
Acknowledgements
W.C. and G.W. are supported by the Australian Climate Change Science Program and a CSIRO Office of Chief Executive Science Leader award. A.S. is supported by the Australian Research Council. M.C. was supported by NERC NE/I022841/1. S.W.Y. is supported by the National Research Fund of Korea grant funded by the Korean Government (MEST) (NRF-2009-C1AAA001-2009-0093042). S.I.A. was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Science, ICT and Future Planning (No. 2014R1A2A1A11049497). This is PMEL contribution number 4038.
Author information
Authors and Affiliations
Contributions
W.C., A.S., G.W. and S.W.Y wrote the initial version of the paper. G.W. performed the model output analysis and generated all figures. All authors contributed to interpreting results, discussion of the associated dynamics and improvement of this paper.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Cai, W., Santoso, A., Wang, G. et al. ENSO and greenhouse warming. Nature Clim Change 5, 849–859 (2015). https://doi.org/10.1038/nclimate2743
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nclimate2743
This article is cited by
-
Redefined background state in the tropical Pacific resolves the entanglement between the background state and ENSO
npj Climate and Atmospheric Science (2024)
-
2023 summer warmth unparalleled over the past 2,000 years
Nature (2024)
-
El Niño phase transition by deforestation in the Maritime Continent
npj Climate and Atmospheric Science (2024)
-
Strengthened impact of boreal winter North Pacific Oscillation on ENSO development in warming climate
npj Climate and Atmospheric Science (2024)
-
Assessing the future influence of the North Pacific trade wind precursors on ENSO in the CMIP6 HighResMIP multimodel ensemble
Climate Dynamics (2024)