Estimating Growing Season Evapotranspiration and Transpiration of Major Crops over a Large Irrigation District from HJ-1A/1B Data Using a Remote Sensing-Based Dual Source Evapotranspiration Model
"> Figure 1
<p>Flowchart of estimating crop evapotranspiration (ET) and transpiration (T) during growing season using hybrid dual-source scheme and trapezoid framework-based ET (HTEM) model and HJ-1A/1B data.</p> "> Figure 2
<p>Land use maps and location of stations in the study area. YCA and LH refer to Yangchang canal command area and Linhe, respectively.</p> "> Figure 3
<p>The asymmetric logistic curve of Normalized Difference Vegetation Index (NDVI) and phenological characteristic points.</p> "> Figure 4
<p>Sketch of the trapezoidal <span class="html-italic">F</span><sub>c</sub>/LST space in HTEM, and dashed lines represent soil wetness isolines.</p> "> Figure 5
<p>Spatial patterns of maize SOS (<b>a1</b>–<b>d1</b>) and EOS (<b>a2</b>–<b>d2</b>) in 2009, 2011, 2013, and 2015.</p> "> Figure 6
<p>Spatial patterns of sunflower SOS (<b>a1</b>–<b>d1</b>) and EOS (<b>a2</b>–<b>d2</b>) in 2009, 2011, 2013, and 2015.</p> "> Figure 7
<p>Validation of HTEM estimated ET at field <b>(a</b>) and regional (<b>b</b>) scales.</p> "> Figure 8
<p>Spatial patterns of maize growing season ET (<b>a1</b>–<b>d1</b>) and T (<b>a2</b>–<b>d2</b>) in 2009, 2011, 2013, and 2015.</p> "> Figure 9
<p>Spatial patterns of sunflower growing season ET (<b>a1</b>–<b>d1</b>) and T (<b>a2</b>–<b>d2</b>) in 2009, 2011, 2013, and 2015.</p> "> Figure 10
<p>Temporal variations of maize growing season ET (<b>a1</b>–<b>d1</b>) and T (<b>a2</b>–<b>d2</b>) in Dengkou (DK), Hangqinhouqi (HH), Linhe (LH), and Wuyuan (WY) counties. The bottom and top of the box represent the first and third quartiles of crop ET or T, and the ends of the whisker represent the 5th and 95th percentiles of crop ET or T, and the hollow square point in the middle is the average value of crop ET or T.</p> "> Figure 11
<p>Temporal variations of sunflower growing season ET (<b>a1</b>–<b>d1</b>) and T (<b>a2</b>–<b>d2</b>) in Dengkou (DK), Hangqinhouqi (HH), Linhe (LH), and Wuyuan (WY) counties.</p> "> Figure 12
<p>The maximum values of <span class="html-italic">K</span><sub>c</sub> and <span class="html-italic">K</span><sub>cb</sub> of maize and sunflower during crop growing seasons in Dengkou (DK), Hangqinhouqi (HH), Linhe (LH), and Wuyuan (WY) counties.</p> "> Figure 13
<p>The mean values of <span class="html-italic">K</span><sub>c</sub> and <span class="html-italic">K</span><sub>cb</sub> of maize and sunflower during crop growing seasons in Dengkou (DK), Hangqinhouqi (HH), Linhe (LH), and Wuyuan (WY) counties.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Satellite Data and Auxiliary Data
2.3. Determination of Crop Growing Season
2.4. A Brief Description of HTEM Model
2.5. Evaluation of HTEM Performance
3. Results and Discussion
3.1. Crop Growing Season
3.2. Validation of HTEM
3.3. Spatial Patterns of Crop Growing Season ET and T
3.4. Temporal Variations of Crop Growing Season ET and T
3.5. Crop Coefficients
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kang, S.; Hao, X.; Du, T.; Tong, L.; Su, X.; Lu, H.; Li, X.; Huo, Z.; Li, S.; Ding, R. Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice. Agric. Water Manag. 2017, 179, 5–17. [Google Scholar] [CrossRef]
- Cao, X.; Wu, P.; Wang, Y.; Zhao, X.; Liu, J. Analysis on temporal and spatial differences of water productivity in irrigation districts in China. Trans. Chin. Soc. Agric. Eng. 2012, 28, 1–7, (in Chinese with English Abstract). [Google Scholar]
- Vorosmarty, C.J. Global Water Resources: Vulnerability from Climate Change and Population Growth. Science 2000, 289, 284–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosegrant, M.W.; Ringler, C.; Gerpacio, R.V. Water and land resources and global food supply. In Food Security, Diversification and Resource Management: Refocusing the Role of Agriculture? Proceedings of the Twenty-Third International Conference of Agricultural Economists, Sacramento, CA, USA, 10–16 August 1997; Routledge: Abingdon-on-Thames, UK, 1997. [Google Scholar]
- Koksal, E.; Artik, C.; Tasan, M. Crop Evapotranspiration estimations of red pepper using field level remote sensing data and energy balance. Pol. J. Environ. Stud. 2018, 28, 165–175. [Google Scholar] [CrossRef]
- Yu, B.; Shang, S.; Zhu, W.; Gentine, P.; Cheng, Y. Mapping daily evapotranspiration over a large irrigation district from MODIS data using a novel hybrid dual-source coupling model. Agric. For. Meteorol. 2019, 276, 107612. [Google Scholar] [CrossRef]
- Yi, Z.; Zhao, H.; Jiang, Y.; Yan, H.; Cao, Y.; Huang, Y.; Hao, Z. Daily Evapotranspiration estimation at the field scale: Using the modified SEBS model and HJ-1 data in a desert-oasis area, Northwestern China. Water 2018, 10, 640. [Google Scholar] [CrossRef] [Green Version]
- Grosso, C.; Manoli, G.; Martello, M.; Chemin, Y.; Pons, D.; Teatini, P.; Piccoli, L.; Morari, F. Mapping maize evapotranspiration at field scale using SEBAL: A comparison with the FAO method and soil-plant model simulations. Remote Sens. 2018, 10, 1452. [Google Scholar] [CrossRef] [Green Version]
- Holland, S.; Heitman, J.L.; Howard, A.; Sauer, T.J.; Giese, W.; Ben-Gal, A.; Agam, N.; Kool, D.; Havlin, J. Micro-Bowen ratio system for measuring evapotranspiration in a vineyard interrow. Agric. For. Meteorol. 2013, 177, 93–100. [Google Scholar] [CrossRef]
- Bowen, I.S. The ratio of heat losses by conduction and by evaporation from any water surface. Phys. Rev. 1926, 27, 779–787. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Pan, M.; Mu, Q.; Shi, X.; Mao, J.; Brümmer, C.; Jassal, R.S.; Krishnan, P.; Li, J.; Black, T.A. Comparing evapotranspiration from eddy covariance measurements, water budgets, remote sensing, and land surface models over Canada. J. Hydrometeorol. 2015, 16, 1540–1560. [Google Scholar] [CrossRef] [Green Version]
- Wilson, K.; Goldstein, A.; Falge, E.; Aubinet, M.; Baldocchi, D.; Berbigier, P.; Bernhofer, C.; Ceulemans, R.; Dolman, H.; Field, C.; et al. Energy balance closure at FLUXNET sites. Agric. For. Meteorol. 2002, 113, 223–243. [Google Scholar] [CrossRef] [Green Version]
- Bai, J.; Jia, L.; Liu, S.; Xu, Z.; Hu, G.; Zhu, M.; Song, L. Characterizing the footprint of eddy covariance system and large aperture scintillometer measurements to validate satellite-based surface fluxes. IEEE Geosci. Remote Sens. Lett. 2015, 12, 943–947. [Google Scholar]
- Kang, S.; Gu, B.; Du, T.; Zhang, J. Crop coefficient and ratio of transpiration to evapotranspiration of winter wheat and maize in a semi-humid region. Agric. Water Manag. 2003, 59, 239–254. [Google Scholar] [CrossRef]
- Cheng, J.; Kustas, W. Using very high resolution thermal infrared imagery for more accurate determination of the impact of land cover differences on evapotranspiration in an irrigated agricultural area. Remote Sens. 2019, 11, 613. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Pruitt, W.O.; Wright, J.L.; Howell, T.A.; Ventura, F.; Snyder, R.; Itenfisu, D.; Steduto, P.; Berengena, J.; Yrisarry, J.B.; et al. A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman-Monteith method. Agric. Water Manag. 2006, 81, 1–22. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. FAO Irrigation and Drainage Paper No. 56; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998; Volume 56. [Google Scholar]
- Ren, D.; Xu, X.; Hao, Y.; Huang, G. Modeling and assessing field irrigation water use in a canal system of Hetao, upper Yellow River basin: Application to maize, sunflower and watermelon. J. Hydrol. 2016, 532, 122–139. [Google Scholar] [CrossRef]
- Ren, D.; Xu, X.; Engel, B.; Huang, Q.; Xiong, Y.; Huo, Z.; Huang, G. Hydrological complexities in irrigated agro-ecosystems with fragmented land cover types and shallow groundwater: Insights from a distributed hydrological modeling method. Agric. Water Manag. 2019, 213, 868–881. [Google Scholar] [CrossRef]
- Xue, J.; Ren, L. Evaluation of crop water productivity under sprinkler irrigation regime using a distributed agro-hydrological model in an irrigation district of China. Agric. Water Manag. 2016, 178, 350–365. [Google Scholar] [CrossRef]
- Yang, Y.; Shang, S.; Guan, H. Development of a soil-plant-atmosphere continuum model (HDS-SPAC) based on hybrid dual-source approach and its verification in wheat field. Sci. China-Technol. Sci. 2012, 55, 2671–2685. [Google Scholar] [CrossRef]
- Ren, D.; Xu, X.; Engel, B.; Huang, G. Growth responses of crops and natural vegetation to irrigation and water table changes in an agro-ecosystem of Hetao, upper Yellow River basin: Scenario analysis on maize, sunflower, watermelon and tamarisk. Agric. Water Manag. 2018, 199, 93–104. [Google Scholar] [CrossRef]
- He, R.; Jin, Y.; Kandelous, M.; Zaccaria, D.; Sanden, B.; Snyder, R.; Jiang, J.; Hopmans, J. Evapotranspiration estimate over an almond orchard using landsat satellite observations. Remote Sens. 2017, 9, 436. [Google Scholar] [CrossRef] [Green Version]
- French, A.; Hunsaker, D.; Bounoua, L.; Karnieli, A.; Luckett, W.; Strand, R. Remote sensing of evapotranspiration over the central Arizona irrigation and drainage district, USA. Agronomy 2018, 8, 278. [Google Scholar] [CrossRef] [Green Version]
- Gowda, P.H.; Chavez, J.L.; Colaizzi, P.D.; Evett, S.R.; Howell, T.A.; Tolk, J.A. ET mapping for agricultural water management: Present status and challenges. Irrig. Sci. 2007, 26, 223–237. [Google Scholar] [CrossRef] [Green Version]
- Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. J. Hydrol. 1998, 212, 198–212. [Google Scholar] [CrossRef]
- Norman, J.M.; Kustas, W.P.; Humes, K.S. Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface-temperature. Agric. For. Meteorol. 1995, 77, 263–293. [Google Scholar] [CrossRef]
- Yang, Y.; Shang, S. A hybrid dual-source scheme and trapezoid framework-based evapotranspiration model (HTEM) using satellite images: Algorithm and model test. J. Geophys. Res. Atmos. 2013, 118, 2284–2300. [Google Scholar] [CrossRef]
- Yang, Y.; Long, D.; Guan, H.; Liang, W.; Simmons, C.; Batelaan, O. Comparison of three dual-source remote sensing evapotranspiration models during the MUSOEXE-12 campaign: Revisit of model physics. Water Resour. Res. 2015, 51, 3145–3165. [Google Scholar] [CrossRef]
- Bai, L.; Cai, J.; Liu, Y.; Chen, H.; Zhang, B.; Huang, L. Responses of field evapotranspiration to the changes of cropping pattern and groundwater depth in large irrigation district of Yellow River basin. Agric. Water Manag. 2017, 188, 1–11. [Google Scholar] [CrossRef]
- Schmitter, P.; Zwart, S.J.; Danvi, A.; Gbaguidi, F. Contributions of lateral flow and groundwater to the spatio-temporal variation of irrigated rice yields and water productivity in a West-African inland valley. Agric. Water Manag. 2015, 152, 286–298. [Google Scholar] [CrossRef]
- Singh, A.; Krause, P.; Panda, S.N.; Flugel, W.A. Rising water table: A threat to sustainable agriculture in an irrigated semi-arid region of Haryana, India. Agric. Water Manag. 2010, 97, 1443–1451. [Google Scholar] [CrossRef]
- Tan, S.; Heerink, N.; Qu, F. Land fragmentation and its driving forces in China. Land Use Pol. 2006, 23, 272–285. [Google Scholar] [CrossRef]
- Zhong, L.; Hu, L.; Yu, L.; Gong, P.; Biging, G.S. Automated mapping of soybean and corn using phenology. ISPRS-J. Photogramm. Remote Sens. 2016, 119, 151–164. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Song, X.; Wang, S.; Huang, J.; Mansaray, L.R. Impacts of spatial heterogeneity on crop area mapping in Canada using MODIS data. ISPRS-J. Photogramm. Remote Sens. 2016, 119, 451–461. [Google Scholar] [CrossRef]
- Yu, B.; Shang, S. Multi-year mapping of maize and sunflower in Hetao Irrigation District of China with high spatial and temporal resolution vegetation index series. Remote Sens. 2017, 9, 855. [Google Scholar]
- Yang, Y.; Shang, S.; Jiang, L. Remote sensing temporal and spatial patterns of evapotranspiration and the responses to water management in a large irrigation district of North China. Agric. For. Meteorol. 2012, 164, 112–122. [Google Scholar] [CrossRef]
- Piao, S.; Fang, J.; Zhou, L.; Ciais, P.; Zhu, B. Variations in satellite-derived phenology in China’s temperate vegetation. Glob. Chang. Biol. 2006, 12, 672–685. [Google Scholar] [CrossRef]
- Cong, N.; Piao, S.; Chen, A.; Wang, X.; Lin, X.; Chen, S.; Han, S.; Zhou, G.; Zhang, X. Spring vegetation green-up date in China inferred from SPOT NDVI data: A multiple model analysis. Agric. For. Meteorol. 2012, 165, 104–113. [Google Scholar] [CrossRef]
- Yang, Y.; Guan, H.; Shen, M.; Liang, W.; Jiang, L. Changes in autumn vegetation dormancy onset date and the climate controls across temperate ecosystems in China from 1982 to 2010. Glob. Chang. Biol. 2015, 21, 652–665. [Google Scholar] [CrossRef]
- Chen, H.; Huo, Z.; Dai, X.; Ma, S.; Xu, X.; Huang, G. Impact of agricultural water-saving practices on regional evapotranspiration: The role of groundwater in sustainable agriculture in arid and semi-arid areas. Agric. For. Meteorol. 2018, 263, 156–168. [Google Scholar] [CrossRef]
- Jiang, L.; Shang, S.; Yang, Y.; Guan, H. Mapping interannual variability of maize cover in a large irrigation district using a vegetation index – phenological index classifier. Comput. Electron. Agric. 2016, 123, 351–361. [Google Scholar] [CrossRef]
- Yu, B.; Shang, S. Multi-Year Mapping of Major Crop Yields in an Irrigation District from High Spatial and Temporal Resolution Vegetation Index. Sensors 2018, 18, 3787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q. Technical system design and construction of China’s HJ-1 satellites. Int. J. Digit. Earth 2012, 5, 202–216. [Google Scholar] [CrossRef]
- Li, Z. Based on HJ-1A/1B Data of Real Water-Saving Potential Analysis to Hetao Irrigation in Inner Mongolia; Inner Mongolia Agriculture University: Hohhot, China, 2014. [Google Scholar]
- Pan, Z.; Huang, J.; Zhou, Q.; Wang, L.; Cheng, Y.; Zhang, H.; Blackburn, G.A.; Yan, J.; Liu, J. Mapping crop phenology using NDVI time-series derived from HJ-1 A/B data. Int. J. Appl. Earth Obs. Geoinform. 2015, 34, 188–197. [Google Scholar] [CrossRef] [Green Version]
- Parplies, A.; Dubovyk, O.; Tewes, A.; Mund, J.P.; Schellberg, J. Phenomapping of rangelands in South Africa using time series of RapidEye data. Int. J. Appl. Earth Obs. Geoinform. 2016, 53, 90–102. [Google Scholar] [CrossRef]
- Royo, C.; Aparicio, N.; Blanco, R.; Villegas, D. Leaf and green area development of durum wheat genotypes grown under Mediterranean conditions. Eur. J. Agron. 2004, 20, 419–430. [Google Scholar] [CrossRef]
- Li, F.Q.; Kustas, W.P.; Prueger, J.H.; Neale, C.M.U.; Jackson, T.J. Utility of remote sensing-based two-source energy balance model under low- and high-vegetation cover conditions. J. Hydrometeorol. 2005, 6, 878–891. [Google Scholar] [CrossRef]
- Norman, J.M.; Anderson, M.C.; Kustas, W.P.; French, A.N.; Mecikalski, J.; Torn, R.; Diak, G.R.; Schmugge, T.J.; Tanner, B.C.W. Remote sensing of surface energy fluxes at 101-m pixel resolutions. Water Resour. Res. 2003, 39, 1221–1229. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, J.M.; Kustas, W.P.; Caselles, V.; Anderson, M.C. Modelling surface energy fluxes over maize using a two-source patch model and radiometric soil and canopy temperature observations. Remote Sens. Environ. 2008, 112, 1130–1143. [Google Scholar] [CrossRef]
- Long, D.; Singh, V.P.; Scanlon, B.R. Deriving theoretical boundaries to address scale dependencies of triangle models for evapotranspiration estimation. J. Geophys. Res. Atmos. 2012, 117, D017079. [Google Scholar] [CrossRef]
- Carlson, T. An overview of the “triangle method” for estimating surface evapotranspiration and soil moisture from satellite imagery. Sensors 2007, 7, 1612–1629. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Tasumi, M.; Trezza, R. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Model. J. Irrig. Drain. Eng. 2007, 133, 380–394. [Google Scholar] [CrossRef]
- Li, H.; Zheng, L.; Lei, Y.; Li, C.; Liu, Z.; Zhang, S. Estimation of water consumption and crop water productivity of winter wheat in North China Plain using remote sensing technology. Agric. Water Manag. 2008, 95, 1271–1278. [Google Scholar] [CrossRef]
- Yang, Y.; Scott, R.L.; Shang, S. Modeling evapotranspiration and its partitioning over a semiarid shrub ecosystem from satellite imagery: A multiple validation. J. Appl. Remote Sens. 2013, 7, 073495. [Google Scholar] [CrossRef]
- Dai, J.X.; Shi, H.B.; Tian, D.L.; Xia, Y.H.; Li, M.H. Determination of crop coefficients of main grain and oil crops in Inner Mongolia Hetao irrigated area. J. Irrig. Drain. 2011, 30, 23–27, (in Chinese with English Abstract). [Google Scholar]
- Šimůnek, J.; Šejna, M.; Saito, H.; Sakai, M.; van Genuchten, M.T. The HYDRUS-1D Software Package for Simulating the Movement of Water, Heat, and Multiple Solutes in Variably Saturated Media, Version 4.0: HYDRUS Software Series 3; Department of Environmental Sciences, University of California Riverside: Riverside, CA, USA, 2009. [Google Scholar]
- Moriasi, D.N.; Arnold, J.G.; Van, L.M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
Crop Type | Estimation/Observation | SOS at LH (DOY) | SOS and EOS at YCA (DOY) | ||||
---|---|---|---|---|---|---|---|
2010 | 2011 | 2012 | 2013 | SOS (2013) | EOS (2013) | ||
Maize | Estimation | 120 | 129 | 125 | 124 | 120 | 268 |
Observation | 127 | 118 | 117 | 118 | 122 | 265 | |
Sunflower | Estimation | 157 | 155 | 161 | 158 | 151 | 262 |
Observation | --- | 155 | --- | 157 | 154 | 265 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, B.; Shang, S. Estimating Growing Season Evapotranspiration and Transpiration of Major Crops over a Large Irrigation District from HJ-1A/1B Data Using a Remote Sensing-Based Dual Source Evapotranspiration Model. Remote Sens. 2020, 12, 865. https://doi.org/10.3390/rs12050865
Yu B, Shang S. Estimating Growing Season Evapotranspiration and Transpiration of Major Crops over a Large Irrigation District from HJ-1A/1B Data Using a Remote Sensing-Based Dual Source Evapotranspiration Model. Remote Sensing. 2020; 12(5):865. https://doi.org/10.3390/rs12050865
Chicago/Turabian StyleYu, Bing, and Songhao Shang. 2020. "Estimating Growing Season Evapotranspiration and Transpiration of Major Crops over a Large Irrigation District from HJ-1A/1B Data Using a Remote Sensing-Based Dual Source Evapotranspiration Model" Remote Sensing 12, no. 5: 865. https://doi.org/10.3390/rs12050865
APA StyleYu, B., & Shang, S. (2020). Estimating Growing Season Evapotranspiration and Transpiration of Major Crops over a Large Irrigation District from HJ-1A/1B Data Using a Remote Sensing-Based Dual Source Evapotranspiration Model. Remote Sensing, 12(5), 865. https://doi.org/10.3390/rs12050865