Daily Evapotranspiration Estimation at the Field Scale: Using the Modified SEBS Model and HJ-1 Data in a Desert-Oasis Area, Northwestern China
<p>Location of study area.</p> "> Figure 2
<p>The flowchart of the modified perpendicular drought index (MPDI)-integrated surface energy balance system (SEBS) model.</p> "> Figure 3
<p>The scaling effect of MPDI to the kB<sup>−1</sup> parameter in SEBS.</p> "> Figure 4
<p>Comparison of H<sub>EC</sub> with H<sub>SEBS</sub> (<b>a</b>) and H<sub>SEBS-MPDI</sub> (<b>b</b>).</p> "> Figure 5
<p>Comparison of time series of H<sub>EC</sub> with H<sub>SEBS</sub> and H<sub>SEBS-MDPI</sub> together with soil moisture and LAI at Daman station (<b>a</b>) and Huazhaizi station (<b>b</b>).</p> "> Figure 5 Cont.
<p>Comparison of time series of H<sub>EC</sub> with H<sub>SEBS</sub> and H<sub>SEBS-MDPI</sub> together with soil moisture and LAI at Daman station (<b>a</b>) and Huazhaizi station (<b>b</b>).</p> "> Figure 6
<p>H obtained from the original SEBS (<b>a</b>); H obtained from the MPDI-integrated SEBS (<b>b</b>); MPDI (<b>c</b>); and LAI distribution (<b>d</b>) on 4 May, 2015. Purple circles (“1”) were samples with low LAI and high MPDI; red circles (“2”) were samples with high LAI and high MPDI.</p> "> Figure 6 Cont.
<p>H obtained from the original SEBS (<b>a</b>); H obtained from the MPDI-integrated SEBS (<b>b</b>); MPDI (<b>c</b>); and LAI distribution (<b>d</b>) on 4 May, 2015. Purple circles (“1”) were samples with low LAI and high MPDI; red circles (“2”) were samples with high LAI and high MPDI.</p> "> Figure 7
<p>Comparison of ET<sub>d</sub> observations with the values obtained from the original SEBS and the MPDI-integrated SEBS.</p> "> Figure 8
<p>Comparison of the time series of daily ET measured by the eddy covariance (EC) system and estimated by SEBS with and without the integration of MPDI over the growth period in 2015 at Daman station (<b>a</b>) and Huazhaizi station (<b>b</b>).</p> "> Figure 9
<p>Spatial distribution and frequency distribution of ET<sub>d</sub> using the SEBS model (<b>a</b>) and the MPDI-integrated SEBS model (<b>b</b>) on 4 July 2015.</p> "> Figure 10
<p>Magnified view of the spatial distribution of daily ET on the day of satellite overpass—24 May 2015 (<b>a</b>) and 3 July 2015 (<b>b</b>) within a selected part of the Daman irrigation district. Field boundaries were overlaid to compare inter- and intra-field variability in ET.</p> "> Figure 11
<p>Variation of daily ET over different land-cover types in the Ganzhou irrigation districts during the growing season of 2015.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Region and Data
2.1.1. Study Area
2.1.2. Field Experimental Site
2.1.3. Satellite Data
2.2. Method
2.2.1. A Brief Description of SEBS
2.2.2. The MPDI-Integrated SEBS Model
3. Results and Discussion
3.1. Comparison of Observed H with SEBS and MPDI-Integrated SEBS
3.2. Assesing the Performance of Daily ET Estimated by MPDI-Integrated SEBS Using HJ-1 Data
3.3. Spatial and Temporal Variability of Evapotranspiration at the Field Scale
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Katul, G.G.; Oren, R.; Manzoni, S.; Higgins, C.; Parlange, M.B. Evapotranspiration: A process driving mass transport and energy exchange in the soil-plant-atmosphere-climate system. Rev. Geophys. 2012, 50, RG3002. [Google Scholar] [CrossRef]
- Yang, Y.T. Evapotranspiration Over Heterogeneous Vegetated Surfaces; Springer Theses Recognizing Outstanding Ph.D. Research; Tsinghua University: Beijing, China, 2015. [Google Scholar]
- French, A.N.; Alferi, J.G.; Kustas, W.P.; Prueger, J.H.; Hipps, L.E.; Chávez, J.L.; Evett, S.R.; Howell, T.A.; Gowda, P.H.; Hunsaker, D.J.; et al. Estimation of surface energy fluxes using surface renewal and fluxes variance techniques over an advective irrigated agricultural site. Adv. Water Resour. 2012, 50, 91–105. [Google Scholar] [CrossRef]
- Bai, J.; Jia, L.; Liu, S.; Xu, Z.; Hu, G.; Zhu, M.; Song, L. Characterizing the footprint of eddy covariance system and large aperture scintillometer measurements to validate satellite-based surface fluxes. IEEE Geosci. Remote Sens. Lett. 2015, 12, 943–947. [Google Scholar] [CrossRef]
- Ershadi, A.; McCabe, M.F.; Evans, J.P.; Walker, J.P. Effects of spatial aggregation on the multi-scale estimation of evapotranspiration. Remote Sens. Environ. 2012, 131, 51–62. [Google Scholar] [CrossRef]
- Anderson, M.C.; Allen, R.G.; Morse, A.; Kustas, W. Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources. Remote Sens. Environ. 2012, 122, 50–65. [Google Scholar] [CrossRef]
- Glenn, E.P.; Nagler, P.L.; Huete, A.R. Vegetation index methods for estimating evapotranspiration by remote sensing. Surv. Geophys. 2010, 31, 531–555. [Google Scholar] [CrossRef]
- Nagler, P.L.; Morino, K.; Murray, R.S.; Osterberg, J.; Glenn, E.P. An empirical algorithm for estimating agricultural and riparian evapotranspiration using MODIS enhanced vegetation index and ground measurements of ET. I. Description of method. Remote Sens. 2009, 1273–1297. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A remote sensing surface energy balance algorithm for land (SEBAL)1. Formulation. J. Hydrol. 1998, 212–213, 198–212. [Google Scholar] [CrossRef]
- Su, Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci. 2002, 6, 85–99. [Google Scholar] [CrossRef]
- Allen, R.G.; Tasumi, M.; Trezza, R. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)-model. J. Irrig. Drain. Eng. 2007, 133, 380–394. [Google Scholar] [CrossRef]
- Kustas, W.P.; Norman, J.M. A two-source approach for estimating turbulent fluxes using multiple angle thermal infrared observations. Water Resour. Res. 1997, 33, 1495–1508. [Google Scholar] [CrossRef]
- Zhuang, Q.F.; Wu, B.F. Estimating evapotranspiration from an improved two-source energy balance model using ASTER satellite Imagery. Water 2015, 7, 6673–6688. [Google Scholar] [CrossRef]
- Sánchez, J.M.; Kustas, W.P.; Caselles, V.; Anderson, M.C. Modelling surface energy fluxes over maize using a two-source patch model and radiometric soil and canopy temperature observations. Remote Sens. Environ. 2008, 112, 1130–1143. [Google Scholar] [CrossRef]
- Leuning, R.; Zhang, Y.Q.; Rajaud, A.; Cleugh, H.; Tu, K. A simple surface conductance model to estimate regional evaporation using MODIS leaf area index and the Penman-Monteith equation. Water Resour. Res. 2008, 44, 652–655. [Google Scholar] [CrossRef]
- Yao, Y.J.; Liang, S.L.; Li, X.L.; Chen, J.Q.; Wang, K.C.; Jia, K. A satellite-based hybrid algorithm to determine the Priestley-Taylor parameter for global terrestrial latent heat flux estimation across multiple biomes. Remote Sens. Environ. 2015, 165, 216–233. [Google Scholar] [CrossRef]
- Jang, K.C.; Kang, S.K.; Kim, J.C.; Lee, C.B.; Kim, T.H.; Kim, J.; Hirata, R.; Saigus, N. Mapping evapotranspiration using MODIS and MM5 Four-Dimensional Data Assimilation. Remote Sens. Environ. 2010, 114, 657–673. [Google Scholar] [CrossRef]
- Huang, C.L.; Chen, W.J.; Li, Y.; Shen, H.F.; Li, X. Assimilating multi-source data into land surface model to simultaneously improve estimations of soil moisture, soil temperature, and surface turbulent fluxes in irrigated fields. Agric. Forest Meteorol. 2016, 230–231, 142–156. [Google Scholar] [CrossRef]
- Gowda, P.H.; Chavez, J.L.; Colaizzi, P.D.; Evett, S.R.; Howell, T.A.; Howell, T.A. ET mapping for agricultural water management: Present status and challenges. Irrig. Sci. 2008, 26, 223–237. [Google Scholar] [CrossRef]
- Li, Z.L.; Tang, R.L.; Wan, Z.M.; Bi, Y.; Zhou, C.; Tang, B.; Yan, G.; Zhang, X. A review of current methodologies for regional evapotranspiration estimation from remotely sensed data. Sensors 2009, 9, 3801–3853. [Google Scholar] [CrossRef] [PubMed]
- Scavone, G.; Sánchez, J.M.; Telesca, V.; Caselles, V.; Copertino, V.A.; Pastore, V.; Valor, E. Pixel-oriented land use classification in energy balance modelling. Hydrol. Process. 2014, 28, 25–36. [Google Scholar] [CrossRef]
- Sánchez, J.M.; Scavone, G.; Caselles, V.; Valor, E.; Copertino, V.A.; Telesca, V. Monitoring daily evapotranspiration at a regional scale from Landsat-TM and ETM+ data: Application to the Basilicata region. J. Hydrol. 2008, 351, 58–70. [Google Scholar] [CrossRef]
- Anderson, M.C.; Kustas, W.P.; Norman, J.M.; Hain, C.R.; Mecikalski, J.R.; Schultz, L.; Gonzalez-Dugo, M.P.; Cammalleri, C.; d’Urso, G.; Pimstein, A.; et al. Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery. Hydrol. Earth Syst. Sci. 2011, 15, 223–239. [Google Scholar] [CrossRef] [Green Version]
- Kwast, J.V.D.; Timmermans, W.; Gieske, A.; Su, Z.H.; Olioso, A.; Jia, L.; Elbers, J.; et al. Evaluation of the Surface Energy Balance System (SEBS) applied to ASTER imagery with flux-measurements at the SPARC 2004 site (Barrax, Spain). Hydrol. Earth Syst. Sci. Discuss. 2009, 6, 1165–1196. [Google Scholar] [CrossRef]
- Bai, L.L.; Cai, J.B.; Liu, Y.; Chen, H.; Zhang, B.Z.; Huang, L.X. Responses of field evapotranspiration to the changes of cropping pattern and groundwater depth in large irrigation district of Yellow River basin. Agric. Water Manag. 2017, 188, 1–11. [Google Scholar] [CrossRef]
- Elhag, M.; Psilovikos, A.; Manakos, I.; Perakis, K. Application of the SEBS water balance model in estimating daily evapotranspiration and evaporative fraction from remote sensing data over the Nile Delta. Water Resour. Manag. 2011, 25, 2731–2742. [Google Scholar] [CrossRef]
- Webster, E.; Ramp, D.; Kingsford, R.T. Incorporating an iterative energy restraint for the Surface Energy Balance System (SEBS). Remote Sens. Environ. 2017, 198, 267–285. [Google Scholar] [CrossRef]
- Tang, R.; Li, Z.L.; Jia, Y.; Li, C.; Sun, X.; Kustas, W.P.; Anderson, M.C. An intercomparison of three remote sensing-based energy balance models using large aperture scintillometer measurements over a wheat-corn production region. Remote Sens. Environ. 2011, 115, 3187–3202. [Google Scholar] [CrossRef]
- Ma, W.Q.; Ma, Y.M.; Ishikawa, H. Evaluation of the SEBS for upscaling the evapotranspiration based on in-situ observations over the Tibetan Plateau. Atmos. Res. 2014, 138, 91–97. [Google Scholar] [CrossRef]
- Lubczynski, M.W.; Maicek, W.; Gurwin, J. Integration of various data sources for transient groundwater modeling with spatio-temporally variable fluxes-Sardon study case, Spain. J. Hydrol. 2005, 306, 71–96. [Google Scholar] [CrossRef]
- Song, Y.; Wang, J.; Yang, K.; Ma, M.; Li, X.; Zhang, Z.; Wang, X. A revised surface resistance parameterisation for estimating latent heat flux from remotely sensed data. Int. J. Appl. Earth Obs. Geoinf. 2012, 17, 76–84. [Google Scholar] [CrossRef]
- Ma, Y.F.; Liu, S.M.; Zhang, F.; Zhou, J.; Jia, Z.Z.; Song, L.S. Estimations of regional surface energy fluxes over heterogeneous oasis-desert surfaces in the middle reaches of the Heihe River during HiWATER-MUSOEXE. IEEE Geosci. Remote Sens. Lett. 2015, 12, 671–675. [Google Scholar]
- Gokmen, M.; Vekerdy, Z.; Verhoef, A.; Verhoef, W.; Batelaan, O.; van der Tol, C. Integration of soil moisture in SEBS for improving evapotranspiration estimation under water stress conditions. Remote Sens. Environ. 2012, 121, 261–274. [Google Scholar] [CrossRef]
- Huang, C.L.; Gu, J.; Lu, L.; Li, X. Improving estimation of evapotranspiration under water-limited conditions based on SEBS and MODIS data in arid regions. Remote Sens. 2015, 7, 16795–16814. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, J.; Wang, H.J.; Li, D.Z.; Jin, R.; Zhou, Y.Z.; Zhou, Q.G. Integrating soil moisture retrieved from L-band microwave radiation into an energy balance model to improve evapotranspiration estimation on the irrigated oases of arid regions in northwest China. Agric. Forest Meteorol. 2015, 214–215, 306–318. [Google Scholar] [CrossRef]
- Semmens, K.A.; Anderson, M.C.; Kustas, W.P.; Gao, F.; Alfieri, J.G.; Mckee, L.; Pruegre, J.H.; Hain, C.R.; Cammalleri, C.; Yang, Y.; et al. Monitoring daily evapotranspiration over two California vineyards using Landsat 8 in a multi-sensor data fusion approach. Remote Sens. Environ. 2016, 185, 155–170. [Google Scholar] [CrossRef]
- Hu, C.; Tang, P. Automatic algorithm for relative radiometric normalization of data obtained from Landsat TM and HJ-1A/B charge-coupled device sensors. J. Appl. Remote Sens. 2012, 6, 063509. [Google Scholar]
- Ouyang, X.Y.; Jia, L.; Pan, Y.Q.; Hu, G.C. Retrieval of land surface temperature over the Heihe River Basin using HJ-1B thermal infrared data. Remote Sens. 2015, 7, 300–318. [Google Scholar] [CrossRef]
- Zhang, R.H.; Sun, R.; Du, J.P.; Zhang, T.L.; Tang, Y.; Xu, H.W.; Yang, S.T.; Jiang, W.G. Estimations of net primary productivity and evapotranspiration based on HJ-1A/B data in Jinggangshan City, China. J. Mt. Sci. 2013, 10, 777–789. [Google Scholar] [CrossRef]
- Li, Z.S.; Hu, G.C.; Lu, J.; Zhang, J.X.; Chen, Q.T.; Wang, K. Estimation of Growing Season Daily ET in the Middle Stream and Downstream Areas of the Heihe River Basin Using HJ-1 Data. IEEE Geosci. Remote Sens. Lett. 2015, 12, 948–952. [Google Scholar] [CrossRef]
- Zhou, S.; Sun, Y.; He, H.; Huang, H. Research for agricultural drought monitoring of Shandong province based on HJ-1 satellite data. In Proceedings of the SPIE-The International Society for Optical Engineering, Guilin, China, 23 November 2011. [Google Scholar]
- Tan, M.H.; Zheng, L.Q. Different Irrigation Water Requirements of Seed Corn and Field Corn in the Heihe River Basin. Water 2017, 9, 606. [Google Scholar] [CrossRef]
- Wu, X.J.; Zhou, J.; Wang, H.J.; Li, Y.; Zhong, B. Evaluation of irrigation water use efficiency using remote sensing in the middle reach of the Heihe river, in the semi-arid Northwestern China. Hydrol. Process. 2014. [Google Scholar] [CrossRef]
- Li, X.; Liu, S.M.; Xiao, Q.; Ma, M.G.; Jin, R.; Che, T.; Wang, W.Z.; Hu, X.L.; Xu, Z.W.; Wen, J.G.; et al. A multiscale dataset for understanding complex eco-hydrological processes in a heterogeneous oasis system. Sci. Data 2017, 4, 17008. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.W.; Ma, Y.F.; Liu, S.M.; Shi, W.J.; Wang, J.M. Assessment of the Energy balance closure under advective conditions and its impact using remote sensing data. J. Appl. Meteorol. Climatol. 2017, 56, 127–140. [Google Scholar] [CrossRef]
- Liu, S.M.; Xu, Z.W.; Wang, W.Z.; Jia, Z.Z.; Zhu, M.J.; Bai, J.W.; Wang, J.M. A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem. Hydrol. Earth Syst. Sci. 2011, 15, 1291–1306. [Google Scholar] [CrossRef]
- Zhong, B.; Yang, A.X.; Nie, A.H.; Yao, Y.J.; Zhang, H.; Wu, S.L.; Liu, Q.H. Finer Resolution Land-Cover Mapping Using Multiple Classifiers and Multisource Remotely Sensed Data in the Heihe River Basin. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 99, 1–20. [Google Scholar] [CrossRef]
- Hao, J.; Li, J.; Liu, Q.H.; Fan, W.J.; Zhong, B.F.; Wu, S.L.; Yang, L.; Zeng, Y.L.; Xu, B.D.; Yin, G.F. Leaf Area Index Retrieval Combining HJ1/CCD and Landsat8/OLI Data in the Heihe River Basin, China. Remote Sens. 2015, 7, 6862–6885. [Google Scholar]
- Su, Z.; Schmugge, T.; Kustas, W.P.; Massman, W.J. An evaluation of two models for estimation of the roughness height for heat transfer between the land surface and the atmosphere. J. Appl. Meteorol. 2001, 40, 1933–1951. [Google Scholar] [CrossRef]
- Monteith, J.L. Evaporation and environment. Symp. Soc. Exp. Biol. 1965, 19, 205–234. [Google Scholar] [PubMed]
- Thom, A.S. Momentum, mass and heat-exchange of vegetation. Q. J. Royal Meteorol. Soc. 1972, 98, 124–134. [Google Scholar] [CrossRef]
- Verhoef, A.; DeBruin, H.A.R.; Hurk, B.V.D. Some practical notes on the parameter kB−1 for sparse vegetation. J. Appl. Meteorol. 1997, 36, 560–572. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A. Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Ghulam, A.; Qin, Q.M.; Teyip, T.; Li, Z.L. Modified perpendicular drought index (MPDI): A real-time drought monitoring method. ISPRS J. Photogramm. Remote Sens. 2007, 62, 150–164. [Google Scholar] [CrossRef]
- Zhang, J.H.; Zhou, Z.M.; Yao, F.M.; Yang, L.M.; Hao, C. Validating the modified perpendicular drought index in the North China region using in situ soil moisture measurement. IEEE Geosci. Remote Sens. Lett. 2015, 12, 542–546. [Google Scholar] [CrossRef]
- Rungsipanich, A.; Chansury, W. Application of perpendicular drought index in the drought assessment in northeast region of Thailand using MODIS data. In Proceedings of the Asian Conference on Remote Sensing, Colombo, Sri Lanka, 10–14 November 2008; Available online: http://www.a-a-rs.org/acrs/proceeding/ACRS2008/Papers/TS%2030.2.pdf (accessed on 1 September 2008).
- Shahabfar, A.; Ghulam, A.; Eitzinger, J. Drought monitoring in Iran using the perpendicular drought indices. Int. J. Appl. Earth Obs. Geoinform. 2012, 18, 119–127. [Google Scholar] [CrossRef]
- Niinemets, U.; Sober, A.; Kull, O.; Hartung, W.; Tenhunen, J.D. Apparent controls on leaf conductance by soil water availability and via light-acclimation of foliage structural and physiological properties in a mixed deciduous, temperate forest. Int. J. Plant Sci. 1999, 160, 707–721. [Google Scholar] [CrossRef]
- Odhiambo, L.O.; Irmak, S. Evaluation of the impact of surface residue cover on single and dual crop coefficient for estimating soybean actual evapotranspiration. Agric. Water Manag. 2012, 104, 221–234. [Google Scholar] [CrossRef]
Land Use | Site | Location | Instrument |
---|---|---|---|
Maize | Daman | 100°22′20″ E, 38°51′20″ N | AWS, EC |
Steppe desert | Huazhaizi | 100°19′12″ E, 38°45′57″ N | AWS, EC |
Desert | Gebi | 100°19′12″ E, 38°45′57″ N | AWS |
Desert | Shenshawo | 100°19′12″ E, 38°45′57″ N | AWS |
Wetland | Zhangye | 100°19′12″ E, 38°45′57″ N | AWS |
Sensor | Band | Spectral Resolution (μm) | Spatial Resolution (m) | Sensor | Band | Spectral Resolution (μm) | Spatial Resolution (m) |
---|---|---|---|---|---|---|---|
HJ-1A/B CCD | 1 | 0.43–0.52 | 30 | HJ-1B IRS | 5 | 0.75–1.10 | 150 |
2 | 0.52–0.60 | 6 | 1.55–1.75 | ||||
3 | 0.63–0.69 | 7 | 3.5–3.9 | ||||
4 | 0.76–0.9 | 8 | 10.5–12.5 | 300 |
Satellite | Total Number | Day of Year (DOY) |
---|---|---|
HJ-1B CCD/IRS | 33 | 91, 95, 99, 103, 111, 119, 124, 129, 132, 136, 139, 143, 151, 158, 168, 176, 184,188, 192, 200, 208, 212, 216, 220, 225, 233, 237, 241, 249, 257, 263, 272, 274 |
HJ-1A CCD | 18 | 105, 117, 121, 134, 138, 149, 190, 202, 206, 211, 215, 223, 235, 255, 256, 260, 275, 276 |
H Estimation Under Different Soil Moisture (SM) Conditions | Sensible Heat Flux (H) | |||
---|---|---|---|---|
Root Mean Square Error (RMSE) (W/m2) | Mean Absolute Error (MAE) (W/m2) | |||
SM (m3/m3) | SM ≤ 0.30 | SM > 0.30 | SM ≤ 0.35 | SM > 0.30 |
SEBS | 59.78 | 35.94 | 58.17 | 26.01 |
MPDI-integrated SEBS | 15.28 | 26.53 | 7.06 | 19.73 |
ET Estimation Under Different Soil Moisture (SM) Conditions | Evapotranspiration (ET) | |||
---|---|---|---|---|
Root Mean Square Error (RMSE) (mm) | Mean Absolute Error (MAE) (mm) | |||
SM (m3/m3) | SM ≤ 0.30 | SM > 0.30 | SM ≤ 0.30 | SM > 0.30 |
SEBS | 1.25 | 0.66 | 1.05 | 0.98 |
MPDI-integrated SEBS | 0.32 | 0.57 | 0.35 | 0.64 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, Z.; Zhao, H.; Jiang, Y.; Yan, H.; Cao, Y.; Huang, Y.; Hao, Z. Daily Evapotranspiration Estimation at the Field Scale: Using the Modified SEBS Model and HJ-1 Data in a Desert-Oasis Area, Northwestern China. Water 2018, 10, 640. https://doi.org/10.3390/w10050640
Yi Z, Zhao H, Jiang Y, Yan H, Cao Y, Huang Y, Hao Z. Daily Evapotranspiration Estimation at the Field Scale: Using the Modified SEBS Model and HJ-1 Data in a Desert-Oasis Area, Northwestern China. Water. 2018; 10(5):640. https://doi.org/10.3390/w10050640
Chicago/Turabian StyleYi, Zhenyan, Hongli Zhao, Yunzhong Jiang, Haowen Yan, Yin Cao, Yanyan Huang, and Zhen Hao. 2018. "Daily Evapotranspiration Estimation at the Field Scale: Using the Modified SEBS Model and HJ-1 Data in a Desert-Oasis Area, Northwestern China" Water 10, no. 5: 640. https://doi.org/10.3390/w10050640
APA StyleYi, Z., Zhao, H., Jiang, Y., Yan, H., Cao, Y., Huang, Y., & Hao, Z. (2018). Daily Evapotranspiration Estimation at the Field Scale: Using the Modified SEBS Model and HJ-1 Data in a Desert-Oasis Area, Northwestern China. Water, 10(5), 640. https://doi.org/10.3390/w10050640