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Abstract: This paper proposes a randomized subspace learning based anomaly detector (RSLAD)
for hyperspectral imagery (HSI). Improved from robust principal component analysis, the RSLAD
assumes that the background matrix is low-rank, and the anomaly matrix is sparse with a small
portion of nonzero columns (i.e., column-wise). It also assumes the anomalies do not lie in the column
subspace of the background and aims to find a randomized subspace of the background to detect the
anomalies. First, random techniques including random sampling and random Hadamard projections
are implemented to construct a coarse randomized columns subspace of the background with reduced
computational cost. Second, anomaly columns are searched and removed from the coarse randomized
column subspace by solving a series of least squares problems, resulting in a purified randomized
column subspace. Third, the nonzero columns in the anomaly matrix are located by projecting all the
pixels on the orthogonal subspace of the purified subspace, and the anomalies are finally detected
based on the L2 norm of the columns in the anomaly matrix. The detection performance of RSLAD is
compared with four state-of-the-art methods, including global Reed-Xiaoli (GRX), local RX (LRX),
collaborative-representation based detector (CRD), and low-rank and sparse matrix decomposition
base anomaly detector (LRaSMD). Experimental results show good detection performance of RSLAD
with lower computational cost. Therefore, the proposed RSLAD offers an alternative option for
hyperspectral anomaly detection.
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1. Introduction

Hyperspectral imaging collects detailed spectral information of ground objects on the earth surface
using hundreds of narrow and continuous bands [1,2]. It has distinctive advantages in detecting small
and low-probability ground objects using the techniques of target detection [3–6]. In particular,
with the forthcoming generation of hyperspectral sensors (e.g., EnMAP, HISUI, and Hispery), there is
a tremendous need to develop intelligent methods and protocols for target detection to fully benefit
from a wider range of spectral bands. Hyperspectral target detection can be applied in many
realistic applications, including biophysical parameter retrieval [7], classification of complicated
environments [8] and military target detection [9]. Compared with supervised target detection,
unsupervised target detection, i.e., anomaly detection, does not require any prior knowledge of target
spectral characteristic [10–12]. Anomaly detection methods have witnessed increasing interest due to
their interesting applications [13–16]. In anomaly detection, common ground objects that dominate the
image scene are defined as the background, whereas small and low-probability ground objects that
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spectrally differ from the background are considered as anomalies [3–6]. We limit our discussion on
anomaly detection in this paper.

The classical statistical method of anomaly detection is the Reed-Xiaoli (RX) detector [15,16].
It assumes that the background follows a multivariate normal distribution and uses the probability
density of a multivariate normal distribution to estimate the chance of a pixel under test to be
part of the background. The RX has two versions: global RX (GRX) and local RX (LRX). In the
GRX mode, the background is estimated from the full image scene, whereas the background in the
LRX model is estimated from the local neighborhood around the testing pixel [12]. The Gaussian
distribution assumption in the RX may contradict the reality of the HSI data and fails to capture the
complexity of the background [14,17]. Other advanced RX based methods were then proposed to
model the nonstationarity of the background clutter, e.g., using a mixture of multivariate Gaussian
distributions in global Gaussian mixture model methods (GGMM) [18], using the clustering techniques
in the cluster-based detector (CBD) [19] and using the nonlinear kernel schemes in the kernel RX
(KRX) [20]. On the other hand, since the RX may include anomalous pixels when estimating
background statistics, more robust background estimation approaches were proposed for more accurate
background modeling. Typical examples are the subspace-based approaches [21,22], the multivariate
outlier detection methods [23,24] and the random selection based method [25]. The subspace-based
anomaly detectors model the background as a subspace and find the anomalies using the projection
separation statistics [3,21,22]. The projection basis of the subspace is usually generated by eigenvalue
decomposition of the background covariance matrix or by background endmember extraction
using spectral unmixing [3]. The multivariate outlier detection methods consider the anomaly
detection problem as outlier detection in a projected subspace of hyperspectral data and suppress
anomalous signatures during background modeling. Representative detectors are blocked adaptive
computationally efficient outlier nominator detector (BACON) [23] and the minimum covariance
determinant detector [24]. The random selection based anomaly detector (RSAD) selects adequate and
representative background pixels to compute a robust background statistic [25].

The aforementioned statistical methods belong to parametric anomaly detectors and require
the selection, validation and estimation of probability density function of background pixels [26].
An inadequate estimation of the underlying distribution leads to poor detection performance [3,6].
Therefore, nonparametric anomaly detectors may be preferred to avoid prior assumptions
about background distribution, e.g., support vector approaches [26,27] and manifold learning
approaches [28,29]. Support vector approaches are based on one-class classifier and model the
background by a minimum enclosing hypersphere to identify anomalies lying outside of the
background support regression. Typical detectors include local support vector data description
(LSVDD) detector [26] and sparse kernel-based anomaly detector [27]. A common issue of support
vector approaches is how to select a proper kernel function. Manifold learning approaches assume
the nearest neighbor structures of all pixels as the local manifolds. The anomalies are selected from
points that lie far away from main manifolds in the embeddings, using the detectors of robust locally
linear embedding [28] or the local tangent space alignment [29]. However, the performance of these
algorithms highly depends on the neighborhood size and the embedding dimensions. More recent
nonparametric anomaly detectors include discriminative metric learning based anomaly detector [14],
transferred deep convolutional neural network based anomaly detector [30], and tensor composition
based anomaly detector [31].

Recently, with the popularity of sparsity theory in matrix factorization, the sparse anomaly
detectors attract more attentions in hyperspectral field. Current sparsity based anomaly detectors
can be roughly categorized into two main aspects, i.e., sparse representation (SR) based and robust
principal component analysis (RPCA) based. The SR based anomaly detectors assume the background
pixel can be sparsely represented by a defined dictionary and use sparse representation to separate an
anomaly from the background [17]. The RPCA based anomaly detectors assume that the background
is low-rank and the anomalies are sparse in the image scene. The collaborative-representation based
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detector (CRD) assumes that each background pixel can be approximately represented by its spatial
neighborhoods. The anomalies are estimated by subtracting the predicted background from the
original HSI data [32]. The low-rank and sparse representation (LRASR) based detector regards that
a background pixel can be approximately represented by a background dictionary and the anomalies
are estimated from the residual sparse image [33]. The low-rank representation and learned dictionary
(LRRaLD) improves decomposition process of the regular low-rank representation model using the
random selected dictionary and could obtain more robust detection results within less computation
time [34]. The sparsity score estimation framework (SSEF) detector counts the frequency of each
dictionary atom for hyperspectral data construction in sparse representation, and it estimates the
anomalies using the sparsity score matrix of all pixels [35]. The low-rank and sparse decomposition
(LSD) formulates the detection of anomalies as a RPCA problem in the local image region and finds
the anomalies by soring each pixel by the norm of its corresponding sparse coefficient vector [36].
The low-rank and sparse matrix decomposition based anomaly detection (LRaSMD) [12] improved
the RPCA model by separating the noise term from the anomaly term in the sparse noise matrix. The
pixels that have small L2 norm values of the sparse coefficient vectors are selected as the anomalies.
Later, the LRaSMD is further improved by replacing the L2 norm with the Mahalanobis distance [37].

In this paper, inspired by RPCA [38–40], we propose a randomized subspace learning based
anomaly detector (RSLAD) for hyperspectral anomaly detection. The RSLAD assumes that the
background is low-rank, and the anomaly matrix is sparse and has a small portion of nonzero columns
(i.e., column-wise). Meanwhile, the RSLAD assumes that the background pixels lie in the column
subspace of the background whereas the anomalies do not. It aims to find a randomized subspace of
the background where anomalies are more likely to be excluded. Random techniques are utilized to
find a coarse randomized subspace of the background. Random sampling and the random Hadamard
projections could separately sketch the original data from columns and rows and greatly reduce the
computational requirements of subspace learning. The anomaly columns are excluded from the coarse
randomized subspace by solving a series of least squares problems, resulting in purified randomized
subspace of the background. The anomalies are then located by projecting the data onto the orthogonal
subspace projection of the purified column subspace.

Compared with current sparsity based anomaly detectors, our method favors three
main contributions:

(1) The RSLAD has more advanced assumptions than RPCA. The RSLAD assumes that the
anomaly matrix has a small portion of nonzero columns and these nonzero columns do not lie in
the column subspace of the background. This assumption reduces the impact from anomalies when
constructing the column subspace of the background. In contrast, the RPCA based anomaly detectors
assume that nonzero elements in the sparse anomaly matrix are uniformly scattered without any
specific structure. Accordingly, nonzero entries in the anomaly matrix would negatively affect all the
columns of the background when optimizing the convex programs.

(2) The idea behind RSLAD is more advanced than current sparsity based anomaly detectors.
It is to find a randomized subspace of the background and investigates the low-dimensionality of the
background column subspace and the independence between anomalies. It estimates the randomized
column subspace of the background and alleviates the effects from anomalies in estimating the
low-rank background.

(3) The RSLAD does not actually solve a complicated convex optimization problem, and it offers
good performance with a low computational cost due to the use of random selection and projection.
The low computational complexity makes it more appealing in practical applications.

The forthcoming sections of our paper are arranged as follows. Section 2 describes the modeling
of background and anomalies in RSLAD. Section 3 presents the methodology of RSLAD. Section 4
compares with state-of-the-art methods and analyzes the detection performance of RSLAD using four
real hyperspectral images. Section 5 discusses the experimental results. Section 6 draws conclusions of
our paper.
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2. Modeling of Background and Anomalies in RSLAD

Consider a hyperspectral data as a collection of band vectors Y = {yi}N
i=1 ∈ RM×N , where M is

the number of bands and N is the number of pixels. Let the background matrix and the anomaly
matrix be denoted as B ∈ RM×N and S ∈ RM×N respectively. The anomaly detection is to separate the
anomalies from the background, and accordingly, the HSI matrix Y can be expressed as the sum of
background matrix B and anomaly matrix S.

The background matrix B consists of spectral vectors of main ground objects in the image scene
and is assumed to lie on a low-dimensional subspace with low-rank properties. The anomaly matrix
S collects spectral vectors of small and low-probability ground objects (i.e., anomalies), and hence
it is column-wise sparse with a small portion of nonzero columns C. Obviously, the corresponding
columns C in B is zero [38,41]. The matrices Y, B, and S are related as

Y = B + S, s.t.,

{
Rank(B) = r, bi = 0, ∀i ∈ C(

I−U
(
UTU

)−1UT
)

si 6= 0,∀i ∈ C (1)

where bi and si are the i-th column of B and S, respectively, r is the dimensonality of subspace of B,
and U is the basis of column subspace of B. The constraint Rank(B) = r is to guarantee the low-rank
property of B. The constraint (I−U

(
UTU

)−1UT)si 6= 0,∀i ∈ C is to restrict that the anomalies do
not lie in the column subspace of B.

Figure 1 illustrates the difference between the model in Equation (1) and the original RPCA [38].
The RPCA assumes that the matrix S is sparse with nonzero entries being scattered uniformly at
random. The nonzero entries can have arbitrarily large magnitude. Consequently, all the columns of
B can be affected by the nonzero elements of S [41,42]. On the contrary, Equation (1) assumes that the
anomaly matrix S is column-wise sparse, where only a portion of its columns are nonzero. A small
portion of the columns of the anomaly matrix S are nonzero, and these nonzero columns do not lie in
the column space of B. Therefore, a portion of the columns that formulate the space of B are unaffected
by the nonzero columns of S [42,43].
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Figure 1. The modeling of background and anomalies. The red columns are spectral vectors of
anomalies, where each red square denotes the spectral reflectance or digital number of an anomalous
pixel in a band; the blues are spectral vectors of background pixels; and the whites denote zero columns
in the matrix.

3. The Proposed RSLAD for HSI Anomaly Detection

The background matrix B and the anomaly matrix S are unknown, and it is difficult to find a closed
form solution of Equation (1). It is often transformed into a convex optimization problem [41] with
an objection function combining the nuclear norm minimization of B and the L1,2 norm minimization
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of S. The nuclear norm and L1,2 norm could ensure the low-rank of B and the column space of S,
respectively. However, the approach could yield a robust estimate of B only when the fractions of
anomalies in the image scene are less than a constant threshold [43].

In Equation (1), once the column subspace U of the background is found, the anomalies can be
also correctly located with the orthogonal subspace projection constraint (I−U

(
UTU

)−1UT)yi 6= 0,
where yi is a column (corresponds to one pixel) of the data matrix Y. The explanation is that the
background pixels lie in the column subspace of B, whereas the anomaly pixels lie out of the column
subspace of B. Accordingly, the idea of our RSLAD is to find a column subspace of the background
where anomalies being excluded.

3.1. Constructing Coarse Randomized Subspace by Data Sketching

In Equation (1), the column subspace of the background matrix B is a low-dimensional subspace,
and it can be spanned by a small subset of its columns. Assuming YΨ is the matrix of p randomly
sampled columns of the background matrix B, and VΨ is an orthonormal basis for the row space of B,
random sampling states that, if the sampled number satisfies p ≥ 10µn log 2n

δ , then YΨ and Y have the
same column subspace with probability at least (1− δ), and the YΨ is incoherent with the basis of row
subspace VΨ by satisfying max

i
||eT

i VΨ ||22 ≤
6µn

p with probability at least (1− δ) [43]. n is the rank of

background B, ei is an identity vector with all entries equal to 1, and µ is the incoherence parameter of
row subspace of B. Therefore, the column subspace YΨ of the background matrix B can be learned
from a random subset of its columns when its row space is incoherent with the orthonormal basis.

Random sampling can be used to extract the low-dimensional subspace structure of the
background. It also sketches the data matrix Y from columns and reduce its computational
requirements. Suppose the p pixels (i.e., columns) are randomly sampled, the random sampling
can be defined as

YΨ = YΨ (2)

where YΨ ∈ RM×p is the sub-matrix of Y with p selected columns, and Ψ is the random sampling
matrix whose columns are randomly selected with replacement from the N× N identity matrix IN .

On the other hand, numerous bands in Y bring high computational complexity and memory.
Random projections originate from the famous Johnson-Lindenstrauss lemma and have been proven to
be a computationally efficient and sufficiently accurate method for reducing the dimensionality of the
HSI data. Compared with the regular Gaussian random projections, the random Hadamard projections
have lower computational costs and better performance [44,45]. Therefore, we adopt the random
Hadamard projections to sketch the matrix YΨ from rows and reduce the spectral dimensionality of
YΨ. The random Hadamard matrix based dimensionality reduction is defined as

YΦ = ΦTYΨ =

(√
K
M

DHNP

)T

YΨ (3)

where YΦ ∈ RK×p is the projected matrix and Φ =
√

K
M DHMP ∈ RM×K is the random Hadamard

projection matrix. D ∈ RM×M is a diagonal matrix with diagonal entries sampled uniformly from
{−1, 1}. HN ∈ RM×M is the Hadamard matrix defined recursively for any M that is an integer power

of 2 as HN =

[
H2/M H2/M
H2/M −H2/M

]
, where H1 = 1. P ∈ RM×K is a uniform sampling matrix that

randomly samples K columns of DHN , where each column of P is randomly selected with replacement
from the M×M identity matrix IM .

3.2. Purifying Randomized Column Subspace of Background

Due to the presence of anomalous pixels, YΦ may include both background and anomalous
columns. However, the number of background columns are much larger than that of anomaly columns
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with higher probability. Therefore, the anomaly columns should be removed from YΦ to purify the
column subspace of background.

The columns of YΦ from random sampling and random projections can span the columns of
background with high probability. Accordingly, any background column of YΦ lies in the span of
other background columns of YΦ with high probability. That is, for each background column yi

Φ,
let the matrix YΦ(−i) be YΦ but with the i-th column being removed, it can be expressed as a linear
combination of columns of YΦ(−i). In contrast, the anomaly column does not lie in the span of
background columns. Since real hyperspectral data are always contaminated by noises, the anomaly
columns from YΦ can be located by solving the following least squares problem:

RSEi = argmin
zi

||yi
Φ− YΦ(−i)zi ||2, s.t.,

{
RSEi > ε, i belong to anomaly columns

RSEi ≤ ε, i belong to background columns
(4)

where ε > 0 is the defined residual threshold because of noise. After locating the anomaly columns in
YΦ, the purified matrix U can be obtained.

3.3. Detecting Anomalies Using Orthogonal Subspace Projection

The purified matrix U of YΨ contains linearly independent background columns and can be
considered as a basis of the background matrix B. Since the anomalies do not lie in the column
subspace of the background B, the projection of the HSI pixels on the orthogonal subspace of U can be
used to locate nonzero columns of S [43]. The anomaly matrix S is estimated from Equation (5)

S = (I−U
(

UTU
)−1

UT)Y (5)

Due to the impact of noise, the anomaly matrix S does not necessarily have a small portion of
nonzero columns. Therefore, the L2 norm is adopted to calculate the anomalous value for each pixel,
and the pixels with the anomalous value above a manually selected threshold are determined to
be anomalies.

3.4. The Summary of RSLAD for HSI Anomaly Detection

The RSLAD assumes that the background is low-rank, the anomaly matrix is sparse and
column-wise, and the anomalies do not lie in the column subspace of the background B. It seeks
the randomized subspace of the background B and detects the anomalies by projecting the HSI
dataset Y on the complement subspace of the randomized subspace. Algorithm 1 lists the detailed
procedure of RSLAD for anomaly detection. The RSLAD uses random sampling and the random
Hadamard projections to sketch the HSI data from columns and rows, respectively. That greatly
reduces the computational complexity and memory requirements of the HSI data in subspace learning.
More importantly, random sampling constructs a coarse low-dimensional randomized subspace
YΦ of the background. After that, the RSLAD removes the anomalies from the coarse randomized
subspace YΦ by solving a series of least square problems, and the purified randomized subspace is
obtained. The least square problem investigates the linear dependence of background pixels and
the linear independence between the column subspace of background pixels and anomaly pixels.
Finally, the RSLAD detects the anomalies in the HSI data Y by projecting it on the complement
subspace of U. The sketch map of anomaly detection using RSLAD is illustrated in Figure 2.
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Algorithm 1. The Procedure of RSLAD Method.

Input: the HSI band matrix Y = {yi}N
i=1 ∈ RM×N , the number of sampled pixels p, the projected dimension

K, and the residual threshold ε.
(1) Construct a coarse randomized column subspace

(a) Obtain the reduced matrix YΨ by random sampling in (2);
(b) Obtain the projected matrix YΦ by random Hadamard projections in (3);

(2) Purify the coarse column subspace YΦ of the background
For all pixels do

(a) Define the matrix YΦ(−i) to be YΦ but with the i-th column removed;
(b) Compute the residual error RSEi by using the linear combination of YΦ(−i);
(c) Locate the anomaly columns in YΦ using the residual threshold in (4);

End for
(a) Obtain the purified matrix U from YΨ and set it as the basis of the background B

(3) Detecting the anomalies using orthogonal subspace projection
(a) Compute the anomaly matrix S using complement subspace projection of U in (5);
(b) Compute anomalous values of all pixels via the L2 norm of columns in the anomaly matrix S

Output: Anomaly detection map

4. Experimental Results

4.1. The HSI Dataset Descriptions

The first dataset is the Pavia Center (PaviaC) dataset acquired by the reflective optics system
imaging spectrometer (ROSIS) sensor [12,37]. It covers the Pavia Center in northern Italy and has
accurate ground truth information. The number of bands in the initial dataset is 115 with 1.3 m
spatial resolutions covering the spectrum range from 430 to 860 nm. In the experiment, the digital
numbers of a smaller image were used as the input data, containing 108× 120 pixels and 102 bands
after removing low signal-to-noise ratio (SNR) bands. As shown in Figure 3a, three ground objects
constitute the background: bridge, water, and shadow. A total of 47 pixels representing vehicles on the
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bridge and the bare soil near the bridge were commonly selected as anomalies. The reason is that they
cover a very small number of pixels and are spectrally different from main ground objects. Figure 3b
shows the ground objects of the anomalies and Figure 3c plots spectral curves of anomalies and main
ground objects.
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The second dataset includes the San Diego data collected by the Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) over San Diego, CA, USA [46,47]. The initial images have 3.5 m spatial
resolution and 224 spectral channels ranging the spectrum from 370 nm to 2510 nm. In the experiment,
a subset image with the image size of 100× 85 pixels was selected, and the digital numbers were used
as the input data. After removing the bad bands [1–6, 33–35, 97, 107–113, 153–166, 221–224] due to
water absorption and low signal-to-noise ratio, the 189 bands were used in the experiment. In the
image scene shown in Figure 4a, main ground objects of the background are roof, road, shadow and
grass. Three planes occupying 58 pixels were commonly regarded as anomalies because they cover
a very small number of pixels and are spectrally different from main ground objects. Figure 4b
shows the ground objects of the anomalies and Figure 4c plots spectral curves of anomalies and main
ground objects.
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The third dataset includes the Botswana data acquired from Remote Sensing Group of the
University of Texas at Austin (www.csr.utexas.edu/hyperspectral/index.html) [12,48]. The dataset
was collected by the EO-1 Hyperion sensor. The dataset covers the area of Okavango Delta, Botswana.
It was acquired on 31 May 2001 with 30 m spatial resolution and 10 nm spectral resolution, ranging
the spectrum between 400 and 2500 nm. In total, 145 bands were used in the experiment: 10–55, 82–97,
102–119, 134–164, and 187–220. A smaller subset of size 235× 255 pixels was cropped, containing five

www.csr.utexas.edu/hyperspectral/index.html
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classes, namely, woodlands, exposed soil, savanna, floodplain and mopane [44], and the digital
numbers were implemented as the input data. These classes reflect the impact of flooding on vegetation
in the study area. In the image scene of Figure 5a, 35 pixels were selected as anomalies since these
minority pixels are spectrally different from main ground objects. Figure 5b shows the ground objects
of the anomalies and Figure 5c plots spectral curves of anomalies and main ground objects.Remote Sens. 2018, 10, x FOR PEER REVIEW  9 of 20 
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Figure 5. (a) The image scene of Botswana dataset by the EO-1 Hyperion sensor; (b) ground truth map of
35 pixels representing anomalies; and (c) spectral curves of background and average anomalous signature.

The fourth dataset includes the HyMap data downloaded from the Digital Imaging and Remote
Sensing (DIRS) Laboratory of the Rochester Institute of Technique (RIT) (http://dirsapps.cis.rit.edu/
blindtest/information/) [49,50]. The dataset was collected around the small town of Cooke City,
Montana, USA using the HyMap sensor on 4 July 2006. It has approximately 3 m spatial resolution
and 126 spectral bands, ranging the spectrum from 450 to 2500 nm. After removing the bad bands
[63–66, 94–95], 120 bands were left, and the digital numbers were used in our experiment. Figure 6a
shows the image scene of size 200× 800 pixels, and its main background types include houses, roads,
and trees. Two small fabric targets F1 and F2 occupying 32 pixels were selected as anomalies, since these
minority pixels are spectrally different from main ground objects. Figure 6b shows the ground objects
of the anomalies, and Figure 6c plots spectral curves of anomalies and main ground objects.
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4.2. Experimental Results

In this section, we conduct four groups of experiments on the above hyperspectral datasets to
testify the performance of RSLAD in anomaly detection. First, we make comparison between RSLAD
and other four state-of-the-art detectors, including GRX [15], LRX [15], CRD [32] and LRaSMD [12].
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Second, we investigate the performance sensitivity of RSLAD to the number of randomly sampled
columns (i.e., pixels) p. Third, we explore the performance sensitivity of RSLAD to the randomly
projected dimension K. Finally, we analyze the performance sensitivity of RSLAD to the residual
threshold ε. The receiver operating characteristic (ROC) curve and area under curve (AUC) are utilized
to evaluate the detection performance. The ROC depicts both the probability of detection and the
probability of false alarm rate. In this paper, we utilize the logarithmic curve to better illustrate the
details with a base 10 logarithmic scale for the false alarm rate and a liner scale for the probability of
detection. The AUC quantifies the area under the ROC curve and shows how far the ROC curve from
the base line (i.e., AUC = 1).

4.2.1. Detection Performance the RSLAD Method

This experiment compares the detection performance of RSLAD with four state-of-the-art methods:
two classical detectors GRX and LRX, a representation based detector CRD [32] and a RPCA based
detector LRaSMD [12]. Table 1 lists the parameters of all the five detectors on the four datasets. For the
LRX and CRD methods, the outer window (OW) and inner window (IW) of PaviaC dataset are set to be
19× 19 and 7× 7, respectively; those of San Diego dataset are set to be 21× 21 and 5× 5, respectively;
those of Botswana dataset are set to be 17× 17 and 9× 9, respectively; and those of HyMap dataset
are set to be 15× 15 and 7× 7, respectively. For the LRaSMD method, the rank of background r and
the sparsity level k of anomaly matrix on Pavia dataset are set to be 2 and 0.45, respectively; the r and
k on San Diego dataset are set to be 2 and 0.4, respectively; the r and k on Botswana dataset are set to be
4 and 0.5, respectively; and the r and k on the on HyMap dataset are set to be 10 and 0.75, respectively.
For the RSLAD method, the number of sampled pixels p, the projected dimension K and the residual
threshold ε on the PaviaC dataset are manually set to be 150, 50 and 10−9, respectively; the p, K and
ε on the San Diego dataset are manually set to be 120, 50 and 1.7× 10−10, respectively; the p, K and
ε on the Botswana dataset are manually set to be 100, 50 and 4× 10−10, respectively; and the p, K and
ε on the HyMap dataset are manually set to be 200, 60 and 1.7× 10−10, respectively.

Table 1. The lists of parameters of all detectors on the four datasets.

Datasets
Configuration Parameters

GRX LRX CRD LRaSMD RSLAD

PaviaC - OW = 19× 19;
IW = 7× 7

OW = 19× 19;
IW = 7× 7 r = 2; k = 0.45 p = 150; K = 50;

ε =1.0× 10−9

San Diego - OW = 21× 21;
IW = 5× 5

OW = 21× 21;
IW = 5× 5 r = 2; k = 0.4 p = 120; K = 50;

ε = 1.7× 10−10

Botswana - OW = 17× 17;
IW = 9× 9

OW = 17× 17;
IW = 9× 9 r = 4; k = 0.5 p = 100; K = 50;

ε = 4× 10−10

HyMap - OW = 15× 15;
IW = 7× 7

OW = 15× 15;
IW = 7× 7 r = 10; k = 0.75 p = 200; K = 60;

ε = 1.7× 10−10

Figure 7 illustrates the ROC curves and confidence intervals and regions [51] of RSLAD and other
four methods on the four datasets. For the PaviaC dataset of Figure 7a, RSLAD has the lowest false
alarm rate at 100% probability of detection. The false alarm rate of RSLAD is smaller than those of
GRX, LRX and CRD in the ROC curve. The CRD curve behaves better in the false alarm rate than that
of LRX but it is inferior to that of GRX. The LRX is the worst among all five detectors. The explanation
for the worse performance of LRX than GRX is as follows. The LRX assumes homogenous background
within the spatial window. However, for Pavia Center, the anomalies lie close to the edge of the
bridge, and the selected window with the anomalies can be composed of different materials including
water, bridge, and shadow, which may be falsely detected as the anomaly targets. For the San
Diego dataset in Figure 7b, the RSLAD has higher probability of detection than GRX, LRX and CRD.
Moreover, the RSLAD performs slightly better than LRaSMD, having a slightly smaller false alarm
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rate at 100% probability of detection. The CRD behaves worse than LRaSMD and RSLAD in the
false alarm rate but it outperforms the two RX detectors, especially LRX. The LRX has the worst
performance of all the five methods. The reason for that is similar to that of PaviaC dataset in Figure 7a,
i.e., the background within spatial neighborhood does not satisfy the homogeneous assumption. For
the Botswana dataset of Figure 7c, the RSLAD curve is superior to those of GRX, LRX, CRD and
LRaSMD, having the smallest false alarm rate at 100% probability of detection. The probability of
detection in LRaSMD is higher than those of GRX, LRX and CRD. The CRD outperforms GRX and RX
in the false alarm rate at 100% probability of detection, and the GRX is the worst of all the methods.
For the HyMap dataset of Figure 7d, the LRX curve has the largest probability of detection with a small
false alarm rate less than 0.01, but it could not fully detect all the anomalies in the HyMap imagery.
The RSLAD curve has the smallest false alarm rate when obtaining 100% probability of detection.
Furthermore, Figure 7 shows the 95% confidence regions drawn around each estimated ROC curves
from all the five detectors. The superiority of RSLAD to GRX is statistically significant in all the four
datasets, and the ROC curves of RSLAD and LRaSMD show less statistical difference from each other.
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Figure 8 lists the AUC results of RSLAD and other four methods on the four datasets.
The observations of AUC coincide with those of Figure 7. The RSLAD has the highest AUCs on
four HSI datasets among all the five methods, and the second highest is LRaSMD. The CRD performs
better than LRX in the AUCs. Figures 9–11 show the detection maps of all five methods on the PaviaC,
San Diego and Botswana datasets with normalized anomaly values between 0 and 1. We did not show
the HyMap detection maps because of too small and even invisible anomalies with respect to the
overlarge image size.
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Table 2 compares the computational time of all five methods on the four datasets. All the methods
are implemented in Matlab 2016a and their codes are run on a WIN10 computer with Intel Core (TM)
i7-6700 CPU 3.40 GHz and 32 GB of RAM. The LRX and CRD cost longer computational times than the
other three methods GRX, LRaSMD and RSLAD, and the CRD takes the longest computational times
of all. The LRaSMD takes shorter computational times than LRX and CRD but its computational speed
is much slower than GRX and RSLAD. The RSLAD takes slightly longer time than GRX on the PaviaC
dataset, but it clearly surpasses the GRX in computational speed on the San Diego, Botswana and
HyMap datasets.

Table 2. The Computations Times of RSLAD and Other Four Methods on the Four Datasets.

Sensors Datasets
Computational Time of Anomaly Detection Methods (s)

GRX LRX CRD LRaSMD RSLAD

ROSIS PaviaC 0.144 34.2641 49.582 14.116 0.156
AVIRIS San Diego 0.304 88.713 107.477 19.423 0.252

EO-1 Hyperion Botswana 0.925 397.485 514.025 101.915 0.487
HyMap HyMap 1.373 392.587 1223.322 151.824 0.560

4.2.2. Performance Sensitivity to the Number of Sampled Pixels p

In the experiment, the ranges of sampled pixel numbers p on the PaviaC, San Diego and Botswana
datasets are manually set as [60, 120, 300, 600, 1200, 3000, 6000]. Figure 12 illustrates the ROC curves
from the RSLAD on the three HSI datasets by changing number of sampled pixels p. For the PaviaC
data of Figure 12a, the detection performance increases with the rising p from 60 to 6000, and the
RSLAD performs the best when the sampled pixel number p equals 300. After that, the detection
performance of RSLAD begins to decrease. The ROC curve with p equal to 6000 performs the worst
of all, having the highest false alarm rate at 100% probability of detection. The ROC curves of San
Diego data in Figure 12b have similar observations. The performance is the best when the p equals 120.
For the Botswana dataset in Figure 12c, the ROC curve of p at 60 performs the best of all, having the
lowest false alarm rate at 100% probability of detection.

Moreover, Figure 13a shows the result of AUC curves with the changing number of sampled pixels
p on the three datasets. In the figure, the AUCs of RSLAD on three HSI datasets gradually decrease
with the increasing p from 60 to 6000. Particularly, the AUC curves have the greatest fall on the San
Diego dataset, decreasing from 0.9965 to 0.2157 as the p increases from 60 to 6000. The observations
of AUC curves coincide with those of ROC curves in Figure 12. Moreover, Figure 13b plots the
curves of computational times with respect to the increasing sampled pixel number p. The results
show that computational time of RSLAD increases with the rising p. Especially, the computational
times drastically increase when having a larger pixel number p over 1200. Since a large value of
p degrades the detection performance and significantly increase computing time, a smaller value of p,
e.g., 120, is preferred.
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4.2.3. Performance Sensitivity to the Projected Dimension K

The projected dimension K correlates with the number of random Hadamard projections in the
RSLAD. In the experiment, the projected dimensions K on the PaviaC, San Diego and Botswana
datasets are manually set between 10 and 100 with a step interval of 10. Figure 14 shows the ROC
curves of RSLAD on the three datasets with the changing projected dimensions K from 10 to 100.
For the PaviaC dataset of Figure 14a, when the K increases from 10 to 100, the ROC curves of RSLAD
have similar trend with small fluctuations. Particularly, the false alarm rates of most ROC curves are
concentrated between 0.001 and 0.003 when achieving 100% probability of detection. The ROC curves
of San Diego dataset in Figure 14b and Botswana dataset in Figure 14c have similar observations with
that of Figure 14a. In Figure 14b,c, the ROC curves of RSLAD are overlaid with each other, despite of
the changing projected dimensions K.
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Figure 15a illustrates the AUC curves of RSLAD on the three datasets when the projected
dimensions K change from 10 to 100. The results show that the AUC curves of RSLAD are not much
affected by the changing projected dimension K. Among them, the AUC curves on San Diego has largest
fluctuations ranging from 0.9966 to 0.9977. That further supports the above observations of ROC curves
in Figure 14. Moreover, Figure 15b shows the computational times of RSLAD on the three datasets
when K from 10 to 100, where the computational times linearly increases with the K. The detection
performance of RSLAD is less insensitive to the projected dimension K. The computational times of
RSLAD linearly increases with the projected dimension K. Therefore, we will recommend to adopt a
small projected dimension K, say, K = 50.
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4.2.4. Performance Sensitivity to the Residual Threshold

This experiment investigates the impacts from the residual threshold ε in the detection
performance of RSLAD on the PaviaC, San Diego and Botswana HSI datasets. With prior knowledge
about the range of residual errors for all the pixels, we manually set the range of residual thresholds
ε on the three datasets as [10−12, 10−11, 10−10, 10−9, 10−8]. According to previous investigation,
the sampled pixel numbers p is set to be 120, and the projected dimensions K is 50.

Figure 16a–c shows the ROC curves of RSLAD on the three datasets with different residual
threshold. For the PaviaC dataset of Figure 16a, with the increase in ε from 10−12 to 10−8, the detection
performance of RSLAD first increases and then drastically decreases. The ROC curve performs best
when the ε equal to 10−9. The ROC curve at ε equal to 10−8 is worst of all, having the largest false
alarm rate when achieving 100% probability of detection. The similar observations exist in ROC curves
of the San Diego dataset in Figure 16b. The detection performance of RSLAD first increases and
then achieves the best performance when the ε is equal to 10−10. After that, further increasing the
ε will lower the detection performance of RSLAD. The ROC curves of Botswana dataset in Figure 16c
coincides with the observations in Figure 16b. The ROC curve at ε equal to 10−10 performs best,
and the ROC curve at ε equal to 10−12 is the worst. Moreover, the AUC curves of RSLAD on three
datasets in Figure 16d further support the above observations of ROC curves. With the increase in
ε from 10−12 to 10−8, the AUC first increases, achieves a maximum and then gradually decreases until
the end of the range.Remote Sens. 2018, 10, x FOR PEER REVIEW  16 of 20 
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5. Discussion

In Section 4.2, four groups of experiments are designed to analyze the performance of RSLAD.
The first experiment compares the detection results of RSLAD with those of four state-of-the-art
methods, i.e., GRX, LRX, CRD and LRaSMD. Experimental results show that the RSLAD has the
smallest false alarm rate under 100% probability of detection on the four HSI datasets. The confidence
intervals and regions are also adopted to verify the significant difference between RSLAD and other
detectors. The superiority of RSLAD to GRX is statistically significant in all the four datasets, and the
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ROC curves of RSLAD and LRaSMD show less statistical difference from each other. The better
performance of RSLAD compared to CRD and LRX is statistically significant on the PaviaC and
San Diego datasets, whereas it is less statistically significant on both Botswana and HyMap datasets.
As discussed in [52], one could not guarantee a detector is always superior to other detection methods.
Fortunately, the RSLAD yields better detection performance than GRX and takes less computational
time than other detectors (i.e., LRaSMD, GRX, LRX and CRD). Therefore, the good detection
performance and lower computational cost make the RSLAD a great alternative for hyperspectral
anomaly detection.

The second experiment investigates the detection performance sensitivity of RSLAD with respect
to the sampled pixels p. Experimental results show that the detection performance and computational
times of RSLAD are sensitive to the number of sampled pixels p. Both the detection performance and
computational speed of RSLAD decrease with the increasing pixel number p. Particularly, a small
number of sample pixel could bring about good performance of RSLAD in detection and computational
efficiency. In contrast, a too large sampled pixel number p severely decreases the detection performance
of RSLAD and also bring about extremely high computational costs. The explanation for that is as
follows. The detection performance of RSLAD relies on the orthonormal basis estimation U of the
column subspace of background B. The purified randomized subspace using Equation (4) takes enough
independent background columns and can be seen a basis U for the background matrix B. If a too large
p pixels were randomly sampled from the original HSI dataset, the purified matrix would have too
many dependent columns that represent similar background pixels. That reduces the independence
among the columns of U and accordingly degrades the detection performance of RSLAD. From the
above analysis, we recommend to adopt a small sampled pixel number p in the following experiment
to guarantee good detection performance and low computational costs.

The third experiment analyzes the detection performance sensitivity of RSLAD to the projected
dimension K. Experimental results show that the detection performance of RSLAD is insensitive
to the projected dimension K. However, the computational times of RSLAD linearly increases with
the projected dimension K. The explanation for the above conclusions is as follows. The projected
dimension K could lower the computational requirements of the original HSI dataset by reducing its
dimensionality from M to K. However, the projected dimension K does not affect the coarse randomized
subspace YΦ of the background. Accordingly, it shows no correlations with the detection performance
of the RSLAD. From the above analysis, we recommend to adopt a small projected dimension K in
further experiments to reduce the computation costs of RSLAD.

The final experiment explores the detection performance sensitivity of RSLAD to the residual
threshold ε. Experimental results show that the detection performance of RSLAD is sensitive to the
residual threshold ε. A too-small or too-large threshold ε from its predefined range would negatively
affect the detection performance of RSLAD. The explanation for that is as follows. The residual
threshold ε correlates with the estimation of anomaly columns in YΦ and determines the accurate
estimation of orthonormal basis U for the column space of background B. If a too-small threshold
ε were adopted, too many columns (i.e., sampled background pixels) would be removed from YΦ.
Too few independent columns of U could not fully describe the subspace structure of the background
and accordingly negatively affect the detection performance of RSLAD. In contrast, if a too-large
threshold were adopted, the anomaly columns from random sampling would be left in the columns of
purified matrix U. That would degrade the estimation of orthonormal basis U and negatively affect the
detection performance of RSLAD. From the above analysis from three HSI datasets, we recommend to
initialize the residual threshold ε on the HSI dataset with 10−10, make slight tuning around the initials,
and select the proper threshold that has the best performance in ROC and AUC.

Our RSLAD still has some drawbacks and needs careful investigations in the future work.
First, we could not provide an intelligent estimation scheme for the threshold ε. The automatic
parameter estimation of residual threshold ε will be carefully studied in our following work.
Second, the quantitative relationship between sampled pixel number p and the detection performance
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(e.g., ROC and AUC) will be further explore to provide a clear mathematical expression. Third, the
RSLAD will be implemented on more hyperspectral images with larger image scenes and compared
with more recently proposed anomaly detectors, e.g., transferred deep convolutional neural network
(CNN) [30], LRRaLD [34], Local Graph based anomaly detection (LGAD) [53] and differential attribute
profile anomaly detection (DAPAD) [46]. Finally, the RSLAD will be integrated into an anomaly
detection Matlab toolbox and can be downloaded later from our website to benefit practical applications
of hyperspectral techniques.

6. Conclusions

In this paper, we proposed a RSLAD method to detect anomalies in hyperspectral images.
The RSLAD is inspired by the RPCA model and assumes that the background is low-rank and
the anomaly matrix is column-wise sparse. It finds a randomized subspace of the background where
the effects from anomalies are excluded and then detects anomalies by projecting all the HSI pixels on
the orthogonal subspace of the purified randomized column subspace. Experimental results on four
hyperspectral datasets demonstrate that the RSLAD can offer good detection performance with lower
computational cost.
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