Mapping Physiognomic Types of Indigenous Forest using Space-Borne SAR, Optical Imagery and Air-borne LiDAR
"> Figure 1
<p>Map of Wellington region showing areal extent of indigenous forest in dark green. Indigenous forest occurs primarily in the Taraua, Rimutaka, and Aorangi mountain ranges. Map grid is the New Zealand Transverse Mercator.</p> "> Figure 2
<p>Map of forest physiognomic types following support vector machine (SVM) classification of spectral and structural information from Sentinel-1 and 2, PALSAR (Phased Array L-band Synthetic Aperture Radar) and Light Detection and Ranging (LiDAR) in transect across the Tararua ranges. Map grid is the New Zealand Transverse Mercator. Broadleaved-podocarp (olive); Beech-broadleaved-podocarp (dark green); Beech-broadleaved (green-blue); Broadleaved (lime); Beech (blue).</p> "> Figure 3
<p>Plot of Sentinel-1 ratio of VH/VV versus 97th percentile of canopy height for Beech forest (crosses) and Broadleaved-podocarp forest (circles).</p> ">
Abstract
:1. Introduction
2. Study Area and Forest Physiognomic Types
3. Methods
3.1. Sentinel-2 imagery
3.2. Processing of Sentinel-2 Imagery to Standardised Reflectance
3.3. Segmentation of Sentinel-2 imagery
3.4. Processing of Sentinel-1 SAR imagery
3.5. Processing of PALSAR Imagery
3.6. Production of Canopy Height Model
3.7. Ground Data
3.8. Support Vector Machine Classification
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wardle, P. Vegetation of New Zealand; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Dymond, J.R.; Ausseil, A.G.E.; Peltzer, D.A.; Herzig, A. Conditions and trends of ecosystem services in New Zealand—A synopsis. Solut. J. 2014, 5, 38–45. [Google Scholar]
- Gordon, D.P. New Zealand’s genetic diversity. In Ecosystem Services in New Zealand—Conditions and Trends; Dymond, J.R., Ed.; Manaaki Whenua Press: Lincoln, New Zealand, 2013. [Google Scholar]
- Cockayne, L. Monograph on the New Zealand beech forests. Part 1. In The Ecology of the Forests and Taxonomy of the Beeches; Government Printer: Wellington, New Zealand, 1926. [Google Scholar]
- Elliot, G.; Kemp, J. Large-scale pest control in New Zealand beech forests. Ecol. Man. Restor. 2016, 17, 200–209. [Google Scholar] [CrossRef]
- New Zealand Forest Service. Forest Service Mapping Series 6. North Island and South Island. Available online: https://koordinates.com/layers/?q=fsms6 (accessed on 15 August 2019).
- Newsome, P.F.J. The vegetative cover of New Zealand. In Water and Soil Miscellaneous Publication 112; Water and Soil Directorate, Ministry of Works and Development: Wellington, New Zealand, 1987. [Google Scholar]
- Wiser, S.; Thomson, F.; de Cáceres, M. Expanding an existing classification of New Zealand vegetation to include non-forested vegetation. N. Z. J. Ecol. 2016, 40, 160–178. [Google Scholar] [CrossRef]
- Wiser, S.K.; de Cáceres, M. New Zealand’s plot-based classification of vegetation. Phytocoenologia 2018, 48, 153–161. [Google Scholar] [CrossRef]
- Shepherd, J.D.; Ausseil, A.-G.; Dymond, J.R. EcoSat Forests: A 1,750,000 Scale Map of Indigenous Forest Classes in New Zealand; Manaaki Whenua Press: Lincoln, New Zealand, 2005; Available online: https://lris.scinfo.org.nz/ (accessed on 15 August 2019).
- Dymond, J.R.; Shepherd, J.D.; Newsome, P.F.; Belliss, S. Estimating change in areas of indigenous vegetation cover in New Zealand from the New Zealand Cover Database (LCDB). N. Z. J. Ecol. 2017, 41, 56–64. [Google Scholar] [CrossRef]
- Persson, M.; Lindberg, E.; Reese, H. Tree species classification with multi-temporal Sentinel-2 data. Remote Sens. 2018, 10, 1794. [Google Scholar] [CrossRef]
- Zhu, L.; Suomalainen, J.; Liu, J.; Hyyppa, J.; Kaartinen, H.; Haggren, H. A review: Remote sensing sensors. In Multi-Purposeful Application of Geospatial Data; Rustamov, R.B., Hasanova, S., Zeynalova, M.H., Eds.; Intechopen: London, UK, 2018; pp. 19–42. [Google Scholar]
- Jain, M.; Srivastava, A.K.; Singh, B.; Joon, R.K.; McDonald, A.; Royal, K.; Lisaius, M.C.; Lobell, D.B. Mapping smallholder wheat yields and sowing dates using micro-satellite data. Remote Sens. 2016, 8, 860. [Google Scholar] [CrossRef]
- Ghuffar, S. DEM generation from multi satellite PlanetScope imagery. Remote Sens. 2018, 19, 1462. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Continuous change detection and classification of land cover using all available Landsat data. Remote Sens. Environ. 2014, 144, 154–171. [Google Scholar] [CrossRef]
- Gascon, F.; Bouzinac, C.; Thépaut, O.; Jung, M.; Francesconi, B.; Louis, J.; Lonjou, V.; Lafrance, B.; Massera, S.; Languille, F.; et al. Copernicus Sentinel-2A calibration and products validation status. Remote Sens. 2016, 9, 584. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Meygret, A.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Attema, E.; Snoeij, P.; Davidson, M.; Floury, N.; Levrini, G.; Rommen, B.; Rosich, B. The European GMES Sentinel-1 Radar Mission. In Proceedings of the IGARSS 2008—2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 7–11 July 2008; pp. 1–97. [Google Scholar]
- Clewley, D.; Whitcomb, J.; Moghaddam, M.; McDonald, K.; Chapman, B.; Bunting, P. Evaluation of ALOS PALSAR Data for High-Resolution Mapping of Vegetated Wetlands in Alaska. Remote Sens. 2015, 7, 7272–7297. [Google Scholar] [CrossRef] [Green Version]
- Lefsky, M.A.; Cohen, W.B.; Acker, S.A.; Parker, G.G.; Spies, T.A.; Harding, D. Lidar Remote Sensing of the Canopy Structure and Biophysical Properties of Douglas-Fir Western Hemlock Forests. Remote Sens. Environ. 1999, 70, 339–361. [Google Scholar] [CrossRef]
- Regional High-Resolution DEM Now on LDS, Wellington Regional Government GIS Group. Available online: http://mapping.gw.govt.nz/News06.htm (accessed on 15 August 2019).
- Sothe, C.; de Almeida, C.M.; Liesenberg, V.; Schimalski, M.B. Evaluating Sentinel-2 and Landsat-8 data to map successional forest stages in a subtropical forest in Southern Brazil. Remote. Sens. 2017, 9, 838. [Google Scholar] [CrossRef]
- Deng, S.; Katoh, M.; Xiaowei, Y.; Hyyppä, J.; Gao, T. Comparison of Tree Species Classifications at the Individual Tree Level by Combining ALS Data and RGB Images Using Different Algorithms. Remote Sens. 2016, 8, 1034. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Adam, E.; Mutanga, O.; Odindi, J.; Abdel-Rahman, E.M. Land-use/cover classification in a heterogeneous coastal landscape using RapidEye imagery: Evaluating the performance of random forest and support vector machines classifiers. Int. J. Remote Sens. 2014, 35, 3440–3458. [Google Scholar] [CrossRef]
- Fassnacht, F.E.; Latifi, H.; Sterenczak, K.; Modzelewska, A.; Lefsky, M.; Waser, L.T.; Straub, C.; Ghosh, A. Review of studies on tree species classification from remotely sensed data. Remote Sens. Environ. 2016, 186, 64–87. [Google Scholar] [CrossRef]
- Liu, Y.; Gong, W.; Hu, X.; Gong, J. Forest type identification with random forest using sentinel-1A, Sentinel 2-A, multi-temporal Lansat-8 and DEM data. Remote Sens. 2018, 10, 946. [Google Scholar] [CrossRef]
- Piazza, A.G.; Vibrans, A.C.; Liesenberg, V.; Refosco, J.C. Object-oriented and pixel-based classification approaches to classify tropical successional stages using airborne high–spatial resolution images. GISci. Remote Sens. 2016, 53, 206–226. [Google Scholar] [CrossRef]
- Féret, J.; Asner, G.P. Tree species discrimination in tropical forests using airborne imaging spectroscopy. IEEE Trans. Geosci. Remote Sens. 2013, 51, 73–84. [Google Scholar] [CrossRef]
- Ma, L.; Li, M.; Ma, X.; Cheng, L.; Du, P.; Liu, Y. A review of supervised object-based land-cover image classification. ISPRS J. Photogramm. Remote Sens. 2017, 130, 277–293. [Google Scholar] [CrossRef]
- Clark, M.L.; Roberts, D.A.; Clark, D.B. Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales. Remote Sens. Environ. 2005, 96, 375–398. [Google Scholar] [CrossRef]
- Clark, M.L.; Roberts, D.A. Species-level differences in hyperspectral metrics among tropical rainforest trees as determined by a tree-based classifier. Remote Sens. 2012, 4, 1820–1855. [Google Scholar] [CrossRef]
- Mickelson, J.G.; Civco, D.L.; Silander, J.A. Delineating forest canopy species in the northeastern United States using multi-temporal TM imagery. Am. Soc. Photogramm. Remote Sens. 1998, 64, 891–904. [Google Scholar]
- Wolter, P.; Mladenoff, D.J. Improved Forest Classification in the Northern Lake States Using Multi-Temporal Landsat Imagery. Photogramm. Eng. Remote Sens. 1995, 61, 1129–1143. [Google Scholar]
- Zhu, X.L.; Liu, D.S. Accurate mapping of forest types using dense seasonal Landsat time-series. ISPRS J. Photogramm. Remote Sens. 2014, 96, 1–11. [Google Scholar] [CrossRef]
- Hill, R.A.; Wilson, A.K.; George, M.; Hinsley, S.A. Mapping tree species in temperate deciduous woodland using time-series multi-spectral data. Appl. Veg. Sci. 2010, 13, 86–99. [Google Scholar] [CrossRef]
- Dymond, J.R.; Shepherd, J.D. The spatial distribution of indigenous forest and its composition in the Wellington region, New Zealand, from ETM+ satellite imagery. Remote Sens. Environ. 2004, 90, 116–125. [Google Scholar] [CrossRef]
- Definiens. eCognition Version 5 Object Oriented Image Analysis User Guide; Definiens: Munich, Germany, 2005. [Google Scholar]
- Bunting, P.; Clewley, D.; Lucas, R.M.; Gillingham, S. The remote sensing and GIS software library (RSGISLib). Comput. Geosci. 2014, 62, 216–226. [Google Scholar] [CrossRef]
- New Zealand eScience Infrastructure. Available online: https://www.nesi.org.nz/services/high-performance-computing (accessed on 15 August 2019).
- Shuttle Radar Topography Mission. Available online: https://www2.jpl.nasa.gov/srtm/ (accessed on 15 August 2019).
- Müller, M.U.; Shepherd, J.D.; Dymond, J.R. Support vector machine classification of woody patches in New Zealand from synthetic aperture radar and optical data, with LiDAR training. J. Appl. Remote Sens. 2015, 9, 095984. [Google Scholar] [CrossRef]
- Bunting, P.; Armston, J.; Clewley, D.; Lucas, R. The sorted pulse data software library (SPDLib): Open source tools for processing LiDAR data. In Proceedings of the SilviLaser 2011, 11th International Conference on LiDAR Applications for Assessing Forest Ecosystems, University of Tasmania, Hobart, Australia, 16–20 October 2011; pp. 1–11. [Google Scholar]
- Zörner, J.; Dymond, J.R.; Shepherd, J.D.; Wiser, S.K.; Jolly, B. LiDAR-based regional inventory of tall trees—Wellington, New Zealand. Forests 2018, 9, 702. [Google Scholar] [CrossRef]
- Wiser, S.K.; Bellingham, P.J.; Burrows, L. Managing biodiversity information: Development of the National Vegetation Survey Databank. N. Z. J. Ecol. 2001, 25, 1–17. [Google Scholar]
- Hurst, J.M.; Allen, R.B. A Permanent Plot Method for Monitoring Indigenous Forests—Field Protocols; Landcare Research: Lincoln, New Zealand, 2007; Volume 3, pp. 154–196. [Google Scholar]
- Chang, C.C.; Lin, C.J. LIBSVM: A Library for Support Vector Machines. Available online: http://www.csie.ntu.edu.tw/~cjlin/libsvm (accessed on 15 August 2019).
- Lu, D.; Weng, Q. A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 2007, 28, 823–870. [Google Scholar] [CrossRef]
Sentinel-2 band 2 | ||||||||||||
Sentinel-2 band 3 | ||||||||||||
Sentinel-2 band 4 | ||||||||||||
Sentinel-2 band 5 | ||||||||||||
Sentinel-2 band 8 | ||||||||||||
Sentinel-2 band 11 | ||||||||||||
Sentinel-2 band 12 | ||||||||||||
Mean of CHM | ||||||||||||
97th perc. of CHM | ||||||||||||
Sentinel-1 VH/VV | ||||||||||||
PALSAR HH | ||||||||||||
Accuracy (%) | 80.05 | 80.03 | 78.42 | 75.78 | 78.96 | 78.20 | 79.65 | 79.45 | 80.44 | 79.61 | 79.77 | 78.20 |
Sentinel-2 band 2 | ||||||||||
Sentinel-2 band 3 | ||||||||||
Sentinel-2 band 4 | ||||||||||
Sentinel-2 band 8 | ||||||||||
Sentinel-2 band 11 | ||||||||||
Sentinel-2 band 12 | ||||||||||
Mean of CHM | ||||||||||
97th perc. of CHM | ||||||||||
Sentinel-1 VH/VV | ||||||||||
Accuracy (%) | 80.48 | 78.68 | 75.29 | 78.57 | 78.68 | 79.89 | 79.87 | 79.90 | 80.55 | 78.33 |
Sentinel-2 band 2 | |||
Sentinel-2 band 3 | |||
Sentinel-2 band 4 | |||
Sentinel-2 band 5 | |||
Sentinel-2 band 8 | |||
Sentinel-2 band 11 | |||
Sentinel-2 band 12 | |||
Mean of CHM | |||
97th percentile of CHM | |||
Sentinel 1 VH/VV | |||
PALSAR HH | |||
Accuracy (%) | 72.67 | 78.48 | 80.05 |
Forest Physiognomic Type | Short | Medium | Tall | Total (ha) |
---|---|---|---|---|
Podocarp | 0 | 0 | 0 | 0 |
Broadleaved-podocarp | 6886 | 25,032 | 3985 | 35,902 |
Beech-broadleaved-podocarp | 0 | 9929 | 6418 | 16,347 |
Beech-broadleaved | 9815 | 52,593 | 862 | 63,270 |
Broadleaved | 5733 | 2869 | 113 | 8715 |
Beech | 8454 | 8237 | 106 | 16,797 |
Total indigenous forest | 141,031 | |||
Total land area | 811,727 |
Physiognomic Types | Name of Forest Alliance | Number of Plots |
---|---|---|
Beech-broadleaved forest | Kāmahi-hardwood forest Silver beech-broadleaf forest Silver beech-red beech-kāmahi forest | 7 3 16 |
Beech-broadleaved-podocarp forest | Kāmahi-Southern rata forest and tall shrubland Pepperwood-hardwood forest and successional shrubland Kāmahi forest Kāmahi-silver fern forest | 12 27 8 |
Beech forest | Black/mountain beech forest (subalpine) Black/mountain beech – silver beech forest/subalpine shrubland Black/mountain beech forest Silver beech – red beech – black/mountain beech forest Silver beech forest with mountain lacebark and weeping matipo Hard beech – kāmahi forest | 1 10 1 1 |
Broadleaved-podocarp forest | Kāmahi–podocarp forest Mahoe forest Tawa forest Silver fern – mahoe forest Pepperwood – fuchsia – broadleaf forest Mataī forest Towai – tawa forest | 1 12 12 3 13 |
Application | EcoSat Forests | LCDB | Physiognomic Types |
---|---|---|---|
Biodiversity management | Yes | Yes/No | Yes |
Carbon inventory | No | No | Yes |
Weed control | No | No | No |
Pest control | Yes/No | No | Yes |
Ungulate management | Yes/No | No | Yes |
Disease management | No | No | Yes/No |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dymond, J.R.; Zörner, J.; Shepherd, J.D.; Wiser, S.K.; Pairman, D.; Sabetizade, M. Mapping Physiognomic Types of Indigenous Forest using Space-Borne SAR, Optical Imagery and Air-borne LiDAR. Remote Sens. 2019, 11, 1911. https://doi.org/10.3390/rs11161911
Dymond JR, Zörner J, Shepherd JD, Wiser SK, Pairman D, Sabetizade M. Mapping Physiognomic Types of Indigenous Forest using Space-Borne SAR, Optical Imagery and Air-borne LiDAR. Remote Sensing. 2019; 11(16):1911. https://doi.org/10.3390/rs11161911
Chicago/Turabian StyleDymond, John R., Jan Zörner, James D. Shepherd, Susan K. Wiser, David Pairman, and Marmar Sabetizade. 2019. "Mapping Physiognomic Types of Indigenous Forest using Space-Borne SAR, Optical Imagery and Air-borne LiDAR" Remote Sensing 11, no. 16: 1911. https://doi.org/10.3390/rs11161911
APA StyleDymond, J. R., Zörner, J., Shepherd, J. D., Wiser, S. K., Pairman, D., & Sabetizade, M. (2019). Mapping Physiognomic Types of Indigenous Forest using Space-Borne SAR, Optical Imagery and Air-borne LiDAR. Remote Sensing, 11(16), 1911. https://doi.org/10.3390/rs11161911