Evaluating Sentinel-2 and Landsat-8 Data to Map Sucessional Forest Stages in a Subtropical Forest in Southern Brazil
"> Figure 1
<p>Methodological framework developed in this study.</p> "> Figure 2
<p>Study area location: (<b>a</b>) Santa Catarina State; (<b>b</b>) São Joaquim National Park; and (<b>c</b>) Study area over a Sentinel-2/MSI true color composition image.</p> "> Figure 3
<p>Vegetation successional stages relating the reference multispectral data (Orthoimage) and the employed orbital images (Sentinel-2 and Landsat-8) in true color composition.</p> "> Figure 4
<p>Example of pixel random sampling for accuracy assessment.</p> "> Figure 5
<p>(<b>a</b>,<b>b</b>) Spectral reflectance curves of the vegetation successional stages for the multispectral bands of Landsat-8/OLI and Sentinel-2/MSI sensors, fall season.</p> "> Figure 6
<p>(<b>a</b>,<b>b</b>) Ranking showing the 10 most important variables (features) for the RF classification. M, texture mean; B, spectral band; B-S, spectral band of the “spring” scene. See <a href="#remotesensing-09-00838-t003" class="html-table">Table 3</a> and <a href="#remotesensing-09-00838-t004" class="html-table">Table 4</a> for a complete description of variables.</p> "> Figure 7
<p>Overall Accuracy (OA) for all classification experiments.</p> "> Figure 8
<p>Best classification results obtained by Sentinel-2 and Landsat-8 data.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Preprocessing
2.3. Classes Definition and Samples Acquisition
2.4. Feature Extraction and Selection
2.5. Semiautomatic Classification
2.6. Statistical Assessment of Results
3. Results
3.1. Feature Selection and Spectral Reflectance
3.2. Variables Importance
3.3. Mapping Results and Classification Accuracies
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zhang, Z.; Zang, R.; Wang, G.; Huang, X. Classification of landscape types based on land cover, successional stages and plant functional groups in a species-rich forest in Hainan Island, China. Trop. Conserv. Sci. 2016, 9, 135–152. [Google Scholar] [CrossRef]
- Viana, V.; Tabanez, A.J. Biology and Conservation of Forest Fragments in Brasilian Atlantic Moist Forest. In Forest Patches in Tropical Landscapes; Scheilas, J., Greenberg, R., Eds.; Island Press: Washington, DC, USA, 1996. [Google Scholar]
- Ribeiro, M.C.; Metzger, J.P.; Martensen, A.C.; Ponzoni, F.J.; Hirota, M.M. The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biol. Conserv. 2009, 142, 1141–1153. [Google Scholar] [CrossRef]
- Colombo, A.F.; Joly, C.A. Brazilian Atlantic Forest lato sensu: The most ancient Brazilian forest, and a biodiversity hotspot, is highly threatened by climate change. Braz. J. Biol. 2010, 70, 697–708. [Google Scholar] [CrossRef] [PubMed]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Mausel, P.; Wu, Y.; Li, Y.; Moran, E.F.; Brondizio, E.S. Spectral identification of successional stages following deforestation in the Amazon. Geocarto Int. 1993, 8, 61–71. [Google Scholar] [CrossRef]
- Lu, D.; Mausel, P.; Brondízio, E.; Moran, E. Classification of Successional Forest Stages in the Brazilian Amazon Basin. Forest Ecol. Manag. 2003, 181, 301–312. [Google Scholar] [CrossRef]
- Lu, D.; Batistella, M.; Li, G.; Moran, E.; Hetrick, S.; Freitas, C.; Dutra, L.; Sant’Anna, S.J.S. Land use/Cover Classification in the Brazilian Amazon using Satellite Images. Braz. J. Agric. Res. 2012, 47, 1185–1208. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Li, G.; Moran, E.; Kuang, W. A comparative analysis of approaches for successional vegetation classification in the Brazilian Amazon. GISci. Remote Sens. 2014, 51, 695–709. [Google Scholar] [CrossRef]
- Dispõe Sobre a Utilização e Proteção da Vegetação Nativa do Bioma Mata Atlântica, e dá Outras Providências. Available online: http://www2.ib.unicamp.br/profs/cjoly/0 - NE441 2013/2a AULA/Lei 11428 de 22-12-2006.pdf (accessed on 7 June 2017).
- Adam, E.; Mutanga, O.; Odindi, J.; Abdel-Rahman, E.M. Land-use/cover classification in a heterogeneous coastal landscape using RapidEye imagery: Evaluating the performance of random forest and support vector machines classifiers. Int. J. Remote Sens. 2014, 35, 3440–3458. [Google Scholar] [CrossRef]
- Janoth, J.; Eisl, M.; Klaushofer, F.; Luckel, W. Procedimentos Baseados em Segmentação para a Análise de Mudanças e Classificação Florestais com Dados de Satélite de Alta Resolução. In Sensoriamento Remoto e SIG Avançados, 2nd ed.; Blaschke, T., Kux, H., Eds.; Oficina de Textos: São Paulo, Brazil, 2007. [Google Scholar]
- Vieira, I.C.G.; Almeida, A.S.; Davidson, E.A.; Stone, T.A.; Carvalho, C.J.R.; Guerrero, J.B. Classifying successional forests using Landsat spectral properties and ecological characteristics in Eastern Amazônia. Remote Sens. Environ. 2003, 87, 470–481. [Google Scholar] [CrossRef]
- Ponzoni, F.J.; Rezende, A.N.P. Caracterização espectral de estágios sucessionais de vegetação secundária arbórea em Altamira (PA), através de dados orbitais. Rev. Árvore 2004, 28, 535–545. [Google Scholar] [CrossRef]
- Galvão, L.S.; Ponzoni, F.J.; Liesenberg, V.; Santos, J.R.D. Possibilities of Discriminating Tropical Secondary Succession in Amazônia using Hyperspectral and Multiangular CHRIS/PROBA Data. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 8–14. [Google Scholar]
- Amaral, M.V.F.; de Souza, A.L.; Soares, V.P.; Soares, C.P.B.; Leite, H.G.; Martins, S.V.; Filho, E.I.F.; Lana, J.M. Avaliação e comparação de métodos de classificação de imagens de satélites para o mapeamento de estádios de sucessão florestal. Rev. Árvore 2009, 33, 575–582. [Google Scholar] [CrossRef]
- Li, G.; Lu, D.; Moran, E.; Hetrick, S. Land-Cover Classification in a Moist Tropical Region of Brazil with Landsat Thematic Mapper Imagery. Int. J. Remote Sens. 2011, 32, 8207–8230. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Li, G.; Moran, E.; Dutra, L.; Batistella, M. A Comparison of Multisensor Integration Methods for Land-cover Classification in the Brazilian Amazon. GISci. Remote Sens. 2011, 48, 345–370. [Google Scholar] [CrossRef]
- Sothe, C.; Schimalski, M.B.; Liesenberg, V.; de Almeida, C.M.; de Souza, C.F.; de Souza, J.B. Applying data mining techniques to the classification of successional forest stages mixed shade tolerant forest environments. Sci. For. 2016, 44, 863–873. [Google Scholar]
- Sothe, C.; Schimalski, M.B.; Liesenberg, V.; de Almeida, C.M. Approaches for classifying successional forest stages in São Joaquim National Park using Landsat-8 and RapidEye images. Bol. Ciênc. Geod. 2017, 23. in press. [Google Scholar]
- Piazza, A.G.; Vibrans, A.C.; Liesenberg, V.; Refosco, J.C. Object-oriented and pixel-based classification approaches to classify tropical successional stages using airborne high–spatial resolution images. GISci. Remote Sens. 2016, 53, 206–226. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Continuous change detection and classification of land cover using all available Landsat data. Remote Sens. Environ. 2014, 144, 152–171. [Google Scholar] [CrossRef]
- Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Scambos, T.A. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef]
- Irons, J.R.; Dwyer, J.L.; Barsi, J.A. The next Landsat satellite: The Landsat Data Continuity Mission. Remote Sens. Environ. 2012, 122, 11–21. [Google Scholar] [CrossRef]
- Drusch, M.; Bello, U.D.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Frampton, W.J.; Dash, J.; Watmough, G.; Milton, E.J. Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS J. Photogramm. Remote Sens. 2013, 82, 83–92. [Google Scholar] [CrossRef]
- Immitzer, M.; Vuolo, F.; Clement Atzberger, C. First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Europe. Remote Sens. 2016, 8, 166. [Google Scholar] [CrossRef]
- Addabbo, P.; Focareta, M.; Marcuccio, S.; Votto, C.; Ullo, S.L. Contribution of Sentinel-2 data for applications in vegetation monitoring. Acta IMEKO 2016, 5, 44–54. [Google Scholar] [CrossRef]
- Lu, D.; Weng, Q. A Survey of Image Classification Methods and Techniques for Improving Classification Performance. Int. J. Remote Sens. 2007, 28, 823–870. [Google Scholar] [CrossRef]
- Deng, S.; Katoh, M.; Xiaowei, Y.; Hyyppä, J.; Gao, T. Comparison of Tree Species Classifications at the Individual Tree Level by Combining ALS Data and RGB Images Using Different Algorithms. Remote Sens. 2016. [Google Scholar] [CrossRef]
- Prasad, A.M.; Iverson, L.R.; Liaw, A. Newer classification and regression tree techniques: Bagging and random forests for ecological prediction. Ecosystems 2006, 9, 181–199. [Google Scholar] [CrossRef]
- Naidoo, L.; Cho, M.A.; Mathieu, R.; Asner, G. Classification of savanna tree species, in the Greater Kruger National Park region, by integrating hyperspectral and LiDAR data in a Random Forest data mining environment. ISPRS J. Photogramm. Remote Sens. 2012, 69, 167–179. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Li, M.; Ma, L.; Blaschke, T.; Cheng, L.; Tiede, D. A systematic comparison of different object-based classification techniques using high spatial resolution imagery in agricultural environments. Int. J. Appl. Earth Obs. Geoinf. 2016, 49, 87–98. [Google Scholar] [CrossRef]
- Dalponte, M.; Bruzzone, L.; Gianelle, D. Tree species classification in the Southern Alps based on the fusion of very high geometrical resolution multispectral/hyperspectral images and LiDAR data. Remote Sens. Environ. 2012, 123, 258–270. [Google Scholar] [CrossRef]
- Féret, J.; Asner, G.P. Tree species discrimination in tropical forests using airborne imaging spectroscopy. IEEE Trans. Geosci. Remote Sens. 2013, 51, 73–84. [Google Scholar] [CrossRef]
- Gosh, A.; Fassnacht, E.F.; Joshi, P.K.; Koch, B. A framework for mapping tree species combining hyperspectral and LiDAR data: Role of selected classifiers and sensor across three spatial scales. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 49–63. [Google Scholar] [CrossRef]
- Ma, L.; Li, M.; Ma, X.; Cheng, L.; Du, P.; Liu, Y. A review of supervised object-based land-cover image classification. ISPRS J. Photogramm. Remote Sens. 2017, 130, 277–293. [Google Scholar] [CrossRef]
- Clark, M.L.; Roberts, D.A.; Clark, D.B. Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales. Remote Sens. Environ. 2005, 96, 375–398. [Google Scholar] [CrossRef]
- Clark, M.L.; Roberts, D.A. Species-level differences in hyperspectral metrics among tropical rainforest trees as determined by a tree-based classifier. Remote Sens. 2012, 4, 1820–1855. [Google Scholar] [CrossRef]
- Weih, R.C.; Riggan, N.D. Object-based Classification vs. Pixel-Based Classification: Comparative Importance of Multi-Resolution Imagery. Available online: http://dfwm.ugent.be/geobia/proceedings/papers%20proceedings/Weih_81_Object_Based_Classification_vs_Pixel_Based_Classification_Comparitive_Importance_of_Multi_Resolution_Imagery.pdf (accessed on 7 June 2017).
- Meroni, M.; Ng, W-T.; Rembold, F.; Leonardi, U.; Atzberger, C.; Gadain, H.; Shaiy, M. Mapping prosopis juliflora in west somaliland with landsat 8 satellite imagery and ground information. Land Degrad. Dev. 2017, 28, 494–506. [Google Scholar] [CrossRef]
- Faxina, T.C. Dilemas da regularização fundiária amigável no Parque Nacional de São Joaquim: Um estudo de caso—a valorização de áreas silvestres. Master’s Thesis, Santa Catarina State University, Lages-SC, Brazil, 2014. [Google Scholar]
- Morellato, L.P.C.; Talora, D.C.; Takahasi, A.; Bencke, C.C.; Romera, E.C.; Zipparro, V.B. Phenology of Atlantic Rain Forest Trees: A Comparative Study. Blotroplca 2000, 32, 811–823. [Google Scholar] [CrossRef]
- Marques, M.C.M.; Roper, J.J.; Salvalaggio, A.P.B. Phenological patterns among plant life-forms in a subtropical forest in southern Brazil. Plant Ecol. 2004, 173, 203–213. [Google Scholar] [CrossRef]
- Song, C.; Woodcock, C.E. Monitoring forest succession with multitemporal Landsat images: Factors of uncertainty. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2557–2567. [Google Scholar] [CrossRef]
- Resolução CONAMA nº 04/94, de 4 de maio de 1994. Available online: http://www.mma.gov.br/port/conama/legiano1.cfm?codlegitipo=3&ano=1994 (accessed on 7 June 2017).
- Soares, R.V. Considerações sobre a regeneração natural da Araucaria angustifolia. Rev. Floresta 1979, 10, 11–18. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, 3, 610–621. [Google Scholar] [CrossRef]
- Marceau, D.J.; Howarth, P.J.; Dubois, J.M.; Gratton, D.J. Evaluation of the Grey-Level Co-occurrence Matrix Method for Land-cover Classification using SPOT Imagery. IEEE Trans. Geosci. Remote Sens. 1990, 28, 513–519. [Google Scholar] [CrossRef]
- Johansen, K.; Coops, N.C.; Gergel, S.E.; Stange, Y. Application of High Spatial Resolution Satellite Imagery for Riparian and Forest Ecosystem Classification. Remote Sens. Environ. 2007, 110, 29–44. [Google Scholar] [CrossRef]
- Yu, Q.; Gong, P.; Clinton, N.; Biging, G.; Kelly, M.; Schirokauer, D. Object-based Detailed Vegetation Classification with Airborne High Spatial Resolution Remote Sensing Imagery. Photogramm. Eng. Remote Sens. 2006, 72, 799–811. [Google Scholar] [CrossRef]
- Furtado, L.F.A.; Francisco, C.N.; Almeida, C.M. Object-based image analysis for vegetation physiognomies classification in high spatial resolution images. Geociências 2013, 32, 441–451. [Google Scholar]
- Lu, D.; Batistella, M. Exploring TM image texture and its relationships with biomass estimation in Rondônia, Brazilian Amazon. Acta Amazonica 2005, 35, 249–257. [Google Scholar] [CrossRef]
- Attarchi, S.; Gloaguen, R. Classifying Complex Mountainous Forests with L-Band SAR and Landsat Data Integration: A Comparison among Different Machine Learning Methods in the Hyrcanian Forest. Remote Sens. 2014, 6, 3624–3647. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N. Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves. J. Photochem. Photobiol. B Biol. 1994, 22, 247–252. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Gitelson, A.A.; Schepers, J.S.; WalthalL, C.L. Application of Spectral Remote Sensing for Agronomic Decisions. Agron. J. 2008, 100, 117–131. [Google Scholar] [CrossRef]
- Ji, L.; Zhang, L.; Wylie, B.K.; Rover, J. On the terminology of the spectral vegetation index (NIR − SWIR)/(NIR + SWIR). Int. J. Remote Sens. 2011, 32, 6901–6909. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, W.D. Monitoring vegetation systems in the Great Plains with ERTS. Third ERTS Sym. NASA SP-351 1973, 1, 309–317. [Google Scholar]
- Richardson, A.J.; Wiegand, C.L. Distinguishing vegetation from soil background information. Photogramm. Eng. Remote Sens. 1977, 1, 1541–1552. [Google Scholar]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Hardisky, M.A.; Klemas, V.; Smart, R.M. The influence of soil salinity, growth form, and leaf moisture on the spectral radiance of Spartina alterniflora canopies. Photogramm. Eng. Remote Sens. 1983, 49, 77–83. [Google Scholar]
- Clark, M.L.; Kilham, N.E. Mapping of land cover in northern California with simulated hyperspectral satellite imagery. ISPRS J. Photogramm. Rem. Sens. 2016, 119, 228–245. [Google Scholar] [CrossRef]
- Pal, M.; Foody, G.M.P. Feature Selection for Classification of Hyperspectral Data by SVM. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2297–2307. [Google Scholar] [CrossRef]
- Ma, L.; Fu, T.; Blaschke, T.; Li, M.; Tiede, D.; Zhou, Z.; Chen, D. Evaluation of Feature Selection Methods for Object-Based Land Cover Mapping of Unmanned Aerial Vehicle Imagery Using Random Forest and Support Vector Machine Classifiers. ISPRS Int. J. Geo-Inf. 2017, 6, 51. [Google Scholar] [CrossRef]
- Duro, D.C.; Franklin, S.E.; Dubé, M.G. Multi-scale object-based image analysis and feature selection of multi-sensor earth observation imagery using random forests. Int. J. Remote Sens. 2012, 33, 4502–4526. [Google Scholar] [CrossRef]
- Hira, Z.M.; Gillies, D.F. A Review of Feature Selection and Feature Extraction Methods Applied on Microarray Data. Adv. Bioinf. 2015. [Google Scholar] [CrossRef] [PubMed]
- Maldonado, S.; Weber, R. A wrapper method for feature selection using support vector machines. Inf. Sci. 2009, 179, 2208–2217. [Google Scholar] [CrossRef]
- Puissant, A.; Rougier, S.; Stumpf, A. Object-oriented mapping of urban trees using random forest classifiers. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 235–245. [Google Scholar] [CrossRef]
- Ma, L.; Li, M.; Gao, Y.; Chen, T.; Ma, X.; Qu, L. A Novel Wrapper Approach for Feature Selection in Object-Based Image Classification Using Polygon-Based Cross-Validation. IEEE Geosci. Remote Sens. Lett. 2017, 14, 409–413. [Google Scholar] [CrossRef]
- Kohavi, R.; John, G.H. Wrappers for feature subset selection. Artif. Intell. 1997, 97, 273–324. [Google Scholar] [CrossRef]
- Van der Linden, S.; Rabe, A.; Held, M.; Wirth, F.; Suess, S.; Okujeni, A.; Hostert, P. ImageSVM Classification, Manual for Application: ImageSVM Version 3.0; Humboldt-Universität: Berlin, Germany, 2014. [Google Scholar]
- Van der Linden, S.; Rabe, A.; Held, M.; Jakimow, B.; Leitão, P.J.; Okujeni, A.; Schwieder, S.S.; Hostert, P. The EnMAP-Box—A Toolbox and Application Programming Interface for EnMAP Data Processing. Remote Sens. 2015, 7, 11249–11266. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the effectiveness of a random forest classifier for landcover classification. ISPRS J. Photogramm. Rem. Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Jakimow, B.; Oldenburg, C.; Rabe, A.; Waske, B.; van der Linden, S.; Hostert, P. ImageRF Classification, Manual for Application: ImageRF Version 1.1; Humboldt-Universität: Berlin, Germany, 2014. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Huang, C.; Davis, L.S.; Townshend, J.R.G. An assessment of support vector machines for land cover classification. Remote Sens. 2002, 23, 725–749. [Google Scholar] [CrossRef]
- Duro, D.C.; Franklin, S.E.; Dube, M.G. A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sens. Environ. 2012, 118, 259–272. [Google Scholar] [CrossRef]
- Burges, C.J. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 1998, 2, 121–167. [Google Scholar] [CrossRef]
- Li, W.; Du, Q. Support vector machine with adaptive composite kernel for hyperspectral image classification. Proc. SPIE. [CrossRef]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices; Lewis Publishers: New York, NY, USA, 1999. [Google Scholar]
- Skidmore, A.K. Accuracy Assessment of Spatial Information. In Spatial Statistics for Remote Sensing; Stein, A., van der Meer, F.D., Gorte, B., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999; pp. 197–209. [Google Scholar]
- Cetin, M.; Kavzoglu, T.; Musaoglu, N. Classification of multi-spectral, multi-temporal and multi-sensor images using principal components analysis and artificial neural networks: Beykoz case. In Proceedings of the XXXV ISPRS Congress, Melbourne, Australia, 25 August–1 September 2012; p. 408. [Google Scholar]
- Moran, E.F.; Brondizio, E.S.; Tucker, J.M.; Silva-Fosberg, M.C.; McCracken, S.; Falesi, I. Effects of soil fertility and land-use on forest successional in Amazônia. Forest Ecol. Manag. 2000, 139, 93–108. [Google Scholar] [CrossRef]
- Ponzoni, F.J.; Shimabukuro, Y.E.; Kuplich, T.M. Sensoriamento Remoto da Vegetação; Oficina de Textos: São Paulo, Brazil, 2012. [Google Scholar]
- Goel, N.S. Models of vegetation canopy reflectance and their use in estimation of biophysical parameters from reflectance data. Remote Sens. Rev. 1988, 4, 1–21. [Google Scholar] [CrossRef]
- Murthy, C.S.; Raju, P.V.; Badrinath, K.V.S. Classification of wheat crop with multi-temporal images: Performance of maximum likelihood and artificial neural networks. Int. J. Remote Sens. 2003, 24, 4871–4890. [Google Scholar] [CrossRef]
- Walton, J.T. Subpixel Urban Land Cover Estimation: Comparing Cubist, Random Forests, and Support Vector Regression. Photogramm. Eng. Remote Sens. 2008, 74, 1213–1222. [Google Scholar] [CrossRef]
- Novack, T.; Esch, T.; Kux, H.; Stilla, U. Machine Learning Comparison between WorldView-2 and QuickBird-2-Simulated Imagery Regarding Object-Based Urban Land Cover Classification. Remote Sens. 2011, 3, 2263–2282. [Google Scholar] [CrossRef]
- Topaloglu, R.H.; Sertela, E.; Musaoglu, N. Assessment of classification accuracies of Sentinel-2 and Landsat-8 data for land cover/use mapping. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 41-B8, XXIII ISPRS Congress, Prague, Czech Republic, 12–19 July 2016; pp. 1055–1059. [Google Scholar]
- Sothe, C.; Schimalski, M.B.; Liesenberg, V.; de Almeida, C.M. Potencial dos dados Sentinel-2 e Landsat-8 para a classificação do uso e cobertura da terra de um ambiente costeiro. In Proceedings of the XVIII Brazilian Symposium on Remote Sensing—SBSR, Santos, SP, Brazil, 28–31 May 2017. [Google Scholar]
- Sette, P.G.C.; Maillard, P. Análise de textura de imagem de alta resolução para aprimorar a acurácia da classificação da mata atlântica no sul da Bahia. In Proceedings of the XV Brazilian Symposium on Remote Sensing-SBSR, Curitiba, PR, Brazil, 29 April–4 May 2011. [Google Scholar]
- Araújo, E.H.G. Análise Multi-Temporal de Cenas do Satélite QuickBird Usando um novo Paradigma de Classificação de Imagens e Inferências Espaciais. Estudo de Caso: Belo Horizonte, MG. (INPE-13956-TDI/1062). Master’s Thesis, National Institute for Space Research, São José dos Campos, 2006. [Google Scholar]
- Roslani, M.A.; Mustapha, M.A.; Lihan, T.; Wan Juliana, W.A. Classification of mangroves vegetation species using texture analysis on Rapideye satellite imagery. AIP Conf. Proc. 2013, 1571, 480. [Google Scholar]
- Gomes, M.F.; Maillard, P. Using spectral and textural features from RapidEye images to estimate age and structural parameters of Cerrado vegetation. Int. J. Remote Sens. 2015, 36, 3058–3076. [Google Scholar] [CrossRef]
- Schultz, B.; Immitzer, M.; Formaggio, A.R.; Sanches, I.D.A.; Luiz, A.J.B.; Atzberger, C. Self-Guided Segmentation and Classification of Multi-Temporal Landsat 8 Images for Crop Type Mapping in Southeastern Brazil. Remote Sens. 2015, 7, 14482–14508. [Google Scholar] [CrossRef]
- Ramoelo, A.; Cho, M.; Mathieu, R.; Skidmore, A.K. Potential of Sentinel-2 spectral configuration to assess rangeland quality. J. Appl. Remote Sens. 2015. [Google Scholar] [CrossRef]
- Schuster, C.; Förster, M.; Kleinschmit, B. Testing the Red Edge Channel for Improving Land-Use Classifications Based on High-Resolution Multi-Spectral Satellite Data. Int. J. Remote Sens. 2012, 33, 5583–5599. [Google Scholar] [CrossRef]
- Tigges, J.; Lakes, T.; Hostert, P. Urban vegetation classification: Benefits of multitemporal RapidEye satellite data. Remote Sens. Environ. 2013, 136, 66–75. [Google Scholar] [CrossRef]
- Adelabu, S.; Mutanga, O.; Adam, E. Evaluating the impact of red-edge band from Rapideye image for classifying insect defoliation levels. ISPRS J. Photogramm. Remote Sens. 2014, 95, 34–41. [Google Scholar] [CrossRef]
Landsat-8/OLI (μm) | Band | Resolution (m) | Sentinel-2/MSI (μm) | Band | Resolution (m) |
---|---|---|---|---|---|
Band 2 (0.45–0.51) | Blue | 30 | Band 2 (0.46–0.52) | Blue | 10 |
Band 3 (0.53–0.59) | Green | 30 | Band 3 (0.54–0.58) | Green | 10 |
Band 4 (0.64–0.67) | Red | 30 | Band 4 (0.65–0.68) | Red | 10 |
Band 5 (0.85–0.88) | NIR | 30 | Band 5 (0.7–0.71) | Red-edge-1 | 20 |
Band 6 (1.57–1.65) | SWIR-1 | 30 | Band 6 (0.73–0.75) | Red-edge-2 | 20 |
Band 7 (2.11–2.29) | SWIR-2 | 30 | Band 7 (0.76–0.78) | Red-edge-3 | 20 |
Band 8 (0.50–0.68) | Panchromatic | 15 | Band 8 (0.78–0.90) | NIR | 10 |
Band 8A (0.85–0.87) | NIR plateau | 20 | |||
Band 11 (1.56–1.65) | SWIR-1 | 20 | |||
Band 12 (2.10–2.28) | SWIR-2 | 20 |
Satellite | Scene | Acquisition Date | Solar Elevation (°) | Solar Azimuth (°) |
---|---|---|---|---|
Landsat-8 | LC82200792016164LGN01 | 6/12/2016 | 31.07 | 33.81 |
Landsat-8 | LC82200802016308LGN01 | 11/03/2016 | 61.44 | 67.49 |
Sentinel-2 | S2A_tile_20160609_22JFQ_1 | 6/08/2016 | 33.19 | 29.67 |
Sentinel-2 | S2A_tile_20161206_22JFQ_0 | 12/06/2016 | 67.07 | 82.86 |
Index | Equation | Reference |
---|---|---|
Normalized Difference Vegetation Index | NDVI = | Rouse et al. [59] |
Difference Vegetation Index | DVI = | Richardson and Wiegand [60] |
Green Normalized Vegetation Index | GNDVI = | Gitelson et al. [61] |
Normalized Difference Vegetation Index Red-edge | NDVIRed-edge = | Gitelson and Merzlyak [56] |
Green-Red Vegetation Index | GRVI = | Tucker [62] |
Optimized Soil Adjusted Vegetation Index | OSAVI = | Rondeaux et al. [63] |
Normalized Difference Infrared Index | NDII = | Hardisky et al. [64] |
Group | Spectral Bands “Fall” | Texture “Fall” Bands | Vegetation Indices | Spectral Bands “Spring” | Total Number of Variables |
---|---|---|---|---|---|
G1-L8 | 2, 3, 4, 5, 6, 7 | - | - | - | 6 |
G2-L8 | 2, 3, 4, 5, 6, 7 | Mean, cont., diss.1 | - | - | 24 |
G3-L8 | 2, 3, 4, 5, 6, 7 | - | All2 | - | 12 |
G4-L8 | 2, 3, 4, 5, 6, 7 | - | - | 2, 3, 4, 5, 6, 7 | 12 |
G5-L8 | 2, 3, 4, 5, 6, 7 | Mean, cont., diss.1 | All2 | 2, 3, 4, 5, 6, 7 | 36 |
G6-L8 | Bands selected using the forward selection—SVM | 13 | |||
G1-S2 | 2, 3, 4, 5, 6, 7, 8, 8A, 11, 12 | - | - | - | 10 |
G2-S2 | 2, 3, 4, 5, 6, 7, 8, 8A, 11, 12 | Mean, cont., diss.1 | - | - | 50 |
G3-S2 | 2, 3, 4, 5, 6, 7, 8, 8A, 11, 12 | - | All | - | 17 |
G4-S2 | 2, 3, 4, 5, 6, 7, 8, 8A, 11, 12 | - | - | 2, 3, 4, 5, 6, 7, 8, 8A, 11, 12 | 20 |
G5-S2 | 2, 3, 4, 5, 6, 7, 8, 8A, 11, 12 | Mean, cont., diss.1 | All | 2, 3, 4, 5, 6, 7, 8, 8A, 11, 12 | 57 |
G6-S2 | Bands selected using the forward selection—SVM | 16 |
Data | Selected Attributes (Predictor Variables) | Accuracy (%) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L8 | B2S | B6S | B7S | M2 | M3 | C3 | M4 | M5 | D6 | M7 | D7 | NDVI | OSAVI | - | - | - | 99.25 |
S2 | B2 | B6 | B8 | B4S | B6S | M2 | M3 | M4 | C5 | D5 | C6 | D8 | M11 | D12 | OSAVI | C3 | 100 |
RF | Producer’s Accuracy | User’s Accuracy | OA (%) | Kappa | |||||||||
Land Cover Classes | Land Cover Classes | ||||||||||||
SS3 | SS2 | SS1 | Field | Shadow | SS3 | SS2 | SS1 | Field | Shadow | ||||
Experiment | G1-L8 | 87.1 | 88.6 | 91.4 | 100 | 100 | 96.8 | 80.5 | 91.4 | 100 | 100 | 92.6 | 0.91 |
G2-L8 | 91.4 | 94.3 | 98.6 | 100 | 100 | 97.0 | 91.7 | 97.2 | 98 | 100 | 96.5 | 0.961 | |
G3-L8 | 95.7 | 90.0 | 94.3 | 100 | 98 | 93.1 | 90.0 | 95.7 | 100 | 100 | 95.2 | 0.94 | |
G4-L8 | 92.9 | 97.1 | 98.6 | 100 | 100 | 97.0 | 95.8 | 98.6 | 96.2 | 100 | 97.4 | 0.971 | |
G5-L8 | 90.0 | 92.9 | 95.7 | 100 | 100 | 96.9 | 86.7 | 95.7 | 100 | 100 | 95.2 | 0.94 | |
G6-L8 | 88.6 | 92.9 | 91.4 | 98 | 100 | 93.9 | 85.5 | 97.0 | 96.1 | 98 | 93.5 | 0.92 | |
G1-S2 | 97.1 | 91.4 | 98.6 | 100 | 100 | 93.2 | 95.5 | 98.6 | 100 | 100 | 97.1 | 0.961 | |
G2-S2 | 98.6 | 92.9 | 98.6 | 100 | 100 | 93.2 | 98.5 | 100 | 100 | 98 | 97.7 | 0.971 | |
G3-S2 | 95.7 | 88.6 | 97.1 | 100 | 100 | 90.5 | 92.5 | 98.6 | 100 | 100 | 95.8 | 0.951 | |
G4-S2 | 98.6 | 85.7 | 94.3 | 100 | 100 | 88.5 | 93.8 | 97.1 | 100 | 100 | 95.2 | 0.94 | |
G5-S2 | 97.1 | 91.4 | 98.6 | 100 | 100 | 93.2 | 95.5 | 98.6 | 100 | 100 | 97.1 | 0.961 | |
G6-S2 | 95.7 | 95.7 | 97.1 | 100 | 100 | 98.5 | 94.4 | 97.1 | 100 | 98 | 97.4 | 0.971 | |
SVM | Producer’s Accuracy | User’s Accuracy | OA (%) | Kappa | |||||||||
Land Cover Classes | Land Cover Classes | ||||||||||||
SS3 | SS2 | SS1 | Field | Shadow | SS3 | SS2 | SS1 | Field | Shadow | ||||
Experiment | G1-L8 | 88.6 | 88.6 | 87.1 | 100 | 100 | 91.2 | 83.8 | 96.8 | 90.9 | 100 | 91.9 | 0.90 |
G2-L8 | 95.7 | 88.6 | 97.1 | 100 | 98 | 94.4 | 95.4 | 94.4 | 94.3 | 100 | 95.5 | 0.94 | |
G3-L8 | 97.1 | 94.3 | 92.9 | 100 | 98 | 94.4 | 89.2 | 100 | 100 | 100 | 96.1 | 0.951 | |
G4-L8 | 90 | 88.6 | 98.6 | 100 | 100 | 90.0 | 93.9 | 100 | 94.3 | 96.2 | 94.8 | 0.94 | |
G5-L8 | 94.3 | 88.6 | 95.7 | 96 | 100 | 94.3 | 92.5 | 93.1 | 94.1 | 100 | 94.5 | 0.93 | |
G6-L8 | 94.3 | 94.3 | 97.1 | 100 | 98 | 95.7 | 94.3 | 97.1 | 96.2 | 100 | 96.5 | 0.96 | |
G1-S2 | 100 | 97.1 | 95.7 | 100 | 100 | 98.6 | 95.8 | 98.5 | 100 | 100 | 98.4 | 0.981 | |
G2-S2 | 92.9 | 92.9 | 92.9 | 100 | 100 | 92.9 | 92.9 | 100 | 94.3 | 96.2 | 95.2 | 0.94 | |
G3-S2 | 91.4 | 92.9 | 92.9 | 100 | 100 | 94.1 | 85.5 | 98.5 | 100 | 100 | 94.8 | 0.94 | |
G4-S2 | 98.6 | 84.3 | 98.6 | 100 | 100 | 93.2 | 100 | 93.2 | 94.3 | 100 | 95.8 | 0.951 | |
G5-S2 | 91.4 | 94.3 | 94.3 | 100 | 100 | 95.5 | 91.7 | 98.5 | 96.2 | 96.2 | 95.5 | 0.94 | |
G6-S2 | 95.7 | 91.4 | 100 | 100 | 96 | 95.7 | 95.5 | 93.3 | 100 | 100 | 96.5 | 0.95 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sothe, C.; Almeida, C.M.d.; Liesenberg, V.; Schimalski, M.B. Evaluating Sentinel-2 and Landsat-8 Data to Map Sucessional Forest Stages in a Subtropical Forest in Southern Brazil. Remote Sens. 2017, 9, 838. https://doi.org/10.3390/rs9080838
Sothe C, Almeida CMd, Liesenberg V, Schimalski MB. Evaluating Sentinel-2 and Landsat-8 Data to Map Sucessional Forest Stages in a Subtropical Forest in Southern Brazil. Remote Sensing. 2017; 9(8):838. https://doi.org/10.3390/rs9080838
Chicago/Turabian StyleSothe, Camile, Cláudia Maria de Almeida, Veraldo Liesenberg, and Marcos Benedito Schimalski. 2017. "Evaluating Sentinel-2 and Landsat-8 Data to Map Sucessional Forest Stages in a Subtropical Forest in Southern Brazil" Remote Sensing 9, no. 8: 838. https://doi.org/10.3390/rs9080838
APA StyleSothe, C., Almeida, C. M. d., Liesenberg, V., & Schimalski, M. B. (2017). Evaluating Sentinel-2 and Landsat-8 Data to Map Sucessional Forest Stages in a Subtropical Forest in Southern Brazil. Remote Sensing, 9(8), 838. https://doi.org/10.3390/rs9080838