Three Dimensional Pulse Coupled Neural Network Based on Hybrid Optimization Algorithm for Oil Pollution Image Segmentation
<p>Model of 3DPCNN neuron.</p> "> Figure 2
<p>26 neighborhood linked matrix.</p> "> Figure 3
<p>Migration and attacking behaviors of seagulls.</p> "> Figure 4
<p>Hot iron objects, transferring heat to the surrounding environment.</p> "> Figure 5
<p>3DPCNN-HSOA model.</p> "> Figure 6
<p>The flowchart of the HSOA.</p> "> Figure 7
<p>The color test images. (<b>a</b>) Satellite image1; (<b>b</b>) Satellite image2; (<b>c</b>) Satellite image3; (<b>d</b>) Satellite image4; (<b>e</b>) Satellite image5; (<b>f</b>) Satellite image6; (<b>g</b>) Satellite image7; and (<b>h</b>) Satellite image8.</p> "> Figure 8
<p>The segmented results of Satellite image1. (<b>a</b>) WOA; (<b>b</b>) FPA; (<b>c</b>) PSO; (<b>d</b>) BA; and (<b>e</b>) HSOA.</p> "> Figure 9
<p>The segmented results of Satellite image2. (<b>a</b>) WOA; (<b>b</b>) FPA; (<b>c</b>) PSO; (<b>d</b>) BA; and (<b>e</b>) HSOA.</p> "> Figure 10
<p>The segmented results of Satellite image3. (<b>a</b>) WOA; (<b>b</b>) FPA; (<b>c</b>) PSO; (<b>d</b>) BA; and (<b>e</b>) HSOA.</p> "> Figure 11
<p>The segmented results of Satellite image4. (<b>a</b>) WOA; (<b>b</b>) FPA; (<b>c</b>) PSO; (<b>d</b>) BA; and (<b>e</b>) HSOA.</p> "> Figure 12
<p>The segmented results of Satellite image5. (<b>a</b>) WOA; (<b>b</b>) FPA; (<b>c</b>) PSO; (<b>d</b>) BA; and (<b>e</b>) HSOA.</p> "> Figure 13
<p>The segmented results of Satellite image6. (<b>a</b>) WOA; (<b>b</b>) FPA; (<b>c</b>) PSO; (<b>d</b>) BA; and (<b>e</b>) HSOA.</p> "> Figure 14
<p>The segmented results of Satellite image7. (<b>a</b>) WOA; (<b>b</b>) FPA; (<b>c</b>) PSO; (<b>d</b>) BA; and (<b>e</b>) HSOA.</p> "> Figure 15
<p>The segmented result of Satellite image8. (<b>a</b>) WOA; (<b>b</b>) FPA; (<b>c</b>) PSO; (<b>d</b>) BA; and (<b>e</b>) HSOA.</p> "> Figure 16
<p>The segmentation results of oil pollution images. (<b>a</b>) oil pollution1; (<b>b</b>) oil pollution2; (<b>c</b>) oil pollution3; and (<b>d</b>) oil pollution4.</p> "> Figure 17
<p>The segmentation results of oil pollution1 image. (<b>a</b>) 3DPCNN-HSOA; (<b>b</b>) LSA; (<b>c</b>) MS; (<b>d</b>) GLCM; and (<b>e</b>) Ground truth.</p> "> Figure 18
<p>The segmentation results of oil pollution2 image. (<b>a</b>) 3DPCNN-HSOA; (<b>b</b>) LSA; (<b>c</b>) MS; (<b>d</b>) GLCM; and (<b>e</b>) Ground truth.</p> "> Figure 18 Cont.
<p>The segmentation results of oil pollution2 image. (<b>a</b>) 3DPCNN-HSOA; (<b>b</b>) LSA; (<b>c</b>) MS; (<b>d</b>) GLCM; and (<b>e</b>) Ground truth.</p> "> Figure 19
<p>The segmentation results of oil pollution3 image. (<b>a</b>) 3DPCNN-HSOA; (<b>b</b>) LSA; (<b>c</b>) MS; (<b>d</b>) GLCM; and (<b>e</b>) Ground truth.</p> "> Figure 19 Cont.
<p>The segmentation results of oil pollution3 image. (<b>a</b>) 3DPCNN-HSOA; (<b>b</b>) LSA; (<b>c</b>) MS; (<b>d</b>) GLCM; and (<b>e</b>) Ground truth.</p> "> Figure 20
<p>The segmentation results of oil pollution4 image. (<b>a</b>) 3DPCNN-HSOA; (<b>b</b>) LSA; (<b>c</b>) MS; (<b>d</b>) GLCM; and (<b>e</b>) Ground truth.</p> "> Figure 21
<p>Bar graph of the results of each comparison algorithm.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Standard 3DPCNN
2.2. 3D Linked Weight W
2.3. Fitness Function
2.4. Seagull Optimization Algorithm
2.5. Thermal Exchange Optimization
3. Proposed Method
3.1. Hybrid Seagull Optimization Algorithm (HSOA)
3.2. Proposed Multi-Segmentation Method
4. Satellite Images Experiments and Results
4.1. Comparison with WOA, FPA, PSO, and BA Algorithm based 3DPCNN
4.2. Stability and Statistical Analysis
4.3. Compared with the Latest Satellite Image Method
5. Oil Pollution Images Experiments and Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Margarit, G. NEREIDS: New Concepts in Maritime Surveillance for Consolidating Operational Developments. In Proceedings of the 2012 Esa’s Seasar Workshop, Tromso, Norway, 18–22 June 2012. [Google Scholar]
- Stasolla, M.; Santamaria, C.; Mallorqui, J.J.; Margarit, G.; Walker, N. Automatic ship detection in SAR satellite images: Performance assessment. In Proceedings of the Geoscience and Remote Sensing Symposium, Milan, Italy, 26–31 July 2015. [Google Scholar]
- Fingas, M.F.; Brown, C.E. Review of oil spill remote sensing. Mar. Pollut. Bull. 2014, 83, 9–23. [Google Scholar] [CrossRef] [PubMed]
- Alves, T.M.; Kokinou, E.; Zodiatis, G.; Lardener, R.; Panaqiotakis, C.; Radhakrishnan, H. Modelling of oil spills in confined maritime basins: The case for early response in the Eastern Mediterranean Sea. Environ. Pollut. 2015, 206, 390–399. [Google Scholar] [CrossRef] [PubMed]
- Alves, T.M.; Kokinou, E.; Zodiatis, G.; Radhakrishnan, H.; Panaqiotakis, C.; Lardner, R. Multidisciplinary oil spill modeling to protect coastal communities and the environment of the Eastern Mediterranean Sea. Sci. Rep. 2016, 6, 36882. [Google Scholar]
- Hazen, E.L.; Carlisle, A.B.; Wilson, S.G.; Ganong, J.E.; Castleton, M.R.; Schallet, R.J.; Stokesbury, M.J.W.; Bograd, S.J.; Block, B.A. Quantifying overlap between the Deepwater Horizon oil spill and predicted bluefin tuna spawning habitat in the Gulf of Mexico. Sci. Rep. 2016, 6, 33824. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Shi, L.; Wang, Y.C.; Zhao, H.Y.; Yao, H.B.; Zhu, Y.B.; Zhang, Y.; Zhu, H.W.; Wu, H.A.; Yu, S.H. Joule-heated graphene-wrapped sponge enables fast clean-up of viscous crude-oil spill. Nat. Nanotechnol. 2017, 12, 434. [Google Scholar] [CrossRef] [PubMed]
- Mera, D.; Canedo, V.; Cotos, J.M.; Betanzos, A.A. On the use of feature selection to improve the detection of sea oil spills in SAR images. Comput. Geosci. 2017, 100, 166–178. [Google Scholar] [CrossRef]
- Chamoso, P.; Perez, A.; Rodriguez, S.; Corchado, J.M.; Sempere, M.; Rizo, R.; Aznar, F.; Pujol, M. Modeling Oil-Spill Detection with multirotor systems based on multi-agent systems. In Proceedings of the International Conference on Information Fusion, Salamanca, Spain, 7–10 July 2014. [Google Scholar]
- Brekke, C.; Solberg, A.H.S. Oil spill detection by satellite remote sensing. Remote Sens. Environ. 2005, 95, 1–13. [Google Scholar] [CrossRef]
- Oribayo, O.; Feng, X.; Rempel, G.L.; Pan, Q. Synthesis of lignin-based polyurethane/graphene oxide foam and its application as an absorbent for oil spill clean-ups and recovery. Chem. Eng. J. 2017, 323, 191–202. [Google Scholar] [CrossRef]
- Evans, M.; Liu, J.; Bacosa, H.; Rosenheim, B.E.; Liu, Z. Petroleum hydrocarbon persistence following the Deepwater Horizon oil spill as a function of shoreline energy. Mar. Pollut. Bull. 2017, 115, 47–56. [Google Scholar] [CrossRef]
- Zhang, C.; Xie, Y.C.; Liu, D.; Wang, L. Fast Threshold image segmentation based on 2D Fuzzy Fisher and Random Local Optimized QPSO. IEEE Trans. Image Process. 2017, 26, 1355–1362. [Google Scholar] [CrossRef]
- Li, Y.; Jiao, L.; Shang, R.; Stolkin, S. Dynamic-context cooperative quantum-behaved particle swarm optimization based on multilevel thresholding applied to medical image segmentation. Inf. Sci. 2015, 294, 408–422. [Google Scholar] [CrossRef]
- Aja-Fernández, S.; Curiale, A.H.; Vegas-Sánchez-Ferrero, G. A local fuzzy thresholding methodology for multiregion image segmentation. Knowl. Based Syst. 2015, 83, 1–12. [Google Scholar] [CrossRef]
- Mostafa, A.; Vavadi, H.; Uddin, K.M.S.; Zhou, Q. Diffuse optical tomography using semiautomated coregistered ultrasound measurements. J. Biomed. Opt. 2017, 22, 1. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Kang, K. Simultaneous Traffic Sign Detection and Boundary Estimation Using Convolutional Neural Network. IEEE Trans. Intell. Transp. Syst. 2018, 19, 1652–1663. [Google Scholar] [CrossRef]
- Muniraj, I.; Guo, C.; Malallah, R.; Maraka, H.V.R.; Ryle, J.P.; Sheridan, J.T. Subpixel based defocused points removal in photon-limited volumetric dataset. Opt. Commun. 2017, 387, 196–201. [Google Scholar] [CrossRef]
- Liu, Z.; Watson, J.; Allen, A. Efficient Image Preprocessing of Digital Holograms of Marine Plankton. IEEE J. Ocean. Eng. 2017, 43, 83–92. [Google Scholar] [CrossRef]
- Chen, L.; Fan, L.; Xie, G.; Huang, K. Moving-Object Detection From Consecutive Stereo Pairs Using Slanted Plane Smoothing. IEEE Trans. Intell. Transp. Syst. 2017, 18, 3093–3102. [Google Scholar] [CrossRef]
- Tan, K.S.; Isa, N.A.M. Color Image Segmentation Using Histogram Thresholding Fuzzy C-Means Hybrid Approach. Pattern Recognit. 2011, 44, 1–15. [Google Scholar]
- Li, Y.; Kim, J. An unconditionally stable hybrid method for image segmentation. Appl. Numer. Math. 2014, 82, 32–43. [Google Scholar] [CrossRef]
- Johnson, J.L.; Padgett, M.L. PCNN models and applications. IEEE Trans. Neural Netw. 1999, 10, 480. [Google Scholar] [CrossRef]
- Lücken, L.; Ronsin, D.P.; Worlitzer, V.M.; Yanchuk, S. Pattern reverberation in networks of excitable systems with connection delays. Chaos 2017, 27, 013114. [Google Scholar]
- Storath, M.; Rickert, D.; Unser, M.; Weinmann, A. Fast Segmentation From Blurred Data in 3D Fluorescence Microscopy. IEEE Trans. Image Process. 2017, 26, 4856–4870. [Google Scholar] [CrossRef]
- Xiang, R. Image segmentation for whole tomato plant recognition at night. Comput. Electron. Agric. 2018, 154, 434–442. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, Y.; Kim, D.; Park, S. Region-Based Object Recognition by Color Segmentation Using a Simplified PCNN. IEEE Trans. Neural Netw. Learn. Syst. 2015, 26, 1682–1697. [Google Scholar] [CrossRef]
- Li, H.; Guo, L.; Yu, P.; Chen, J.; Tang, Y. Image segmentation based on Iterative Self-organizing Data Clustering threshold of PCNN. In Proceedings of the IEEE International Conference on Cloud Computing and Internet of Things, Dalian, China, 2 March 2017. [Google Scholar]
- He, F.; Guo, Y.; Gao, C. An improved pulse coupled neural network with spectral residual for infrared pedestrian segmentation. Infrared Phys. Technol. 2017, 87, 22–30. [Google Scholar] [CrossRef]
- Jing, L.; Shi, B.; Li, M.; Nan, Z.; Ma, Y. An automatic segmentation method of a parameter-adaptive PCNN for medical images. Int. J. Comput. Assist. Radiol. Surg. 2017, 12, 1511–1519. [Google Scholar]
- Gao, H.Y.; Su, X.; Liang, Y.S. Automatic Image Segmentation Using PCNN and Quantum Geese Swarm Optimization. In Proceedings of the International Conference in Communications Springer, Singapore, 7 June 2018. [Google Scholar]
- Bai, W.; Zhang, W.; Zhou, N.; Tang, L.; Ma, C.; Shi, X. Transmission line voltage classes identification based on particle swarm optimization algorithm and PCNN. Ferroelectrics 2017, 521, 6–17. [Google Scholar] [CrossRef]
- Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747. [Google Scholar]
- Fei, Z.; Li, B.; Yang, S.; Xing, C. A Survey of Multi-Objective Optimization in Wireless Sensor Networks: Metrics, Algorithms and Open Problems. IEEE Commun. Surv. Tutor. 2016, 19, 550–586. [Google Scholar] [CrossRef]
- Yang, X.S.; Gandomi, A.H. Bat algorithm: A novel approach for global engineering optimization. Eng. Comput. 2012, 29, 464–483. [Google Scholar] [CrossRef]
- Chakri, A.; Khelif, R.; Benouaret, M.; Yang, X.S. New directional bat algorithm for continuous optimization problems. Expert Syst. Appl. 2017, 69, 159–175. [Google Scholar] [CrossRef]
- Cheng, M.Y.; Prayogo, D. Symbiotic Organisms Search: A new metaheuristic optimization algorithm. Comput. Struct. 2014, 139, 98–112. [Google Scholar] [CrossRef]
- Vincent, F.Y.; Redi, A.A.N.P.; Yang, C.L.; Ruskartina, E.; Santosa, B. Symbiotic organism search and two solution representations for solving the capacitated vehicle routing problem. Appl. Soft Comput. 2017, 52, 657–672. [Google Scholar]
- Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Mehne, H.H.; Mirjalili, S. A Parallel Numerical Method for Solving Optimal Control Problems based on Whale Optimization Algorithm. Knowl. Based Syst. 2018, 151, 114–123. [Google Scholar] [CrossRef]
- Saremi, S.; Mirjalili, S.; Lewis, A. Grasshopper Optimisation Algorithm: Theory and application. Adv. Eng. Softw. 2017, 105, 30–47. [Google Scholar] [CrossRef]
- Mirjalili, S.Z.; Mirjalili, S.; Saremi, S.; Faris, H.; Aljarah, I. Grasshopper optimization algorithm for multi-objective optimization problems. Appl. Intell. 2018, 48, 805–820. [Google Scholar] [CrossRef]
- Wu, J.; Wang, H.; Li, N.; Yao, P.; Huang, Y.; Su, Z.; Yu, Y. Distributed trajectory optimization for multiple solar-powered UAVs target tracking in urban environment by Adaptive Grasshopper Optimisation Algorithm. Aerosp. Sci. Technol. 2017, 70, 497–510. [Google Scholar] [CrossRef]
- Kaveh, A.; Dadras, A. A novel meta-heuristic optimization algorithm: Thermal exchange optimization. Adv. Eng. Softw. 2017, 110, 69–84. [Google Scholar] [CrossRef]
- Dhiman, G.; Kumar, V. Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems. Knowl. Based Syst. 2019, 165, 169–196. [Google Scholar] [CrossRef]
- Ewees, A.A.; Elaziz, M.A.; Houssein, E.H. Improved Grasshopper Optimization Algorithm using Opposition-based Learning. Expert Syst. Appl. 2018, 112, 156–174. [Google Scholar] [CrossRef]
- Yan, B.; Zhao, Z.; Zhou, Y.; Yuan, W. A particle swarm optimization algorithm with random learning mechanism and Levy flight for optimization of atomic clusters. Comput. Phys. Commun. 2017, 219, 76–86. [Google Scholar] [CrossRef]
- Moradi, M.H.; Foroutan, V.B.; Abedini, M. Power flow analysis in islanded Micro-Grids via modeling different operational modes of DGs: A review and a new approach. Renew. Sustain. Energy Rev. 2017, 69, 248–262. [Google Scholar] [CrossRef]
- Tizhoosh, H.R. Opposition-Based Learning: A New Scheme for Machine Intelligence. In Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation, and International Conference on Intelligent Agents, Web Technologies and Internet Commerce, Vienna, Austria, 28–30 November 2005. [Google Scholar]
- Trivedi, I.N.; Kumar, A.; Ranpariya, A.H.; Jangir, P. Economic Load Dispatch problem with ramp rate limits and prohibited operating zones solve using Levy flight Moth-Flame optimizer. In Proceedings of the IEEE International Conference on Energy Efficient Technologies for Sustainability (ICEETS), Nagercoil, India, 7–8 April 2016. [Google Scholar]
- Chenhua, X.U.; Chengxian, L.I.; Xin, Y.U.; Huang, Q.B. Improved grey wolf optimization algorithm based on chaotic Cat mapping and Gaussian mutation. Comput. Eng. Appl. 2017, 53, 1–9. [Google Scholar]
- Liu, B.; Grout, V.; Nikolaeva, A. Efficient Global Optimization of Actuator Based on a Surrogate Model Assisted Hybrid Algorithm. IEEE Trans. Ind. Electron. 2018, 65, 5712–5721. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, B.; Niu, M. Adaptive infinite impulse response system identification using opposition based hybrid coral reefs optimization algorithm. Appl. Intell. 2018, 48, 1689–1706. [Google Scholar] [CrossRef]
- Guangqian, D.; Bekhrad, K.; Azarikhah, P.; Maleki, A. A hybrid algorithm based optimization on modeling of grid independent biodiesel-based hybrid solar/wind systems. Renew. Energy 2018, 122, 551–560. [Google Scholar] [CrossRef]
- Alsaeedan, W.; Menai, M.E.B.; Al-Ahmadi, S. A Hybrid Genetic-Ant Colony Optimization Algorithm for the Word Sense Disambiguation Problem. Inf. Sci. 2017, 417, 20–38. [Google Scholar] [CrossRef]
- Aziz, M.A.E.; Ewees, A.A.; Hassanien, A.E. Whale Optimization Algorithm and Moth-Flame Optimization for multilevel thresholding image segmentation. Expert Syst. Appl. 2017, 83, 242–256. [Google Scholar] [CrossRef]
- Singh, K.; Singh, K.; Son, L.H.; Aziz, A. Congestion Control in Wireless Sensor Networks by Hybrid Multi-Objective Optimization Algorithm. Comput. Netw. 2018, 138, 90–107. [Google Scholar] [CrossRef]
- Daniel, E.; Anitha, J.; Gnanaraj, J. Optimum laplacian wavelet mask based medical image using hybrid cuckoo search-grey wolf optimization algorithm. Knowl. Based Syst. 2017, 131, 58–69. [Google Scholar] [CrossRef]
- Orhan, E.; Güçlü, A. A new hybrid ant colony optimization algorithm for solving the no-wait flow shop scheduling problems. Appl. Soft Comput. 2018, 72, 166–176. [Google Scholar]
- Garg, H. A Hybrid PSO-GA Algorithm for Constrained Optimization Problems. Appl. Math. Comput. 2016, 274, 292–305. [Google Scholar] [CrossRef]
- Zhou, D.; Shao, Y. Region growing for image segmentation using an extended PCNN model. IET Image Process. 2018, 12, 729–737. [Google Scholar] [CrossRef]
- Kong, W.; Zhang, L.; Yang, L. Novel fusion method for visible light and infrared images based on NSST–SF–PCNN. Infrared Phys. Technol. 2014, 65, 103–112. [Google Scholar] [CrossRef]
- Ying, L.; Zhou, Y.; Luo, Q. Lévy Flight Trajectory-Based Whale Optimization Algorithm for Global Optimization. IEEE Access 2017, 5, 6168–6186. [Google Scholar]
- Wang, R.; Zhou, Y.; Zhao, C.; Wu, H. A hybrid flower pollination algorithm based modified randomized location for multi-threshold medical image segmentation. Bio-Med. Mater. Eng. 2015, 26 (Suppl. 1), S1345–S1351. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Pun, C.M.; Kwong, S. An efficient image segmentation method based on a hybrid particle swarm algorithm with learning strategy. Inf. Sci. 2016, 369, 500–521. [Google Scholar] [CrossRef]
- Liang, H.; Liu, H.; Liu, Y.; Shen, Y.; Li, F.; Man, Y. A Hybrid Bat Algorithm for Economic Dispatch with Random Wind Power. IEEE Trans. Power Syst. 2018, 33, 5052–5061. [Google Scholar] [CrossRef]
- Zhong, Y.; Feng, F.; Liu, Y.; Zhao, B.; Jiao, H.; Zhang, L. SatCNN: Satellite image dataset classification using agile convolutional neural networks. Remote Sens. Lett. 2017, 8, 136–145. [Google Scholar] [CrossRef]
- Hu, Y.C.; Chang, C.C. Variable rate vector quantization scheme based on quadtree segmentation. IEEE Trans. Consum. Electron. 2002, 45, 310–317. [Google Scholar]
- Niu, S.; Chen, Q.; Sisternes, L.; Ji, Z.; Zhou, Z.; Rubince, D.L. Robust noise region-based active contour model via local similarity factor for image segmentation. Pattern Recognit. 2017, 61, 104–119. [Google Scholar] [CrossRef]
- Guo, Z.; Kwon, Y.H.; Lee, K.; Wang, K.; Wahle, A.; Alward, W.L.M.; Fingert, J.H.; Bettis, D.I.; Johnson, C.A.; Garvin, M.K.; et al. Optical Coherence Tomography Analysis Based Prediction of Humphrey 24-2 Visual Field Thresholds in Patients with Glaucoma. Investig. Ophthalmol. Vis. Sci. 2017, 58, 3975–3985. [Google Scholar] [CrossRef]
- Ji, S.; Wei, S.; Lu, M. Fully Convolutional Networks for Multisource Building Extraction from an Open Aerial and Satellite Imagery Data Set. IEEE Trans. Geosci. Remote Sens. 2018, 99, 1–13. [Google Scholar] [CrossRef]
- Mdakane, L.W.; Kleynhans, W. An Image-Segmentation-Based Framework to Detect Oil Slicks from Moving Vessels in the Southern African Oceans Using SAR Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2810–2818. [Google Scholar] [CrossRef]
- Helmy, A.K.; El-Taweel, G.S. Image Segmentation Scheme Based on SOM–PCNN in Frequency Domain. Appl. Soft Comput. 2016, 40, 405–415. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, L.; Lam, K.M.; Zhang, D. A Level Set Approach to Image Segmentation with Intensity Inhomogeneity. IEEE Trans. Cybern. 2017, 46, 546–557. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Jia, H.; Xing, Z.; Ma, J.; Peng, X. Modified grasshopper algorithm based multilevel thresholding for color image segmentation. IEEE Access 2019, 7, 11258–11295. [Google Scholar] [CrossRef]
- Pare, S.; Bhandari, A.K.; Kumar, A.; Singh, G.K. An optimal Color Image Multilevel Thresholding Technique using Grey-Level Co-occurrence Matrix. Expert Syst. Appl. 2017, 87, 335–362. [Google Scholar] [CrossRef]
- Sarkar, S.; Das, S.; Chaudhuri, S.S. A multilevel color image thresholding scheme based on minimum cross entropy and differential evolution. Pattern Recognit. Lett. 2015, 54, 27–35. [Google Scholar] [CrossRef]
- Akram, F.; Garcia, M.A.; Puig, D. Active contours driven by local and global fitted image models for image segmentation robust to intensity inhomogeneity. PLoS ONE 2017, 12, e0174813. [Google Scholar] [CrossRef] [PubMed]
- Lupidi, A.; Staglianò, D.; Martorella, M.; Berizzi, F. Fast Detection of Oil Spills and Ships Using SAR Images. Remote Sens. 2017, 9, 230. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, H.; Luo, C.; Qi, H.; Ren, P. Oil Spill Segmentation via Adversarial f-Divergence Learning. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4973–4988. [Google Scholar] [CrossRef]
- Ren, P.; Xu, M.; Yu, Y.; Chen, F.; Jiang, X.; Yang, E. Energy Minimization with One Dot Fuzzy Initialization for Marine Oil Spill Segmentation. IEEE J. Ocean. Eng. 2018, 99, 1–14. [Google Scholar] [CrossRef]
Algorithm | Parameters | Value |
---|---|---|
SOA | u | 1 |
v | 0.001 | |
WOA [63] | a | [0.2] |
b | 1 | |
l | [−1,1] | |
FPA [64] | P | 0.5 |
PSO [65] | Swam size | 200 |
Cognitive, social acceleration | 2,2 | |
Inertial weight | 0.95–0.4 | |
BA [66] | (0,1) |
T | WOA | FPA | PSO | BA | HSOA | |||||
---|---|---|---|---|---|---|---|---|---|---|
PSNR | FSIM | PSNR | FSIM | PSNR | FSIM | PSNR | FSIM | PSNR | FSIM | |
Satellite image1 | 17.9744 | 0.8654 | 17.5541 | 0.7738 | 16.9008 | 0.7734 | 17.8235 | 0.8679 | 23.3737 | 0.94884 |
Satellite image2 | 22.3392 | 0.8277 | 22.3470 | 0.8280 | 22.3044 | 0.8380 | 19.9078 | 0.7768 | 26.2123 | 0.93556 |
Satellite image3 | 20.9181 | 0.7749 | 20.9579 | 0.7750 | 20.5956 | 0.6997 | 20.9783 | 0.7750 | 26.4849 | 0.93772 |
Satellite image4 | 18.9191 | 0.7835 | 18.3870 | 0.7677 | 19.1694 | 0.7289 | 15.6841 | 0.6772 | 26.2893 | 0.9152 |
Satellite image5 | 18.1830 | 0.7560 | 18.1572 | 0.7571 | 17.3974 | 0.3912 | 18.2168 | 0.7569 | 21.1809 | 0.91668 |
Satellite image6 | 22.4419 | 0.8542 | 21.1909 | 0.8160 | 21.0133 | 0.7716 | 22.5738 | 0.8542 | 22.9081 | 0.85038 |
Satellite image7 | 17.2417 | 0.7913 | 16.8802 | 0.8247 | 16.9702 | 0.7810 | 16.8993 | 0.7749 | 23.4707 | 0.92476 |
Satellite image8 | 17.1414 | 0.7444 | 16.4690 | 0.7612 | 17.8660 | 0.8831 | 17.2795 | 0.8600 | 27.0487 | 0.89289 |
Test Images | WOA | FPA | PSO | BA | HSOA |
---|---|---|---|---|---|
Satellite image1 | 9.6048E-08 | 1.0350E-07 | 5.4459E-08 | 2.3562E-08 | 9.4807E-16 |
Satellite image2 | 9.2569E-08 | 9.3650E-08 | 1.0614E-07 | 6.3755E-08 | 4.0982E-15 |
Satellite image3 | 3.9561E-08 | 3.9770E-08 | 2.6169E-08 | 7.3730E-08 | 3.5838E-10 |
Satellite image4 | 2.6712E-08 | 6.4477E-08 | 5.5728E-02 | 1.8992E-08 | 4.5094E-12 |
Satellite image5 | 1.0176E-07 | 6.1097E-08 | 2.0845E-08 | 8.6422E-08 | 2.2787E-15 |
Satellite image6 | 5.0916E-08 | 6.2483E-08 | 1.0282E-07 | 1.0859E-07 | 3.4058E-12 |
Satellite image7 | 1.0878E-07 | 1.0263E-07 | 1.8820E-05 | 2.9401E-08 | 2.1315E-11 |
Satellite image8 | 7.4459E-08 | 6.4278E-08 | 4.4221E-08 | 6.6786E-09 | 4.5382E-16 |
Test Images | WOA | FPA | PSO | BA |
---|---|---|---|---|
Satellite image1 | P < 0.05 | P < 0.05 | P < 0.05 | P < 0.05 |
Satellite image2 | P < 0.05 | P < 0.05 | P < 0.05 | P < 0.05 |
Satellite image3 | P < 0.05 | P < 0.05 | P < 0.05 | P < 0.05 |
Satellite image4 | P < 0.05 | P < 0.05 | P < 0.05 | P < 0.05 |
Satellite image5 | P < 0.05 | P < 0.05 | P < 0.05 | P < 0.05 |
Satellite image6 | P < 0.05 | P < 0.05 | P < 0.05 | P < 0.05 |
Satellite image7 | P < 0.05 | P < 0.05 | P < 0.05 | P < 0.05 |
Satellite image8 | P < 0.05 | P < 0.05 | P < 0.05 | P < 0.05 |
T | PSNR | FSIM | CPU TIME | |||
---|---|---|---|---|---|---|
MEAN | STD. | MEAN | STD. | MEAN | STD. | |
FCN | 22.3470 | 7.39E-08 | 0.8980 | 6.97E-03 | 13.2145 | 3.21E-05 |
ISBF | 22.3392 | 7.40E-08 | 0.8880 | 5.14E-08 | 4.2146 | 4.21E-04 |
SOM-PCNN | 23.9181 | 6.97E-03 | 0.9080 | 3.21E-05 | 15.2142 | 5.21E-07 |
3DPCNN-HSOA | 24.6211 | 5.21E-09 | 0.9153 | 4.84E-11 | 2.0145 | 6.65E-06 |
ALGORITHM | BDE | PRI | GCE | VOI | TIME |
---|---|---|---|---|---|
3DPCNN-HSOA | 8.3161 | 0.7774 | 0.2586 | 3.2826 | 1.8415 |
LSA | 10.2151 | 0.7255 | 0.2954 | 3.6661 | 5.2141 |
MS | 8.9881 | 0.7125 | 0.2865 | 3.5841 | 3.5147 |
GLCM | 8.8541 | 0.7188 | 0.3011 | 3.8414 | 10.3214 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, H.; Xing, Z.; Song, W. Three Dimensional Pulse Coupled Neural Network Based on Hybrid Optimization Algorithm for Oil Pollution Image Segmentation. Remote Sens. 2019, 11, 1046. https://doi.org/10.3390/rs11091046
Jia H, Xing Z, Song W. Three Dimensional Pulse Coupled Neural Network Based on Hybrid Optimization Algorithm for Oil Pollution Image Segmentation. Remote Sensing. 2019; 11(9):1046. https://doi.org/10.3390/rs11091046
Chicago/Turabian StyleJia, Heming, Zhikai Xing, and Wenlong Song. 2019. "Three Dimensional Pulse Coupled Neural Network Based on Hybrid Optimization Algorithm for Oil Pollution Image Segmentation" Remote Sensing 11, no. 9: 1046. https://doi.org/10.3390/rs11091046
APA StyleJia, H., Xing, Z., & Song, W. (2019). Three Dimensional Pulse Coupled Neural Network Based on Hybrid Optimization Algorithm for Oil Pollution Image Segmentation. Remote Sensing, 11(9), 1046. https://doi.org/10.3390/rs11091046