[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Next Article in Journal
Correction: Balsamo, G., et al. Satellite and In Situ Observations for Advancing Global Earth Surface Modelling: A Review. Remote Sensing 2018, 10, 2038
Next Article in Special Issue
Three Dimensional Pulse Coupled Neural Network Based on Hybrid Optimization Algorithm for Oil Pollution Image Segmentation
Previous Article in Journal
Correction: Olmedo, E., et al. Seven Years of SMOS Sea Surface Salinity at High Latitudes: Variability in Arctic and Sub-Arctic Regions. Remote Sensing 2018, 10, 1772
Previous Article in Special Issue
Estimating the Volume of Oil Tanks Based on High-Resolution Remote Sensing Images
You seem to have javascript disabled. Please note that many of the page functionalities won't work as expected without javascript enabled.
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Masi Entropy for Satellite Color Image Segmentation Using Tournament-Based Lévy Multiverse Optimization Algorithm

1
College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China
2
Departamento de Ciencias Computacionales, Universidad de Guadalajara, CUCEI, Av. Revolución 1500, 44430 Guadalajara, Jalisco, Mexico
*
Author to whom correspondence should be addressed.
Remote Sens. 2019, 11(8), 942; https://doi.org/10.3390/rs11080942
Submission received: 3 April 2019 / Revised: 13 April 2019 / Accepted: 16 April 2019 / Published: 18 April 2019
(This article belongs to the Special Issue Image Optimization in Remote Sensing)

Abstract

:
A novel multilevel threshold segmentation method for color satellite images based on Masi entropy is proposed in this paper. Lévy multiverse optimization algorithm (LMVO) has a strong advantage over the traditional multiverse optimization algorithm (MVO) in finding the optimal solution for the segmentation in the three channels of an RGB image. As the work advancement introduces a Lévy multiverse optimization algorithm which uses tournament selection instead of roulette wheel selection, and updates some formulas in the algorithm with mutation factor. Then, the proposal is called TLMVO, and another advantage is that the population diversity of the algorithm in the latest iterations is maintained. The Masi entropy is used as an application and combined with the improved TLMVO algorithm for satellite color image segmentation. Masi entropy combines the additivity of Renyi entropy and the non-extensibility of Tsallis entropy. By increasing the number of thesholds, the quality of segmenttion becomes better, then the dimensionality of the problem also increases. Fitness function value, average CPU running time, Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM) and Feature Similarity Index (FSIM) were used to evaluate the segmentation results. Further statistical evaluation was given by Wilcoxon’s rank sum test and Friedman test. The experimental results show that the TLMVO algorithm has wide adaptability to high-dimensional optimization problems, and has obvious advantages in objective function value, image quality detection, convergence performance and robustness.

1. Introduction

With the booming of artificial intelligence (IA) technology, in order to meet people’s needs, the practicality of computer vision technology is highly emphasized. Image segmentation is one of the main problems of digital image processing technology and machine vision technology [1], which can be either gray image segmentation or color image segmentation. By comparison, grayscale images contain less information. Meanwhile, color images contain more color information such as hue and saturation [2,3]. On the other hand, images have a wide range of applications in the fields of geographic graphic information systems, astronomy and earth science research. It is necessary to locate objects and boundaries accurately in satellite images. Therefore, color satellite image segmentation is a critical and challenging topic [4,5,6].
The existing image segmentation methods are mainly divided into the following categories: threshold segmentation, region growth, region division and merging, watershed algorithm, edge detection, histogram method, cluster analysis and wavelet transform among others. Threshold segmentation is widely used and it can be divided into bi-level threshold and multilevel threshold [7,8]. Bi-level threshold is the simplest segmentation method, as long as one gray value can be determined to divide the image into two regions of interest (ROI) [9]. In actual image processing, color images contain more than two ROI, for that reason only multilevel threshold methods can be adopted. The pixels are divided into groups, and, within each group, the pixels have intensity values within a specific range. Sezgin et al. [10] divided the image thresholding techniques into six groups according to information. These groups include methods based on histogram, clustering, entropy, object attributes, spatial and local information. The segmentation techniques that employ histograms and statistical information (variance of entropy) are the most used due to its practicality. An example of these kinds of approaches is Otsu’s algorithm, where each bar of the histogram represents a gray scale. In Otsu, the best threshold is obtained by computing the between class variance that exists among the two classes [11]. The higher the between-class variance is, the better the segmentation effect will be. As a basic and effective segmentation method, Otsu has been highly regarded and widely used for a long time. Today, people still have not stopped researching and utilizing it. In 2019, an accurate, scalable, polynomial time multistage threshold segmentation algorithm based on Otsu method has just been proposed [12]. Entropy-based methods, with their virtue of the charming basic mathematical concepts of entropy, has been infinitely improved and updated by researchers. In the image, the uniform region corresponds to the minimum entropy, while the non-uniform region defines the maximum entropy. Therefore, a better segmentation effect can be obtained by obtaining a larger Boltzmann–Gibbs entropy of the segmented image [13,14]. Therefore, entropy-based algorithms with different characteristics are well known. For instance, Fuzzy entropy [15], Renyi entropy [16], Shannon entropy [17], Tsallis entropy [18], and Kapur entropy [19]. Entropy-based thresholding has been widely used in multilevel image segmentation.
The main drawback of segmentation using entropy is to find the best configuration of thresholds. Each threshold increases the computational effort—for that reason, it is required the use of a search algorithm. Considering the above, segmentation is considered as an optimization problem in the literature, where entropy is used as an objective function. An interesting approach that employs optimization considers a hybridization of genetic algorithms and cross entropy methods (GACE) were proposed for solving continuous optimization [20]. An improved fuzzy entropy and Lévy flying firefly algorithm (FA) method is used for color image threshold segmentation [21]. By maximizing Shannon entropy or fuzzy entropy, the FA is utilized to image segmentation [22]. On the other hand, in 2005, Masi et al. proposed a newer and more coordinated Masi entropy which integrates the additivity of Renyi entropy and the non-extensibility of Tsallis entropy [23]. Fundamentally, Masi entropy is also a kind of innovation of Shannon entropy. By adjusting the entropy parameter r of Masi entropy, its application scope can be expanded. Swapnil Shubham et al. applied the concept of Masi entropy to multilevel thresholding of color images, and confirmed its potential to achieve a wide range of objectives in efficient multilevel image segmentation [24,25].
The prosperity of optimization field drives the development of many fields. The cross-fusion of different areas through optimization algorithm can bring more immeasurable value to people. With the introduction of the No Free Lunch (NFL) theorem, people have realized the universality of optimization [26]. In 2002, E. G. Talbi published an article about a taxonomy of hybrid metaheuristics [27]. E. A. Baniani proposed a hybrid particle swarm optimization (PSO) algorithm and a genetic algorithm (GA) in 2013 for multilevel maximum entropy criterion threshold selection [28]. A hybrid whale algorithm and simulated annealing optimization algorithm have been applied to feature selection in 2017 [29]. At present, the combination of optimization algorithm and image segmentation can be said to be very mature, with a relatively complete system. With the introduction of more new and effective algorithms and the improvement of image segmentation methods, the prospects in this field are very promising. An approach called Multiverse Optimization (MVO) was first proposed by S. Mirjalili in 2015, which belongs to the physically inspired metaheuristic algorithms [30]. With the proposal, it has received successive improvements and utilization by scholars. In 2016, MVO was applied to the study of photovoltaic parameters, and five parameters of the single-diode model of photovoltaic cells were extracted [31]. In 2017, MVO mixed the PSO to solve the problem of global numerical optimization and reactive optimization scheduling [32]. In 2018, China’s energy consumption was estimated using a self-adaptive MVO optimizer support vector machine with rolling cross-validation [33]. In 2019, the multi-objective MVO algorithm was utilized for grayscale image segmentation [34]. Compared with the traditional algorithm, the MVO algorithm has better performance, but there are still some flaws in slow convergence, low accuracy and ease of being trapped in the local optimal. Roulette wheel selection is used as a mechanism for determining the optimal universe in MVO. However, when the fitness function of the algorithm is so close at the later stage, the selection advantage of the optimal universe is greatly weakened, and it is easy to fall into local solutions. To solve these drawbacks, this paper proposed the use of the tournament selection. By calculating the reciprocal of fitness function, the optimal universe can be determined. This is because, in the minimization problem, tournament selection is better than roulette wheel selection, and can maintain a strong and continuous update even at the end of the iterative process, which has been proved in the related literature [35,36].
Regarding the improvement of MVO, an enhanced version that merges the MVO with Lévy flight (LMVO) has recently been proposed [37]. When Lévy random walk is added to MVO appropriately, the algorithm not only improves the accuracy, but also enhances the robustness. As a promotion of the work, the mutation factor is added to the location update while replacing the screening mechanism, which ensures the diversity of the population in the later stage of the algorithm. These improvements are conducive to achieving a better balance between the exploration and exploitation of the algorithm, improving the accuracy of local optimization and the ability of global optimization. Therefore, this article presents an improved version of the LMVO called TLMVO including a tournament selection operator instead of the roulette wheel. As a real application, the TLMVO has been used for image thresholding using the Masi entropy as a fitness function. The proposal is tested using color satellite images that are more complicated than benchmark datasets. The performance of the improved algorithm is evaluated by considering the accuracy of the optimization, the quality of the segmentation and a statistical comparative analysis.
The remainder of this paper is organized as follows: Section 2 outlines the multi-threshold problem and Masi entropy. Section 3 gives an overview of MVO followed by its mathematical model. The proposed TLMVO-based multilevel thresholding method is presented in Section 4, where the basic instructions of three strategy are also illustrated. Simulation experiments and results analysis are described in Section 5. Finally, Section 6 concludes the work and suggests some directions for future studies.

2. Problem Statement

2.1. Summary Description of Multilevel Thresholding

Assuming that a color image with dimension M × N has L gray values 0 , 1 , , L 1 for each of the color frame (red, green, and blue). L is considered as 256.
In each frame, let n i represent the number of pixels with gray value of i . Correspondingly, the distribution probability p i of the i-th gray value is indicated as:
p i = n i M × N ,
0 L 1 p i = 1 , p i 0 .
Suppose there are K thresholds. Then, t 1 , t 2 , , t K can divide the the gray levels of the given image into K + 1 classes, for which t represents threshold value. For multilevel thresholding, define different classes as:
0 , t 1 1 M 0 t 1 , t 2 1 M 1 t K , L 1 M K ,
where t 1 < t 2 < < t K . Then t 0 = 0 and t K + 1 = L .

2.2. Masi Entropy

Most of the entropy testing methods for image segmentation need to obtain the maximum entropy. The effect of the segmentation between the object and the background depends on the value of the entropy. Experimental results have shown that fitness function value of Kapur’s, Tsallis, Renyi’s, and Masi’s entropy are sorted as Kapur’s < Tsallis < Renyi’s < Masi’s [24].
For multilevel thresholding image segmentation of K thresholds, the class probabilities are defined as:
ω 0 = i = 0 t 1 1 p i , ω 1 = i = t 1 t 2 1 p i , ω 2 = i = t 2 t 3 1 p i , , ω K = i = t K L 1 p i .
Furthermore, the probability distribution defined above is normalized, and each new set of probability distribution is obtained in different classes, which can be expressed by mathematical formulas as:
D M 0 : p 0 ω 0 , p 1 ω 0 , , p t 1 1 ω 0 , D M 1 : p t 1 ω 1 , p t 1 + 1 ω 1 , , p t 2 1 ω 1 , D M K : p t K ω K , p t K + 1 ω K , , p L 1 ω K .
The entropy value of the image can be represented as:
H j = 1 1 r log 1 ( 1 r ) i = t j t j + 1 1 ( p i ω j ) log ( p i ω j ) ,
where 0 j K . The entropy is represented by H , and r is the value of the entropic parameter which is set to 1.2. Then, the objective function can be mathematically described by:
ψ t 1 , t 2 , , t K = H 1 + H 2 + + H K ,
for which the definition of the optimal threshold of Masi is as follows:
t 1 , t 2 , , t K = arg   max 0 < t 1 < t 2 < t K < L 1 ψ t 1 , t 2 , , t K .
For color images, as described above, Masi entropy is calculated for each color channel of the image. Using algorithms, the objective function defined in Equation (7) is maximized by Equation (8), the threshold of each channel is calculated separately, and the segmented RGB images are formed by using these thresholds. Using the resulting optimal threshold, a final segmented image is formed.

3. Multiverse Optimization Algorithm

The Basic Multiverse Optimization Algorithm

Inspired by the Big Bang and Quantum Mechanics [38,39], each universe is regarded as a possible solution vector, treating an object in the universe as a variable in the corresponding solution vector. Each universe has a corresponding inflation rate, which is seen as fitness function value. Black holes are used to receive objects and exist in the universe with a low rate of inflation; white holes are used to send out objects and exist in the universe with a high rate of inflation; wormholes are tunnels between black holes and white holes; and the value of the expansion ratio is screened by a roulette mechanism to produce a white hole. According to the above rules, balanced exploration and development achieve optimal universe renewal. The following formulas correspond to the mathematical algorithmic models of the multiverse.

Mathematical Model

Considering the following definition of a universe:
U = x 1 1 x 1 2 x 1 d x 2 1 x 2 2 x 2 d x n 1 x n 2 x n d .
d represents the number of parameters and n refers to the number of solutions. Each element of U is then defined as:
x i j = x k j r 1 < N I U i x i j r 1 N I U i ,
where x i j represents the j-th parameter of i-th universe, U i represents the i-th universe, N I U i refers to the standard inflation rate of the i-th universe and x k j indicates the j-th parameter of k-th universe selected by a roulette wheel selection mechanism.
The new positions of the elements in the optimal universe are obtained by Equation (11):
x i + 1 j = x i j + T D R × u b j l b j × r 4 + l b j r 3 < H x i j T D R × u b j l b j × r 4 + l b j r 3 H r 2 < W E P x i j r 2 W E P ,
where H = 0.5 , r 1 , r 2 , r 3 , r 4 are random numbers in the interval [0,1]. Wormhole existence probability (WEP) is as follows:
W E P = min + l × max min L .
Here, min = 0.2 , max = 1 , l is the current iteration, and L is the maximum iteration. Travelling distance rate (TDR) is:
T D R = 1 l 1 / p L 1 / p .
p denotes the accuracy of mining capability. Both TDR and WEP are coefficients and the relationship between them is shown in Figure 1. Local and global optimization are realized through Equations (10) and (11). The pseudo-code of the MVO algorithm is given in Algorithm 1.
Algorithm 1 Pseudo-Code of the Traditional MVO Algorithm
1 Initialize the positions of universes;
2 Randomly initialize the population Sorted Universes (SU);
3  While iteration < Max_iteration do
4   For each universe indexed by i
5   Check if any search agent goes beyond the search space and amend it;
6   Calculate the objective function value of each universe (Inflation_rates of the universe)(NI);
7   Update the best solution Best_universe, and WEP and TDR;
8   For each object indexed by j
9  Using Roulette Wheel Selection methods and the idea of wormhole, white hole, and black hole
to update the universe using Equation (10)
10   Update the position of object in the optimal universe using Equation (11)
11   End for
12   End for
13  End while

4. The Proposed Multilevel Thresholding Algorithm

The idea of MVO optimization algorithm is interesting, which combines physical concepts such as multiverse, wormhole, white hole, black hole and so on. The roulette selection mechanism is utilized in the selection of white holes/black holes, which makes the generation of black holes/white holes in the whole universe very random. Location updates are limited by factors such as current location and object range. Based on the above, in this paper, the roulette selection mechanism was replaced with the tournament selection. Inspired by Cuckoo Search Optimization (CS) [40,41], Flower Pollination Algorithm (FPA) [42,43] and Martingale Algorithm (DA) [44], LMVO has introduced the concept of Lévy flight into white hole/black update. Based on this, a better algorithm model is obtained by adding a mutation factor in this paper [37]. Taking the Masi entropy method as the objective function, through the proposed multiverse optimization algorithm, the maximum value of Masi entropy can be found quickly and stably. Finally, the optimal thresholds ( t R , t G , t B ) of three different color components (red, green and blue) in the input color image are determined, so as to achieve a better image segmentation effect.

4.1. Selection Schemes

In this section, the selection schemes are described. That is, the roulette selection mechanism of the original algorithm and the tournament selection used to replace the roulette selection mechanism in the algorithm proposed in this paper. Both mechanisms are selected based on fitness function values. Selection strategies are to judge the current individual and determine which individual is used for position update according to the fitness value in the hope of obtaining a higher fitness value in the next iteration. The selection strategy is to judge the current individual and determine which individual to use for location update according to the fitness value. Different selection strategies have different calculation methods of selection, and a more suitable selection mechanism with the algorithm can easily obtain better results to a large extent [45].

4.1.1. Roulette Wheel Selection

In roulette wheel selection [46], a roulette wheel is made up of all the individuals selected. The probability of a individual is proportional to its fitness value. That is, the larger the fitness value of a individual is, the greater the number of shares corresponding to that part of the roulette wheel will be. As can be seen from Figure 2, when the wheel stops after rotation, the pointer will randomly select, and the part that accounts for a large number of shares will have a great chance to be selected. Of course, we can find that all the parts have the chance to be selected. The probability of selection can be expressed by mathematical formula as:
P i = f i j = 1 n f i ,
where f i indicates the fitness value of the i-th position.
The advantage of Roulette is that each individual is likely to be selected. Consequently, the diversity of the population is preserved. However, the selection mechanism of roulette still has some shortcomings:
  • Outstanding individuals will introduce a bias in the beginning of the search that may cause a premature convergence and a loss of diversity.
  • If the fitness values of individuals in a group are very similar, the selection probability of the better and the worse individuals is very close, so it is difficult for the group to develop in a better direction.
  • Many references have proved that this option is not suitable for minimization [47,48].
  • The algorithm procedure of roulette wheel selection depicted in Algorithm 2.
Algorithm 2 Pseudo-Code of Roulette Wheel Selection
1 Procedure: Roulette wheel selection
2  While population size<pop_size do
3   Generate pop_size random number r
4   Calculate cumulative fitness, total fitness, total fitness(Pi) and sum of proportional fitness (Sum)
5    Spin the wheel pop_size times
6     If Sum < r then
7      Select the first chromosome, otherwise, select j-th chromosome
8     End If
9   End While
10  Return chromosomes with fitness value proportional to the size of selected wheel section
11 End Procedure

4.1.2. Tournament Selection

Tournament selection [49] is a mechanism similar to competition. The concept is quite simple and, with a probability of 68 % in the confidence interval [50], a group of values ( n ) was randomly selected from the fitness function values (all participants) of all individuals in the population ( N , n N ). Generate a random number r , r 0 , 1 ; according to the selection probability, generate the selection pressure p . The values in the selected group are compared (the contest), and the optimal value (the winner) is determined by the comparison of r and p . The optimal value is then substituted into the next iteration. Similarly, competition selection provides all individuals with the opportunity to compete fairly and the diversity of the population is preserved.
Tournament selection has several advantages:
  • Time complexity is more effective;
  • Not susceptible to optimal biasing;
  • No requirement for fitness scaling or sorting [45,48].
However, at the same time, there are also some shortcomings:
  • Suitable for small populations, large populations will lose diversity and fall into local optimum;
  • Relatively, slow convergence speed
Figure 3 illustrates this mechanism. Population size N is set to 8, and a group is randomly selected to participate in the competition. Membership size n is set to 3. Choose the optimal one through competition.
Algorithm 3 Pseudo-Code of Tournament Selection
1 Procedure: Tournament Selection
2  Determine the population size N
3   Generate the number of selected individuals n
4    If i < n then
5     Generate fitness values (Fi) for a set of selected individuals
6    End If
7   Select the minimum value in Fi and its corresponding index i
8  Returns the individual with the minimum fitness value
9 End Procedure
These two update mechanisms are different in principle. In this newly selected mechanism, a set of better values is selected according to the probability ratio among the existing fitness function values, and each selection is more focused on a better individual. The number of members in the group has a great influence on the optimal value selection, so we set an integer value ranging from 2 to the total number, called the tour parameters [51]. Here, we give the pseudo-code of tournament selection in Algorithm 3.

4.2. Lévy Flight

Lévy flight is very common in nature, which is a kind of mathematical model of rapid flight, rapid jump. It is usually used to describe the behavior of birds, insects and other flying animals [52]. In the past few years, many studies have proved that it has great advantages in improving the convergence speed of the optimization algorithm and the convergence of the global optimal solution. Usually, it is considered as an operator that permits to enhance metaheuristic algorithms [53,54]. The mathematical model can be described as:
L evy λ = 0.01 × μ × σ ν 1 β ,
where μ and ν obey the normal distribution, λ = β + 1 :
μ ~ N ( 0 , σ 2 ) ,   ν ~ N ( 0 , σ ν 2 ) ,
with
σ = Γ 1 + β × sin π β 2 Γ 1 + β 2 × β × 2 β 1 2 1 β , σ ν = 1 .
The step length s can be expressed as:
s = μ ν 1 β .
With the change of controlling parameter β , the shape of probability density function will also change, which will affect the shape of the tail region. Here, β is a constant, β = 1.5.
The selection strategy used in this paper, tournament selection, has the disadvantage of slow convergence. Lévy flight can be used as an operator for optimization improvement. In terms of global optimization of the algorithm, Lévy flight’s occasional large leap can effectively avoid falling into local optimization.

4.3. Tournament-Based Lévy Multiverse Optimization Algorithm

In this paper, the MVO algorithm is improved by changing selection schemes, adding the random walk strategy and improving the updating formula, being aimed at improving the wide adaptability of the MVO algorithm to high dimensional multimodal optimization problems.
Tournament selection is the most effective when dealing with minimization issues [34,35]. In this regard, we invert the fitness value in the code for tournament selection. Adding the competition mechanism in the universe to better cooperate with black holes and white holes for material renewal between the universe. More effectively, the maximum fitness function value is screened out for the updating of the next generation.
For the location update of the optimal universe, we made several additional optimization improvements. Firstly, the current position is changed to the local optimal position. Secondly, taking the advantage of cuckoo algorithm in position updating, two arbitrary positions in any universe are randomly selected to make a difference (mutation factor). The diversity of the population would decline sharply in the later period. The introduction of this mutation factor and Lévy ‘s random walk strategy improves the development ability and maintains the diversity of the population [55].
The improved position update formula can be expressed as:
x i + 1 j = x B e s t j + x a x b × r 3 + T D R × u b j l b j × L e v y + l b j r 2 < W E P x i j r 2 W E P ,
where x B e s t j represents the current optimal value, x a , x b indicate the position of two different objects in the universe, respectively:
T D R × u b j l b j + l b j .
This part has not changed much because this idea ensures that individuals can get random positions in the search space. In addition, the pseudo-code of the proposed algorithm shows in Algorithm 4.
Algorithm 4 Pseudo-Code of the Proposed Algorithm
1 Initialize the positions of universes;
2 Randomly initialize the population Sorted Universes (SU);
3  While iteration < Max_iteration do
4   For each universe indexed by i
5    Check if any search agent goes beyond the search space and amend it;
6    Calculate the reciprocal of the value of the objective function for each universe
(1/Inflation_rates of the universe)(1/NI);
7    Update the best solution Best_universe, and WEP and TDR;
8     For each object indexed by j
9  Using Tournament Selection methods and the idea of wormhole, white hole, and black hole
to update the universe using Equation (10)
10  Update the position of object in the optimal universe using Equation (19)
11   End for
12  End for
13 End while

4.4. The Proposed TLMVO-Based Multilevel Thresholding Method

Combining the TLMVO algorithm with a multilevel threshold method, Masi entropy is taken as the objective function. By determining the maximum entropy between classes, the corresponding optimal threshold is obtained, so as to obtain better image segmentation results. The position of the individual is determined by multiple thresholds, and different individuals make up the universe. The inflation rate of universe corresponds to the value of the objective function, thus establishing the relationship between the optimization algorithm and segmentation function.
From the overall perspective of the program, the individual and other related parameters are initialized, calculate the initial fitness function values with formulas Equations (6) and (7). The fitness function value is screened through the tournament selection mechanism, determine the optimal individual, and exchange individuals between the universe. Under the triple constraint of individual range Equation (20), wormhole existence rate (WEP) Equation (12), travel distance rate (TDR) Equation (13) and Lévy Flight Equation (15), the optimal universe was updated with formula Equation (20). The iterative loop determines the optimal threshold and completes the image segmentation. The overall flow chart is shown in Figure 4.

5. The Computational Experiments and Results

In order to evaluate the performance of the algorithm, computational experiments were carried out on the convergence curve of the segmentation function and the evaluation index of image segmentation effect. The general structure is as follows: Section 5.1 briefly introduces the basic experimental environment; the measured images, comparison algorithm and related parameters are given in Section 5.2; in Section 5.3, several performance measures are chosen to evaluate the segmentation effect; the experimental data are analyzed in Section 5.4 finally.

5.1. Experimental Setup

The computer is configured with Intel(R) Pentium(R) CPU [email protected] GHz (Intel, Santa Clara, CA, USA), Microsoft Windows 7 system (Microsoft, Redmond, WA, USA), and the operating environment is Matlab R2017b (The MathWorks Inc., Natick, MA, USA).
The proposed method is compared with several well-known metaheuristicss algorithms. Each of them contains different characteristics, including
  • The traditional MVO algorithm [30];
  • The state-of-the-art LMVO algorithm [37];
  • An interesting bionic algorithm named ant lion algorithm (ALO) which can always find the maximum in the latest metaheuristics algorithm [56];
  • A new complex swarm intelligent optimization technology, dragonfly algorithm (DA) [43];
  • FPA, inspired by the process of flower pollination of flowering plants in nature which is simple and requires fewer parameters to be adjusted [41,42];
  • An earlier proposed evolutionary algorithm, PSO [57,58,59,60];
  • CS which is based on the brood parasitism of some cuckoo species, along with Lévy flights’ random walks [39,40].
The seven comparison algorithms correspond to four relatively novel algorithms and three relatively basic algorithms, respectively. The parameters of these algorithms are selected from the references related to image segmentation, which are shown in Table 1.
Comparative experiments were conducted using control variable method. The maximum number of iterations for all algorithms is 500 and the number of population size is 25. For each image, each algorithm runs 30 times separately. The threshold dimension of K is divided into high dimension (K = 10, 12) and low dimension (K = 4, 6, 8).

5.2. Satellite Color Image Used

This paper presents a new improved TLMVO algorithm for satellite image segmentation using Masi entropy. In satellite images, there are different bands and different wavelength areas. The processing of satellite images is carried out in different wavebands (the full band combination specifications are presented in Table 2. Secondly, the image features are very dense and the information from one area to another changes rapidly. At the same time, satellite images are generally of high resolution. All these will affect the efficiency of the algorithm, which will lead to inefficiency of the algorithm and increase the amount of computation in segmentation. Therefore, the accurate segmentation of satellite images is a very challenging task [5].
Ten satellite images are selected for segmentation to achieve better contrast effect. Each threshold has a range of 0 , 256 , and thus the search space is 0 , 256 25 . The size and histogram of each satellite image are presented in Figure 5, which are from the aerial data set [62]. For each color image and threshold level, 30 independent running experiments were conducted [63,64]. The corresponding thresholds for each optimal solution are reported in Table 3.

5.3. Performance Metric

We performed the experimental from both Performance evaluation and Statistical evaluation. The methods used are shown in Table 4.

5.4. Implementation Results and Discussion

In this section, the experimental results of the TLMVO-Masi multilevel threshold are described and analyzed in detail. According to the above metrics, it is analyzed from three aspects: image performance indicators, segmentation function performance index and mathematical statistics of data results. The superiority of TLMVO algorithm over other effective algorithms is verified. The following is a sub-section discussion.

5.4.1. Image Segmentation Quality

Measuring the performance by intensity and accuracy, Structural Similarity Index (SSIM), Feature Similarity Index (FSIM), and Peak Signal to Noise Ratio (PSNR) are ultilized. Segmentation effects of 10 satellite images are shown in Figure 6. Different thresholds of different algorithms of an image run 30 times, and then correspond to three indexes. The overall data space size is 3 × 10 × 8 × 5 = 1200 (10 images, 8 algorithms, 5 thresholds). Average data results of 30 times are indicated in Table 5, Table 6 and Table 7, respectively. The higher the similarity between the original image and the segmented image, the greater the value (the maximum value of SSIM and FSIM is 1). The maximum value of the index corresponding to each threshold is indicated by a distinct mark in tables.
These three tables clearly show that, as the threshold value increases, the value of the indicator also increases. This indicates that the segmentation quality is improved with the increase of threshold number, which can also correspond to the segmentation renderings we have given. As the threshold value increases, the segmentation image becomes clearer.
From the label distribution, it can be seen that most of the three index values of the proposed algorithm are more outstanding than comparison algorithms. For instance, in the case of various thresholds of TLMVO:
  • In the SSIM table: the values of Image 1 and Image 3 are all higher than the comparison algorithm;
  • In the FSIM table: Image 3 and Image 6 yield excellence values compared with other algorithms in all cases;
  • In the PSNR table: the values in Image 1, Image 3, and Image 8 are all much better than the comparative algorithms.
In order to more clearly see the superiority of TLMVO, the three index values of each test image are integrated into three line graphs (as shown in Figure 7Figure 8 and Figure 9). The data of TLMVO algorithm are represented in green. The green line can include other colored lines. To some extent, the results confirm that the improved algorithm can achieve good image segmentation quality.

5.4.2. Fitness Function Value Analysis

A Masi entropy couple with an optimization algorithm to image segmentation is to take Masi entropy function as the fitness function of optimization. Therefore, the fitness function value can be a major concern to evaluate the performance of algorithm.
Table 8 is the average value of the fitness function values obtained by the TLMVO-Masi method for 30 times, wherein the maximum value of fitness functions corresponding to various threshold values are expressed by adding shadows. Under the condition of the maximum threshold, the convergence curves of the TLMVO algorithm compared with other algorithms are shown in Figure 10, which is mainly used for the analysis of convergence speed and robustness. The convergence curve of TLMVO is marked in red for distinction. In order to make a visual observation, furthermore, box plots corresponding to each set of convergence curves are produced to consolidate the judgment on the stability of the algorithm.
As the fitness function of the application, a Masi entropy mathematical model is non-extensive and additive, which can provide better threshold results than other segmentation methods [23]. In the table of fitness function values, Table 8, it can be seen that PSO as a basic optimization algorithm can obtain better results at low thresholds. At high thresholds, the results of TLMVO, LMVO, MVO, ALO and DA have little difference. According to the label distribution, LMVO and ALO can be regarded as the second best. Figure 10 presents that:
1. In terms of convergence curve: in the early stage, TLMVO did not rapidly obtain a large value in the first 100 generations, as shown in Figure 10a1,b1,e1,i1,j1. In the 200th generation, TLMVO algorithm is faster than other algorithms to obtain the maximum target value or close to the theoretical maximum target value, as shown in Figure 10a1,b1,e1,g1,i1,j1. After the 250th generation, other algorithms are largely not updated.
However, for TLMVO, the advantages of ALO and CS position updating are used for reference, and mutation factors are added to maintain good population diversity and continuous updating in the later period of operation. As an improvement of the LMVO algorithm, TLMVO still retains the advantages of Lévy flight to avoid the algorithm falling into local optimization, and to be able to jump to a mutation space for optimization occasionally. On the basis of LMVO, the screening mechanism of the optimal solution is improved, and the mutation factor is added in the location update, which achieves better convergence and robustness. Traditional MVO population regeneration is slow and variation occurs at intervals. The convergence curve is stepped rather than a rising smooth curve. In addition to hybrid algorithms, ALO algorithm is always superior to other algorithms. The overall fluctuation of FPA algorithm is relatively large, while CS is relatively small. The optimal values found by them have large deviations, and some of them belong to local optimum values. Overall, TLMVO provides a competitive solution compared with other metaheuristics optimizers.
2. In terms of algorithm stability: In all box graphs, the TLMVO algorithm shows good stability, generally the best value and the second best value. For instance, the box plots in (b2) and (j2) are the second best values, and the rest are the best values, visually representing the stability of TLMVO. Other algorithms either float too much or have a lot of outliers.
In conclusion, compared with the comparison algorithm, TLMVO has higher optimization accuracy, better robustness and stability. The validity and superiority of the algorithm are proved, and the purpose of improving the basic LMVO and MVO algorithms is achieved.

5.4.3. Complexity Analysis

Algorithm complexity is another important indicator of performance. Complexity is related to population size, number of iterations, number of cycles, threshold size and other factors. The time complexity of TLMVO, LMVO and MVO can be expressed as O ( I N D ) O F x , where I represents the maximum number of iterations, N denotes the population size, D indicates the threshold value, and F x corresponds to the Masi entropy function in this paper. As the number of thresholds increases, the complexity of the algorithm increases and the computing time becomes longer. In order to more intuitively analyze the computational complexity and time complexity of the algorithm, CPU time (in seconds) is selected for measurement. Each algorithm runs independently 30 times, and the average running time of the experiment is recorded in Table 9. The data in the table are integrated into a broken line graph, as shown in Figure 11. The image is used to sort the running time of each algorithm visually. The temporal ordering of algorithm can be expressed as (from large to small): A L O > C S > D A > T L M V O > M V O > L M V O > P S O > F P A . The results are in good agreement with the conclusions because the re-selected screening mechanism converges slowly. TLMVO is more effective for image segmentation when the time of TLMVO is similar to that of other algorithms.

5.4.4. Statistical Analysis

In order to better analyze the results, we chose two more secure data statistical tests, namely Wilcoxon’s rank sum test and Friedman test.
1. Wilcoxon’s rank sum test is a pair-wise test, which aims to detect the significant difference between the mean values of two samples. In this paper, they correspond to the behavior of the two algorithms. The fitness function of GSMVO (K = 12) algorithm is compared with other seven algorithms. All algorithms run the same 30 times. The corresponding results are given in Table 10. The probability of a statistical value, the p-value and the indicator h are set throughout the test to determine whether to accept or reject the null hypothesis. Let the null hypothesis be: “There is no significant difference between the proposed algorithm and other algorithms.” If the p-value is > 0.05 or h = 0, accept the null hypothesis, otherwise reject it. In addition, 67 of the 70 cases achieved superior results, which indicates that there is a significant difference between TLMVO and the other seven algorithms. In most cases, the TLMVO-based multilevel threshold algorithm outperforms the other seven algorithms.
2. Friedman test can be used to test the overall performance of data. The null hypothesis test approximate parameters are: H 0 , the median of the equality between the algorithms; H 1 , which is the alternative hypothesis, used to show the degree of difference; α : the rejection probability of the null hypothesis when the null hypothesis is true. If the p-value is less than the significance level, H 0 is rejected. A detailed description is in [67]. At one time, the rank serial numbers of the whole algorithm will be tested with the corresponding index data of the algorithm. It reflects the overall performance of the algorithm intuitively and quickly. We put all the index data mentioned above into the test and get Table 11 (the highest ranking is marked with shadows). From the rankings obtained, TLMVO shows superiority in any threshold of different pictures, although sometimes the rankings are very close or the same.
After all experiments and results analysis, it can be concluded that TLMVO has greatly improved on LMVO and MVO. Compared with other metaheuristics algorithms, the TLMVO algorithm has better accuracy, convergence and robustness in multi-threshold color satellite image segmentation. This method can be used as an effective method for multilevel image threshold segmentation.

6. Conclusions

This paper extensively studies the improved algorithm for color satellite image segmentation based on multilevel threshold. In order to solve the problem of a large amount of information and high precision of satellite image segmentation, a method combining the improved TLMVO algorithm with the much-anticipated Masi entropy in recent years is adopted. The results show that this method can be effectively applied to multilevel threshold segmentation of color images. Ten satellite images were used to test the multi-threshold performance of the algorithm. According to fitness function value, average CPU running time, Structural Similarity Index (SSIM), Feature Similarity Index (FSIM), and Peak Signal to Noise Ratio (PSNR), the segmentation results were evaluated. The results of Wilcoxon’s rank sum test and Friedman test were analyzed. The validity and stability of the improved algorithm are verified by qualitative and quantitative methods. As an improvement of LMVO and MVO algorithms, Tournament selection mechanism that is more suitable for optimization algorithm was selected. Drawing on the merits of CS algorithm and ALO algorithm, the mutation factor is added to improve the position updating formula. Compared with other seven algorithms, TLMVO has better convergence and robustness. The multilevel threshold segmentation method based on TLMVO has broad application prospects. In future work, other new effective algorithms will be learned and improved, and a simpler and more efficient optimization method will be found. It is also applied to various computer vision problems such as satellite image enhancement, remote sensing image feature extraction and so on.

Author Contributions

X.P. contributed to the idea of this paper; X.P. and C.L. performed the experiments; X.P. wrote the paper; D.O. and H.J. contributed to the revision of this paper; Y.L. did the mapping; W.S. provided fund support.

Funding

This research was funded by the National Nature Science Foundation of China (No. 31470714).

Acknowledgments

The authors would like to thank the anonymous reviewers for their constructive comments and suggestions.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Wang, A.; Zhang, W.; Wei, X. A review on weed detection using ground-based machine vision and image processing techniques. Comput. Electron. Agric. 2019, 158, 226–240. [Google Scholar] [CrossRef]
  2. Haindl, M.; Mikeš, S. A competition in unsupervised color image segmentation. Pattern Recognit. 2016, 57, 136–151. [Google Scholar] [CrossRef]
  3. Ayala, H.V.H.; Santos, F.M.D.; Mariani, V.C. Image thresholding segmentation based on a novel beta differential evolution approach. Expert Syst. Appl. 2015, 42, 2136–2142. [Google Scholar] [CrossRef]
  4. Bhandari, A.K.; Singh, V.K.; Kumar, A.; Singh, G.K. Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur’s entropy. Expert Syst. Appl. 2014, 41, 3538–3560. [Google Scholar] [CrossRef]
  5. Mlakar, U.; Potočnik, B.; Brest, J. A hybrid differential evolution for optimal multilevel image thresholding. Exp. Syst. Appl. 2016, 65, 221–232. [Google Scholar] [CrossRef]
  6. Gao, H.; Kwong, S.; Yang, J.; Cao, J. Particle swarm optimization based on intermediate disturbance strategy algorithm and its application in multi-threshold image segmentation. Inf. Sci. 2013, 250, 82–112. [Google Scholar] [CrossRef]
  7. Bhandari, A.K.; Kumar, A.; Singh, G.K. Tsallis entropy based multilevel thresholding for colored satellite image segmentation using evolutionary algorithms. Expert Syst. Appl. 2015, 42, 8707–8730. [Google Scholar] [CrossRef]
  8. Ali, M.; Ahn, C.W.; Pant, M. Multilevel image thresholding by synergetic differential evolution. Appl. Soft Comput. 2014, 17, 1–11. [Google Scholar] [CrossRef]
  9. Mittal, H.; Saraswat, M. An optimum multilevel image thresholding segmentation using non-local means 2D histogram and exponential Kbest gravitational search algorithm. Eng. Appl. Artif. Intell. 2018, 71, 226–235. [Google Scholar] [CrossRef]
  10. Sezgin, M. Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging 2004, 13, 146–168. [Google Scholar]
  11. Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
  12. Mohamed, H.; Merzban, M.E. Efficient solution of Otsu multilevel image thresholding: A comparative study. Exp. Syst. Appl. 2019, 116, 299–309. [Google Scholar]
  13. Kapur, J.; Sahoo, P.K.; Wong, A.K. A new method forgray-level picture thresholding using the entropy of the histogram. CVGIP 1985, 29, 273–285. [Google Scholar]
  14. Hinojosa, S.; Dhal, K.G.; Elaziz, M.A.; Oliva, D.; Cuevas, E. Entropy-based imagery segmentation for breast histology using the Stochastic Fractal Search. Neurocomputing 2018, 321, 201–215. [Google Scholar] [CrossRef]
  15. Pal, S.K.; King, R.A.; Hashim, A.A. Automatic gray level thresholding through index of fuzziness and entropy. Pattern Recognit. Lett. 1983, 1, 141–146. [Google Scholar] [CrossRef]
  16. Sarkar, S. A differential evolutionary multilevel segmentation of near infra-red images using Renyi’s entropy. In Proceedings of the International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA); Springer: Berlin/Heidelberg, Germany, 2013; Volume 199, pp. 699–706. [Google Scholar]
  17. Shannon, C.E. A mathematical theory of communication. MD Comput. 1997, 14, 306–317. [Google Scholar] [PubMed]
  18. Albuquerque, M.P.D.; Esquef, I.A.; Mello, A.R.G. Image thresholding using Tsallis entropy. Pattern Recognit. Lett. 2004, 25, 1059–1065. [Google Scholar] [CrossRef]
  19. Sumathi, R.; Venkatesulu, M.; Arjunan, S.P. Extracting tumor in MR brain and breast image with Kapur’s entropy based Cuckoo Search Optimization and morphological reconstruction filters. Biocybern. Biomed. Eng. 2018, 38, 918–930. [Google Scholar] [CrossRef]
  20. Lopez-Garcia, P.; Onieva, E.; Osaba, E. A metaheuristics based in the hybridization of Genetic Algorithms and Cross Entropy methods for continuous optimization. Expert Syst. Appl. 2016, 55, 508–519. [Google Scholar] [CrossRef]
  21. Pare, S.; Bhandari, A.K.; Kumar, A.; Singh, G.K. A new technique for multilevel color image thresholding based on modified fuzzy entropy and Lévy flight firefly algorithm. Comput. Electr. Eng. 2017, 70, 476–495. [Google Scholar] [CrossRef]
  22. Naidu, M.S.R.; Rajesh Kumar, P.; Chiranjeevi, K. Shannon and Fuzzy entropy based evolutionary image thresholding for image segmentation. Alex. Eng. J. 2017, 57, 1643–1655. [Google Scholar] [CrossRef]
  23. Masi, M. A step beyond Tsallis and Rényi entropies. Phys. Lett. 2005, 338, 217–224. [Google Scholar] [CrossRef]
  24. Kandhway, P.; Bhandari, A.K. A Water Cycle Algorithm-Based Multilevel Thresholding System for Color Image Segmentation Using Masi Entropy. Circuits Syst. Signal Process. 2018, 1–49. [Google Scholar] [CrossRef]
  25. Shubham, S.; Bhandari, A.K. A generalized Masi entropy based efficient multilevel thresholding method for color image segmentation. Multimed. Tools Appl. 2019, 1–42. [Google Scholar] [CrossRef]
  26. Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. Trans. Evol. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef]
  27. Talbi, E.G. A taxonomy of hybrid metaheuristics. J. Heuristics 2002, 8, 541–564. [Google Scholar] [CrossRef]
  28. Baniani, E.A.; Chalechale, A. Hybrid PSO and genetic algorithm for multilevel maximum entropy criterion threshold selection. Int. J. Hybrid Inf. Technol. 2013, 6, 131–140. [Google Scholar] [CrossRef]
  29. Mafarja, M.M.; Mirjalili, S. Hybrid Whale Optimization Algorithm with simulated annealing for feature selection. Neurocomputing 2017, 260, 302–312. [Google Scholar] [CrossRef]
  30. Mirjalili, S.; Mirjalili, S.M. A Hatamlou, Multiverse Optimizer: A nature-inspired algorithm for global optimization. Neural Comput. Appl. 2016, 27, 495–513. [Google Scholar] [CrossRef]
  31. Ali, E.E.; El-Hameed, M.A.; El-Fergany, A.A.; El-Arini, M.M. Parameter extraction of photovoltaic generating units using multi-verse optimizer. Sustain. Energy Technol. Assess. 2016, 17, 68–76. [Google Scholar] [CrossRef]
  32. Jangir, P.; Parmar, S.A.; Trivedi, I.N.; Bhesdadiya, R.H. A novel hybrid Particle Swarm Optimizer with multi verse optimizer for global numerical optimization and Optimal Reactive Power Dispatch problem. Eng. Sci. Technol. Int. J. 2017, 20, 570–586. [Google Scholar] [CrossRef]
  33. Wang, X.; Luo, D.; Zhao, X.; Sun, Z. Estimates of energy consumption in China using a self-adaptive multi-verse optimizer-based support vector machine with rolling cross-validation. Energy 2018, 152, 539–548. [Google Scholar] [CrossRef]
  34. Elaziz, M.A.; Oliva, D.; Ewees, A.A.; Xiong, S. Multilevel thresholding-based grey scale image segmentation using multi-objective multi-verse optimizer. Expert Syst. Appl. 2019, 125, 112–129. [Google Scholar] [CrossRef]
  35. Noraini, M.; Geraghty, J. Genetic algorithm performance with different selection strategies in solving TSP. World Congr. Eng. 2011, II, 4–9. [Google Scholar]
  36. Medhane, D.V.; Sangaiah, A.K. Search space-based multi-objective optimization evolutionary algorithm. Comput. Electr. Eng. 2017, 58, 126–143. [Google Scholar]
  37. Jia, H.; Peng, X.; Song, W.; Lang, C.; Xing, Z.; Sun, K. Multiverse Optimization Algorithm Based on Lévy Flight Improvement for Multithreshold Color Image Segmentation. IEEE Access 2019, 7, 32805–32844. [Google Scholar] [CrossRef]
  38. Barrow, J.D.; Davies, P.C.W.; Harper, C.L. Science and Ultimate Reality: Quantum Theory, Cosmology and Complexity. Am. J. Phys. 2004, 74, 245–247. [Google Scholar]
  39. Khoury, J.; Ovrut, B.A.; Seiberg, N.; Steinhardt, P.J.; Turok, A.N. From big crunch to big bang. Phys. Rev. D 2001, 65, 381–399. [Google Scholar] [CrossRef]
  40. Yang, X.S.; Deb, S. Cuckoo Search via Lévy Flights. Mathematics 2010, 71, 210–214. [Google Scholar]
  41. Joshi, A.S.; Kulkarni, O. Cuckoo search optimization—A review. Sci. Direct Mater. 2017, 4, 7262–7269. [Google Scholar] [CrossRef]
  42. Yang, X.S. Flower pollination algorithm for global optimization. Unconv. Comput. Nat. Comput. 2012, 7445, 240–249. [Google Scholar]
  43. Shen, L.; Fan, C.; Huang, X. Multilevel image thresholding using modified flower pollination algorithm. IEEE Access 2018, 6, 30508–30518. [Google Scholar] [CrossRef]
  44. Xu, L.; Jia, H.; Lang, C.; Peng, X.; Sun, K. A novel method for multilevel color image segmentation based on dragonfly algorithm and differential evolution. IEEE Access 2019, 99, 2169–3536. [Google Scholar] [CrossRef]
  45. Goldberg, D.E.; Deb, K. A comparative analysis of selection schemes used in genetic algorithms. Found. Genet. Algorithms 1991, 1, 69–93. [Google Scholar]
  46. Handbook of Evolutionary Computation; IOP Publishing Ltd.: Bristol, UK; Oxford University Press: Oxford, UK, 1997.
  47. Blickle, T.; Thiele, L. A Comparison of Selection Schemes used in Genetic Algorithms. Evol. Comput. 1996, 4, 361–394. [Google Scholar] [CrossRef]
  48. Baker, J.E. Adaptive Selection Methods for Genetic Algorithms. In Proceedings of the First International Conference on Genetic Algorithms & Their Applications, Pittsburg, CA, USA, 24–26 July 1985. [Google Scholar]
  49. Li, J.; Tan, Y. Loser-Out Tournament-Based Fireworks Algorithm for Multimodal Function Optimization. IEEE Trans. Evol. Comput. 2017, 99. [Google Scholar] [CrossRef]
  50. Das, S.; Mallipeddi, R.; Maity, D. Adaptive evolutionary programming with p-best mutation strategy(Article). Swarm Evol. Comput. 2013, 9, 58–68. [Google Scholar] [CrossRef]
  51. Al-Betar, M.A.; Awadallah, M.A.; Khader, A.T.; Bolaji, A.L. Tournament-based harmony search algorithm for non-convex economic load dispatch problem. Appl. Soft Comput. 2016, 47, 449–459. [Google Scholar] [CrossRef]
  52. Ralf, M.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339, 1–77. [Google Scholar]
  53. Dinkar, S.K.; Deep, K. An efficient opposition based Lévy Flight Antlion optimizer for optimization problems. Int. J. Comput. Sci. 2018, 29, 119–141. [Google Scholar] [CrossRef]
  54. Zhang, H.; Xie, J.; Hu, Q.; Shao, L.; Chen, T. A hybrid DPSO with Lévy flight for scheduling MIMO radar tasks. Appl. Soft Comput. 2018, 71, 242–254. [Google Scholar] [CrossRef]
  55. Jain, M.; Singh, V.; Rani, A. A novel nature-inspired algorithm for optimization: Squirrel search algorithm. Swarm Evol. Comput. 2019, 44, 148–175. [Google Scholar] [CrossRef]
  56. Mirjalili, S. The Ant Lion Optimizer. Adv. Eng. Softw. 2015, 83, 80–98. [Google Scholar] [CrossRef]
  57. Kennedy, J. Particle swarm optimization. In Proceedings of the ICNN’95 International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
  58. Akay, B. A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding. Appl. Soft Comput. 2013, 13, 3066–3091. [Google Scholar] [CrossRef]
  59. Liu, Y.; Mu, C.; Kou, W.; Liu, J. Modified particle swarm optimization-based multilevel thresholding for image segmentation. Soft Comput. 2015, 19, 1311–1327. [Google Scholar] [CrossRef]
  60. Gao, H.; Pun, C.M.; Kwong, S. An efficient image segmentation method based on a hybrid particle swarm algorithm with learning strategy. Inf. Sci. 2016, 369, 500–521. [Google Scholar] [CrossRef]
  61. Wang, M.; Wu, C.; Wang, L.; Xiang, D.; Huang, X. A feature selection approach for hyperspectral image based on modified ant lion optimizer. Knowl. Based Syst. 2019, 168, 39–48. [Google Scholar] [CrossRef]
  62. The Aerial Data Set. Available online: https://landsat.visibleearth.nasa.gov/view.php?id=144523 (accessed on 10 March 2019).
  63. Pare, S.; Kumar, A.; Bajaj, V.; Singh, G.K. An efficient method for multilevel color image thresholding using cuckoo search algorithm based on minimum cross entropy. Appl. Soft Comput. 2017, 61, 570–592. [Google Scholar] [CrossRef]
  64. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef]
  65. Zhang, L.; Zhang, L.; Mou, X. FSIM: A Feature Similarity Index for Image Quality Assessment. IEEE Trans. Image Process. 2011, 20, 2378–2386. [Google Scholar] [CrossRef]
  66. Roy, R.; Laha, S. Optimization of stego image retaining secret information using genetic algorithm with 8-connected PSNR. Procedia Comput. Sci. 2015, 60, 468–477. [Google Scholar] [CrossRef]
  67. Pare, S.; Bhandari, A.K.; Kumar, A.; Singh, G.K. An optimal color image multilevel thresholding technique using grey-level co-occurrence matrix. Expert Syst. Appl. 2017, 87, 335–362. [Google Scholar] [CrossRef]
  68. Oliva, D.; Hinojosa, S.; Cuevas, E.; Pajares, G.; Avalos, O.; Gálvez, J. Cross entropy based thresholding for magnetic resonance brain images using Crow Search Algorithm. Expert Syst. Appl. 2017, 79, 164–180. [Google Scholar] [CrossRef]
  69. Ibrahim, R.A.; Elaziz, M.A.; Lu, S. Chaotic opposition-based grey-wolf optimization algorithm based on differential evolution and disruption operator for global optimization. Expert Syst. Appl. 2018, 108, 1–27. [Google Scholar] [CrossRef]
  70. Derrac, J.; García, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 2011, 1, 3–18. [Google Scholar] [CrossRef]
Figure 1. WEP versus TDP [30].
Figure 1. WEP versus TDP [30].
Remotesensing 11 00942 g001
Figure 2. The roulette wheel selection.
Figure 2. The roulette wheel selection.
Remotesensing 11 00942 g002
Figure 3. The tournament selection.
Figure 3. The tournament selection.
Remotesensing 11 00942 g003
Figure 4. The flow chart of the TLMVO-based multilevel thresholding method.
Figure 4. The flow chart of the TLMVO-based multilevel thresholding method.
Remotesensing 11 00942 g004
Figure 5. The experimental satellite images and corresponding histogram images.
Figure 5. The experimental satellite images and corresponding histogram images.
Remotesensing 11 00942 g005aRemotesensing 11 00942 g005b
Figure 6. Segmentation renderings of 10 satellite images.
Figure 6. Segmentation renderings of 10 satellite images.
Remotesensing 11 00942 g006aRemotesensing 11 00942 g006bRemotesensing 11 00942 g006cRemotesensing 11 00942 g006d
Figure 7. Broken line chart of SSIM indicator.
Figure 7. Broken line chart of SSIM indicator.
Remotesensing 11 00942 g007
Figure 8. Broken line chart of FSIM indicator.
Figure 8. Broken line chart of FSIM indicator.
Remotesensing 11 00942 g008
Figure 9. Broken line chart of FSIM indicator.
Figure 9. Broken line chart of FSIM indicator.
Remotesensing 11 00942 g009
Figure 10. The fitness function curves and box charts obtained by the TLMVO method of 10 satellite images.
Figure 10. The fitness function curves and box charts obtained by the TLMVO method of 10 satellite images.
Remotesensing 11 00942 g010aRemotesensing 11 00942 g010b
Figure 11. Broken line chart of the CPU Time indicator.
Figure 11. Broken line chart of the CPU Time indicator.
Remotesensing 11 00942 g011
Table 1. Parameters of algorithms.
Table 1. Parameters of algorithms.
ReferenceAlgorithmParametersValue
[30]MVO 1Mining capability p 1 / 6
Random parameters r 1 , r 2 , r 3 , r 4 [0,1]
Contrast parameter H 0.5
[37]LMVO 1Lévy controlling constant β 1.5
TLMVO 1Selection pressure p [0,1]
Screening probability r [0,1]
[61]ALOSwitch possibility0.5
[44]DAInertial weight[0.5,0.9]
Seperation weight[0,0.2]
Alignment weight
Cohesion weight
Maximum velocity25.5
Food attraction weight[0,2]
Enemy distraction weight[0,0.1]
[43]FPASwitch possibility0.4
Lévy controlling constant β 1.5
[59]PSOMaximum inertia weight0.9
Minimum inertia weight0.4
Learning factors c 1 and c 2 2
Maximum velocities+120
Minimum velocities−120
[7]CSMutation probability value P a 0.25
Scale factor β 1.5
1 As an improvement of the algorithm, the same parameters are not given repeatedly.
Table 2. Characteristics and Use [4].
Table 2. Characteristics and Use [4].
Band No.NameWavelength (μm)Characteristics and Use
1Visible blue0.45–0.52Maximum water penetration
2Visible green0.52–0.60Good for measuring plant Vigor
3Visible red0.63–0.69Vegetation discrimination
4Near infrared0.76–0.90Biomass and shoreline Mapping
5Middle Infrared1.55–1.75Moisture content of soil
6Thermal Infrared10.4–12.5Soil moisture, thermal mapping
7Middle Infrared2.08–2.35Mineral mapping
Table 3. Optimal solution for each algorithm under Masi entropy.
Table 3. Optimal solution for each algorithm under Masi entropy.
TEST IMAGESKTLMVOLMVOMVOALODAFPAPSOCS
RGBRGBRGBRGBRGBRGBRGBRGB
1457 100 140 18250 93 131 16843 83 121 15857 100 140 18256 98 138 17343 83 122 16357 100 143 18156 98 138 17343 83 121 15857 100 140 18256 98 138 17343 83 122 16357 103 142 18456 98 138 17343 81 121 15871 119 170 20550 69 106 15846 84 115 16457 100 140 18256 98 138 17343 83 122 16354 93 138 18348 103 138 18047 91 117 166
657 80 111 142 172 20250 81 112 144 175 20543 74 103 130 163 22955 76 107 139 172 20247 65 99 134 166 20338 57 88 121 152 17157 80 111 141 172 20246 64 93 122 151 18038 57 85 112 139 16657 80 111 142 172 20250 81 112 144 175 20538 57 85 113 140 16657 82 114 144 175 20346 64 93 122 152 18038 57 85 112 139 16660 72 88 132 142 16942 57 94 115 128 15722 60 107 124 143 17157 80 111 142 172 20246 64 93 123 152 18040 63 90 117 143 16654 99 117 139 169 18654 90 114 140 165 18139 83 104 117 140 172
854 70 94 119 145 172 200 22737 50 66 90 114 138 160 18338 55 77 100 123 148 167 23046 64 82 103 127 150 177 20346 61 84 107 131 155 180 20538 49 67 88 109 130 152 17155 72 94 117 139 162 184 20646 59 80 102 127 152 180 20538 52 71 91 112 133 154 17146 64 84 108 132 156 180 20646 63 87 110 134 157 181 20538 53 72 92 113 134 155 17154 70 94 118 141 164 186 20843 57 78 98 120 155 180 20538 53 74 95 116 136 155 17147 51 70 84 120 147 191 21235 43 54 66 93 122151 18240 46 63 69 106 135 157 21446 64 84 108 131 156 180 20546 61 85 109 134 158 182 20538 53 74 94 114 134 155 17144 60 85 117 132 160 194 21043 63 83 107 130 140 160 20046 61 81 102 113 125 135 161
1046 57 67 81 99 117 135 156 179 20541 56 71 89 107 125 144 163 183 20538 52 68 85 103 120 137 155 171 18446 63 79 97 115 133 152 171 189 20837 50 63 82 101 120 140 161 182 20533 46 64 85 107 129 154 171 206 20846 63 77 93 112 131 151 170 189 20841 56 68 84 102 118 136 158 181 20533 46 60 77 94 110 123 138 155 17146 64 80 97 115 133 151 171 191 21041 56 71 90 108 127 145 164 183 20533 46 58 74 91 107 124 141 156 17155 72 91 112 132 151 171 189 207 22741 56 70 88 106 120 137 160 183 20638 49 65 80 96 111 126 141 156 17139 53 81 97 97 107 127 160 188 20640 50 71 82 97 119 140 154 190 22725 40 51 60 74 100 101 127 147 17646 64 82 104 126 146 167 187 206 22741 56 71 89 107 125 144 163 184 20533 46 59 74 90 106 122 139 155 17144 54 62 88 99 115 157 168 193 21039 52 61 77 92 101 126 135 159 16730 39 66 73 79 109 123 136 146 164
1246 57 67 82 99 115 132 149 167 186 205 22741 56 68 84 100 116 132 148 164 181 197 20723 33 41 50 62 76 90 106 122 138 155 17146 63 76 89 105 122 139 155 172 189 207 22737 47 57 69 84 99 115 132 149 166 184 20533 46 57 70 84 98 112 126 140 155 171 18446 63 76 91 105 119 135 153 175 191 208 22737 50 62 78 95 113 130 146 161 175 188 20530 40 50 63 77 92 107 122 135 149 163 17346 57 73 96 116 136 155 171 184 198 212 22737 48 61 77 93 110 126 140 155 169 187 20533 43 56 69 82 94 106 117 129 141 156 17146 57 67 87 107 125 142 159 177 193 210 22743 56 68 83 99 114 130 148 165 181 197 20730 43 55 71 87 103 114 126 138 152 163 17364 74 85 91 95 120 133 143 156 173 182 19744 58 65 84 87 97 108 112 129 150 164 18119 30 40 45 57 62 71 106 122 147 168 18346 57 73 91 110 129 147 168 188 207 227 25637 50 63 80 96 111 126 140 155 171 186 2051 33 44 57 71 86 101 116 130 144 158 17142 48 59 70 93 103 120 142 161 178 190 20547 53 61 69 82 92 99 119 128 154 174 18939 45 49 67 72 92 107 118 155 164 167 171
2460 117 174 19738 80 123 17033 88 141 17060 117 174 19759 117 157 18733 88 141 17050 88 126 18238 111 157 18744 89 141 17050 88 126 18259 117 157 18733 88 141 17050 89 126 18263 117 157 18733 88 141 17767 84 116 19564 115 164 21358 95 138 17858 95 138 17838 111 157 18733 88 141 17041 77 120 17958 117 157 18451 94 148 187
630 61 94 127 174 19738 63 93 124 158 18719 46 88 135 158 19343 81 121 172 190 21238 61 91 123 157 18719 46 88 135 157 18135 69 105 137 174 19738 6192 123 158 18719 46 82 109 141 17035 69 106 138 174 19738 63 93 124 158 18719 46 82 109 141 17042 76 112 143 177 20538 63 95 125 160 18927 59 93 141 168 19351 80 97 135 176 18651 96 111 160 191 21436 91 116 148 173 18530 68 106 138 177 20538 63 93 124 160 18919 46 88 135 157 18140 73 114 142 173 19133 42 77 122 162 19425 68 99 139 169 187
823 50 79 112 141 172 190 21236 55 78 103 127 155 174 20219 44 75 101 135 157 177 19718 42 68 94 120 147 177 20536 57 81 105 128 157 179 20819 46 78 103 135 157 177 20323 46 71 95 120 146 177 20536 56 80 104 127 155 174 20217 33 57 83 108 136 157 18130 61 90 118 145 172 190 21238 59 83 106 130 157 177 20817 34 59 85 109 136 157 18539 66 95 120 146 172 190 21236 58 82 107 130 157 179 20819 46 76 101 133 149 170 19342 69 100 123 134 149 186 21239 45 80 105 133 166 208 21125 33 46 56 90 139 160 19530 58 87 117 144 172 190 21238 59 83 107 130 157 177 20819 46 78 102 133 149 170 19719 61 75 104 119 142 170 19037 59 91 108 138 160 178 20318 35 71 98 127 144 161 194
1017 37 59 82 105 126 148 172 190 21217 37 59 82 105 126 148 172 190 21217 33 56 80 102 128 141 157 178 20322 42 63 84 106 126 148 172 190 21232 44 59 80 101 125 152 168 187 20817 32 52 74 93 113 136 157 177 20317 35 57 81 103 126 149 174 190 21236 52 68 86 104 121 138 157 177 20217 31 49 69 91 111 133 149 170 19317 37 60 83 105 126 149 172 190 21232 48 67 87 108 129 154 170 187 20817 34 57 81 102 128 141 159 178 20317 34 57 81 102 128 141 159 178 20338 59 86 110 136 155 170 187 208 22419 33 53 74 94 115 137 157 178 20317 48 78 128 144 163 168 181 187 21624 59 68 102 113 125 152 162 173 19625 33 41 59 66 93 125 147 184 21018 39 61 83 106 128 150 174 190 21236 53 73 95 114 134 155 170 189 20817 33 53 74 93 113 134 149 170 19331 44 61 79 96 111 135 171 202 21023 36 61 77 108 121 153 177 208 22034 54 82 122 136 143 150 162 172 197
129 22 37 54 70 88 107 126 149 174 190 21226 38 53 72 91 112 132 154 169 187 202 21817 32 50 70 89 108 128 141 157 175 193 2109 22 36 52 74 97 121 145 169 182 197 21226 38 52 66 83 101 119 135 154 168 187 20811 25 39 58 82 103 127 141 157 172 191 20817 30 47 68 87 105 123 139 153 172 190 21226 38 53 69 86 104 121 136 153 168 187 20811 19 32 50 73 92 111 131 145 164 181 20317 35 55 72 93 110 132 151 170 182 197 21232 44 61 78 95 113 130 149 160 174 189 21017 31 46 63 79 96 113 131 144 160 179 20317 34 53 72 89 107 124 138 153 174 190 21236 50 65 80 97 119 139 155 170 187 205 22017 28 44 60 78 96 116 133 145 160 179 2035 4 58 64 83 114 138 146 173 197 221 23932 72 85 98 101 126 152 171 174 182 209 22720 26 46 61 76 92 112 119 137 143 167 19111 28 47 66 84 102 120 137 154 174 190 21226 38 53 69 86 103 120 137 155 170 189 21017 32 48 66 82 99 115 134 149 170 197 25619 54 78 90 109 118 135 175 184 200 212 23717 32 56 67 90 105 125 138 160 168 175 19419 41 62 71 77 83 102 116 131 142 157 166
3469 109 158 21255 96 137 18536 68 108 15669 109 158 21230 63 121 18559 102 144 17669 109 158 21255 94 136 18557 99 144 17675 117 163 21255 96 137 18543 78 144 17672 114 162 21259 100 140 18559 102 144 17670 126 168 20826 61 122 20154 76 137 16975 117 163 21259 99 138 18543 78 141 17679 130 165 21758 103 148 19261 93 141 175
636 68 100 137 174 21455 87 119 151 185 21326 54 79 112 148 17636 68 100 137 174 21430 63 100 136 173 20430 57 81 113 148 17636 68 100 135 173 21430 62 96 132 170 19836 67 96 124 151 17736 68 100 137 174 21430 63 100 136 175 20426 57 81 113 148 17640 75 109 145 182 21733 63 100 136 173 20436 67 96 124 151 17719 84 100 155 180 21351 69 81 124 159 19427 63 89 122 140 17036 68 100 137 174 21430 63 99 134 170 19832 59 83 114 148 17650 75 125 153 186 22527 58 72 100 135 18642 72 93 115 135 177
816 39 69 99 130 161 193 22119 40 63 92 121 149 180 20419 39 59 79 104 129 153 17734 62 86 112 140 170 206 23119 40 63 92 121 151 185 21324 47 70 93 116 141 163 18135 62 87 117 146 176 209 23130 61 85 111 138 165 189 21324 46 68 92 116 141 163 18135 65 93 121 150 179 209 23130 61 87 112 138 165 189 21324 47 70 93 117 141 163 18116 40 70 100 135 169 206 23130 61 86 112 138 165 189 21325 49 72 96 119 143 163 18114 76 110 131 164 178 202 2329 37 52 81 104 136 182 20327 54 74 84 106 130 142 19216 43 75 106 139 172 206 23130 61 87 115 142 170 192 21324 46 68 91 116 141 163 18112 55 90 100 148 175 205 22323 68 104 137 153 171 197 21444 71 110 122 137 149 165 177
1016 35 62 85 107 131 156 183 212 23218 3 61 80 102 124 146 170 192 21319 37 57 74 94 113 133 151 168 18316 35 62 85 109 134 160 186 212 23218 38 60 79 100 122 146 170 192 21315 32 51 68 85 104 124 144 163 18116 35 61 83 104 130 157 183 210 23116 38 60 81 102 125 147 170 192 21319 36 54 71 90 109 129 148 168 18316 35 62 86 110 134 161 187 212 23218 39 62 83 105 126 149 173 192 21319 39 59 76 96 115 134 151 168 18416 39 68 95 121 147 173 198 221 23919 43 63 83 107 128 149 172 192 21319 37 57 74 93 113 132 150 168 18444 65 73 85 98 134 176 202 217 23222 42 61 79 102 111 128 142 176 20128 57 84 93 97 110 133 140 147 19316 36 62 86 110 136 162 187 212 23218 38 61 82 104 126 148 171 192 21319 39 59 78 96 115 134 151 168 18415 31 64 90 119 151 162 173 202 22233 63 76 98 134 146 159 193 210 21944 60 73 96 106 117 132 145 161 180
1216 32 50 68 86 106 125 145 166 188 212 23118 38 59 76 93 110 127 144 162 180 196 21318 35 52 68 83 99 115 131 148 163 176 18716 32 50 68 86 107 128 149 170 191 212 23114 30 48 63 79 96 113 131 149 171 192 21315 29 45 61 78 96 114 132 151 168 183 24616 30 46 65 83 100 119 138 159 182 210 23118 36 52 66 84 103 121 139 158 178 196 21315 32 51 65 80 96 112 128 146 163 176 18716 34 55 75 97 117 139 159 180 202 221 23918 38 60 79 97 114 131 149 168 186 20421819 36 53 68 83 101 118 136 152 168 184 23716 34 57 77 98 120 141 161 188 206 222 23916 34 55 71 90 106 125 145 165 185 204 21819 38 54 70 86 103 118 133 148 163 176 18717 31 39 64 80 138 167 176 198 218 232 24018 33 44 52 69 76 99 124 138 154 169 19226 32 44 58 83 98 123 143 162 170 181 19116 34 54 75 95 117 139 161 183 204 221 23718 38 61 79 97 115 133 151 169 186 204 21819 36 53 68 83 99 115 131 148 163 176 18717 38 49 65 84 100 120 152 162 194 219 24034 45 62 79 101 124 143 161 178 185 191 21921 35 46 59 73 80 100 110 113 127 157 177
4435 80 135 19536 83 140 19740 77 124 18035 80 135 19534 74 128 19077 119 169 21235 80 135 19534 74 128 19077 119 169 21235 80 135 19536 83 140 19777 119 169 21235 80 141 19934 74 128 19277 119 169 21238 103 157 19531 83 165 19577 134 167 20435 80 135 19536 83 140 19777 119 169 21237 69 124 19540 79 134 18672 108 165 223
625 61 103 141 179 21734 71 106 142 179 21761 88 119 151 184 21925 58 94 134 174 21531 62 93 128 167 20840 65 95 133 174 21425 61 103 141 178 21634 69 104 140 176 21640 65 95 133 176 21625 58 95 135 175 21534 71 106 142 180 21840 65 95 133 176 21625 61 103 141 179 21734 71 111 147 183 22040 65 96 135 180 21726 61 107 148 200 21224 50 88 121 181 22032 92 141 173 200 23425 61 103 141 179 21734 71 106 142 179 21740 65 95 133 174 21523 68 99 137 167 21827 66 105 156 181 20836 61 95 123 152 196
823 46 73 103 133 164 195 22524 47 73 103 132 162 193 22440 63 88 115 144 174 200 22823 46 73 104 134 164 194 22524 47 73 103 132 162 193 22440 63 88 117 145 174 200 22723 46 72 103 131 159 190 22324 47 73 103 132 162 194 22540 63 88 115 145 174 200 22822 43 72 104 135 166 196 22631 58 84 112 140 168 197 22540 63 88 116 142 169 197 22624 50 80 111 142 171 199 22731 62 89 117 144 175 203 23240 63 88 117 146 174 201 22949 66 85 113 144 156 179 19434 71 106 141 149 172 183 21828 46 90 97 110 153 196 22423 46 73 104 134 164 195 22531 58 84 112 140 168 197 22740 63 88 115 142 169 199 22625 36 63 99 133 159 211 23235 55 63 107 139 166 207 23635 81 116 140 169 187 221 238
1022 40 60 82 104 125 148 174 200 22810 31 55 78 103 128 154 179 205 23126 41 57 76 96 119 142 169 195 22322 43 70 94 118 140 163 186 208 23124 47 71 93 116 140 162 185 208 23226 41 60 81 103 126 151 176 200 22722 42 61 83 105 129 152 176 202 23022 39 62 83 106 129 154 177 202 22940 58 77 96 118 140 162 184 207 22923 43 70 94 118 141 163 187 209 23323 43 67 91 115 138 162 185 208 23226 41 60 84 107 129 152 176 201 22922 43 70 95 119 142 164 187 210 23323 44 69 92 117 140 162 184 208 23241 65 92 121 145 169 189 206 223 2407 26 46 66 84 136 146 179 206 24010 24 56 89 102 116 124 167 200 21623 40 93 113 144 149 176 183 207 23522 42 63 84 107 132 158 182 206 2319 24 47 73 102 128 154 180 206 23126 41 60 84 107 129 152 176 202 22921 41 58 68 79 103 138 166 174 19124 41 72 127 160 178 188 206 221 24627 45 69 86 109 141 161 174 196 230
1222 40 61 82 103 121 141 160 179 198 217 2379 22 38 58 78 99 119 140 162 185 208 23240 58 77 95 113 132 151 169 184 201 218 23621 35 52 71 91 110 130 151 171 191 212 23422 39 59 78 98 118 139 159 178 197 216 23626 41 56 76 94 113 133 153 174 194 214 23421 37 54 72 90 108 129 149 170 191 212 23422 38 55 73 91 110 129 149 169 191 212 23426 41 56 75 93 111 131 151 173 193 213 23422 42 61 80 100 119 139 159 178 198 218 23723 41 60 80 100 119 139 159 178 198 217 23726 41 56 73 89 108 127 147 169 191 212 23422 40 61 82 104 127 149 169 188 206 224 24023 41 62 82 102 121 140 160 179 199 219 23826 41 59 79 101 124 151 176 198 216 230 24214 35 50 72 86 90 137 163 176 188 204 22252 73 86 96 113 131 152 164 185 192 212 22220 34 50 54 74 80 94 129 144 162 214 23822 42 61 80 100 119 139 158 178 199 219 2399 23 41 62 83 105 126 147 168 191 213 2341 26 41 60 80 102 124 147 169 190 212 23333 43 56 92 111 126 133 149 156 176 211 22625 48 91 112 127 146 171 193 203 225 233 24617 36 61 74 105 113 135 153 170 183 200 221
5454 88 139 20346 86 169 21764 121 189 22643 88 139 20353 103 173 21762 116 170 21554 88 139 20346 86 169 21764 121 189 22646 88 139 20353 104 175 21764 121 189 22657 100 171 21448 98 169 21765 124 189 22654 104 172 20552 118 175 22654 118 171 22154 88 139 20353 104 175 21764 121 189 22647 89 137 21258 111 165 21784 131 179 224
634 68 101 142 187 22339 77 117 159 195 22134 73 113 154 194 22643 85 118 158 196 22438 72 112 155 192 22034 73 113 154 194 22634 65 100 140 187 22338 72 112 155 192 22038 74 114 154 194 22634 68 101 139 180 21439 75 114 155 192 22038 76 116 156 194 22634 69 103 143 187 22339 77 117 159 195 22134 73 116 156 194 22650 86 105 126 181 21028 55 75 119 153 20633 52 71 118 159 21034 65 100 141 187 22339 77 117 159 195 22138 76 116 156 194 22644 80 128 160 205 23555 91 127 169 199 23435 77 109 132 198 228
829 57 86 112 143 175 202 22726 48 74 102 132 165 195 22124 56 86 116 147 178 205 22734 61 88 115 145 175 202 22726 52 79 110 141 173 202 22622 51 81 112 142 173 203 22734 58 88 116 144 175 203 23226 48 76 102 130 164 195 22122 50 78 108 140 172 203 22629 57 86 111 142 175 202 22726 52 79 114 145 175 202 22634 62 90 119 149 179 205 22729 58 88 116 147 178 203 22826 53 83 116 150 181 206 23424 56 87 119 148 178 205 22723 46 75 118 144 180 217 22729 61 74 119 151 194 230 23935 89 106 157 182 196 210 23429 58 88 116 145 175 202 22726 53 82 114 147 178 206 23424 56 85 114 144 174 203 22726 46 79 101 140 169 203 23118 35 50 85 112 149 185 22131 54 93 107 156 187 205 231
1021 43 65 88 111 138 165 190 214 23526 45 65 90 116 142 169 195 215 23418 39 63 87 111 135 160 186 208 23120 43 65 88 110 135 161 187 209 23222 39 61 82 106 134 161 188 213 23415 34 59 83 108 133 159 186 208 23121 43 65 88 108 130 153 180 203 23025 43 63 85 112 140 165 191 213 23417 38 60 83 106 130 157 184 208 23121 43 65 88 112 139 165190 212 23526 48 73 97 121 146 167 192 213 23418 41 65 90 115 140 165 191 213 23230 57 85 107 130 155 178 201 221 23926 48 75 102 128 153 178 198 217 23818 43 71 99 127 154 176 198 215 23529 52 78 112 126 131 161 176 204 22242 75 93 106 114 128 145 176 227 2448 32 61 71 97 124 153 188 216 22921 43 65 88 112 138 165 190 214 23526 48 73 98 123 149 175 198 217 23418 39 64 89 114 139 163 188 210 2316 26 64 89 116 142 150 175 204 22448 66 80 88 113 143 151 184 206 23018 43 54 98 113 136 154 165 187 213
1218 34 54 71 88 109 132 155 180 202 223 23925 43 63 84 106 129 152 175 195 213 226 24211 22 37 53 72 92 114 137 162 186 208 23114 29 43 60 77 93 112 133 154 178 203 23225 42 61 81 102 123 143 163 182 202 219 23817 34 54 74 94 114 135 155 176 196 215 23519 36 54 69 88 107 129 151 174 195 214 23522 38 55 75 94 120 139 158 177 196 215 23411 28 47 65 86 105 127 148 171 194 213 23121 42 61 80 99 119 140 161 182 203 223 24025 43 63 83 103 123 143 164 183 202 217 23417 34 53 72 91 112 133 153 172 194 213 23228 47 65 85 103 121 139 159 180 198 216 23526 43 64 83 99 115 135 155 175 195 217 23817 38 60 83 107 130 150 169 186 203 218 23514 47 66 80 97 127 147 188 208 220 224 24631 47 63 81 100 114 125 165 185 205 226 24716 33 77 87 101 119 130 142 157 213 229 23821 43 62 82 101 121 141 161 181 202 223 24025 39 55 76 97 117 138 159 179198 217 23414 34 53 73 94 114 134 154 174 194 215 23536 49 59 84 112 122 129 153 170 196 229 24121 31 66 80 101 124 142 156 185 193 219 24642 52 77 97 117 137 167 175 188 196 207 234
6425 75 127 17545 81 128 17038 84 129 17225 75 127 17545 81 128 17038 84 129 17225 75 127 17545 81 129 17238 84 129 17225 75 127 17545 81 129 17238 84 129 17225 75 127 17545 81 130 17538 34 129 17237 95 137 17335 54 122 15827 82 118 17325 75 127 17545 81 129 17238 84 129 17224 81 123 16947 72 132 17342 84 128 174
616 54 90 12 163 19742 68 98 129 159 19227 56 87 118 149 18216 53 89 127 163 19740 63 93 127 159 19222 51 83 116 149 18216 52 88 126 163 19742 68 97 128 158 19227 56 87 118 149 18216 54 91 128 163 19742 68 98 129 159 19227 56 87 118 149 18220 59 96 133 168 19942 70 99 129 159 19227 56 87 119 151 1836 50 95 124 177 21850 72 88 108 144 16916 53 73 96 119 15516 54 91 128 163 19742 68 98 129 159 19226 56 87 118 149 18216 33 62 91 131 19032 64 90 116 147 17935 68 82 104 133 171
815 41 67 94 121 147 174 20237 58 79 102 126 149 172 19513 35 59 85 110 136 162 18915 45 75 105 136 168 197 22634 52 74 96 119 143 167 19321 43 68 93 118 143 168 19315 40 66 92 119 146 173 20236 54 75 99 124 147 170 19421 43 67 90 114 139 165 19015 41 68 95 122 148 175 20237 54 75 99 124 146 169 19321 4 67 91 116 140 165 19015 41 70 98 125 152 177 20440 59 80 103 126 148 171 19421 43 68 92 117 141 167 19324 48 64 97 137 189 200 22418 40 65 89 106 111 122 17126 58 86 150 162 191 206 22115 41 68 95 122 148 175 20240 59 80 103 126 149 172 19521 43 68 93 118 143 168 19316 44 85 102 125 175 186 21148 87 102 127 159 172 184 20426 47 62 83 100 117 130 183
1010 27 46 64 85 109 135 162 187 21234 52 71 90 109 128 148 168 188 20713 31 48 68 89 110 131 157 184 21912 32 52 74 95 117 143 170 197 22632 45 59 74 92 113 135 158 189 21813 31 50 71 92 114 136 160 186 21912 33 54 76 99 121 143 166 187 21034 47 63 80 98 118 138 157 176 19613 31 51 71 91 111 133 154 175 19713 36 59 82 104 126 148 170 191 21434 52 72 92 113 134 154 173 195 21913 31 51 74 95 116 137 157 177 19816 46 78 102 127 148 170 193 212 23136 54 74 94 115 135 157 176 196 21913 31 51 72 93 114 135 157 179 20118 45 83 98 106 142 175 210 217 23220 37 50 73 83 106 124 134 163 21018 48 70 90 117 133 151 189 195 21413 35 57 79 102 124 146 168 190 21234 52 72 91 110 129 148 168 188 20717 35 55 75 95 115 135 155 176 19813 28 58 75 93 109 140 170 195 20836 43 59 79 105 117 128 140 164 18226 53 64 82 104 126 137 159 169 194
1211 29 49 69 89 108 128 148 168 187 207 23132 45 59 74 89 105 122 138 154 171 189 2077 17 29 43 58 75 92 111 131 150 172 19512 32 52 71 90 110 129 148 168 187 206 22634 47 63 79 96 114 133 152 173 194 218 24417 33 51 69 87 106 125 144 162 180 199 21910 27 46 64 81 101 119 138 159 180 202 22634 47 61 75 91 108 124 140 158 177 196 21913 27 45 63 82 102 123 142 160 180 199 21911 30 49 68 89 111 131 150 169 187 206 22634 47 63 79 95 112 129 146 163 181 199 21913 31 50 70 89 108 128 145 163 180 198 21911 30 50 70 90 110 129 147 165 183 204 22634 47 62 79 97 118 138 158 174 191 206 21913 27 48 69 89 109 130 151 168 185 202 21916 29 35 49 89 96 107 128 163 190 210 23938 62 68 85 108 117 126 166 175 186 202 22610 20 51 63 91 121 139 162 178 183 184 19611 31 50 70 89 109 128 148 168 187 206 22633 47 63 79 96 113 131 149 168 186 203 21913 31 49 67 86 105 125 144 162 181 201 21910 26 35 45 50 65 88 113 143 164 196 22128 39 50 56 73 78 92 101 137 165 186 20729 47 64 98 108 123 127 141 164 189 211 225
7464 103 151 22556 90 158 19954 127 158 18564 106 153 22154 90 158 19937 72 138 18064 106 153 22156 90 158 19937 72 138 18064 106 153 22156 90 158 19937 72 138 18064 106 153 22556 92 167 20737 72 138 18080 101 151 22970 132 177 19952 90 126 16264 103 151 22556 90 158 19937 72 138 18073 113 159 22663 99 151 18943 68 135 177
658 91 126 161 201 23254 83 110 149 179 20736 65 103 134 160 18544 74 115 153 194 22945 73 100 144 178 20734 54 77 122 152 18558 88 121 154 193 22843 73 100 144 178 20736 62 93 130 158 18558 92 126 161 201 23254 83 113 149 179 20736 61 83 127 158 18558 92 129 162 201 23254 84 115 149 179 20734 60 83 127 158 18558 73 99 130 179 21430 55 97 133 162 19325 60 109 134 148 17958 91 126 161 201 23245 73 102 144 178 20736 65 99 130 158 18553 87 115 151 180 21943 76 96 131 162 20332 67 111 146 167 189
844 68 92 120 147 173 205 23340 65 90 118 149 176 198 21923 50 73 97 121 142 163 18544 64 88 116 144 171 204 23352 74 98 126 154 178 198 21921 43 70 98 126 152 170 19044 68 92 121 147 173 205 23340 63 88 113 142 171 195 21918 37 56 77 110 136 160 18544 68 92 121 150 175 205 23340 63 88 113 144 172 198 21934 54 73 95 120 142 163 18544 74 101 129 157 186 212 23440 61 84 108 141 171 196 21934 54 77 108 134 158 179 19931 44 82 106 139 168 192 24340 61 78 110 137 182 196 21145 61 110 121 139 165 183 19144 68 92 121 147 173 205 23340 63 85 110 14 172 198 21921 42 62 82 112 136 160 18542 68 86 109 128 155 176 22145 54 77 90 127 148 175 20714 36 68 99 126 155 170 187
1044 64 87 107 129 150 171 194 217 23534 54 73 90 110 133 156 177 198 21918 34 51 69 85 110 133 156 177 19641 58 75 97 121 144 166 190 214 23434 52 69 88 107 132 156 178 198 21932 49 65 83 107 130 152 170 185 20144 64 84 103 124 146 169 191 214 23439 56 74 92 112 136 157 176 198 21918 36 52 68 85 106 127 147 164 18544 68 91 115 136 155 175 197 217 23634 54 74 92 112 134 158 179 199 21921 37 54 76 98 120 138 156 172 19044 64 88 112 133 155 178 201 221 23840 61 83 105 132 156 178 195 208 22534 54 73 91 110 127 143 160 180 19835 69 95 115 129 145 166 184 193 22924 52 73 76 91 105 157 187 199 22629 40 55 63 120 141 157 162 181 19244 64 88 108 129 151 173 196 218 23840 59 79 99 118 139 158 179 199 21921 37 54 75 100 122 143 163 185 25654 71 86 104 120 136 152 158 170 22733 65 98 107 135 143 166 185 197 21928 62 75 93 118 140 155 166 201 218
1232 44 58 74 92 110 129 150 170 192 214 23434 52 69 84 100 118 138 158 178 194 207 22518 33 45 61 76 93 110 129 152 169 185 20032 44 58 74 90 106 126 147 168 190 211 23329 42 56 69 84 100 118 138 158 179 199 21918 34 50 64 79 100 120 138 156 170 185 20141 58 73 88 101 118 134 153 172 193 214 23431 40 56 73 89 104 124 143 163 180 199 21921 36 50 65 81 99 116 132 147 161 179 19644 62 79 99 116 133 151 169 187 204 221 23734 52 69 84 101 120 140 160 179 195 208 22521 37 51 65 79 96 114 130 145 160 179 19744 64 81 98 118 139 159 180 198 214 228 24034 51 63 79 95 118 141 159 176 190 207 22521 36 51 66 81 97 116 134 149 165 180 20137 65 102 108 117 129 141 149 154 177 210 23643 58 96 119 124 145 161 180 196 207 214 23718 31 36 41 48 65 74 96 149 175 186 21844 64 79 97 116 134 152 169 186 204 221 23734 55 73 90 107 126 144 161 178 195 208 22518 36 54 72 89 107 124 141 158 172 185 20124 52 62 79 88 101 114 141 163 186 207 21826 72 98 114 126 140 158 171 194 204 210 22813 26 30 40 53 66 92 121 148 163 170 191
8432 80 126 16429 90 151 22351 98 146 19532 80 126 16447 99 157 22351 98 146 19532 78 126 16447 99 157 22358 120 181 23032 80 126 16447 99 157 22351 98 146 19532 78 126 16447 99 157 22361 121 181 23035 78 107 15787 132 173 23257 112 185 23232 80 126 16447 99 157 22358 120 181 23041 89 118 16440 109 152 22484 134 187 231
625 56 87 119 150 17025 68 112 160 204 22539 78 117 156 196 23025 56 89 123 150 17027 71 114 160 207 22539 76 115 155 195 23025 57 90 123 150 17025 59 96 134 174 22339 78 117 156 195 23022 51 80 109 135 16425 60 99 137 176 22340 79 118 157 196 23022 51 80 109 135 16425 68 112 160 207 22540 79 118 157 196 23026 85 131 137 163 18243 94 132 210 226 23941 102 137 158 193 23925 58 90 123 150 17025 60 99 137 176 22339 78 117 156 196 23020 36 84 113 148 17126 52 90 128 204 22978 114 136 160 197 228
816 39 62 85 109 132 153 17025 55 85 114 145 176 207 22528 53 80 107 137 167 199 23016 39 62 85 109 132 153 17024 49 74 102 133 166 207 22529 58 86 115 144 173 202 23015 36 58 82 106 132 153 17025 55 85 115 146 177 207 22529 57 86 115 144 173 202 23017 40 63 86 109 132 153 17025 55 86 118 148 178 207 22531 60 89 118 146 175 203 23117 38 59 82 106 131 15317025 55 85 115 147 178 207 22534 66 98 132 165 198 225 24135 45 76 91 38 151 164 19526 64 87 96 149 200 215 23754 66 104 140 159 194 235 24517 40 64 87 110 132 153 17025 55 86 116 148 178 207 22530 58 86 115 144 173 202 23017 35 59 98 110 139 158 16818 54 99 114 129 170 213 23525 56 81 97 151 183 214 233
1015 34 54 74 94 114 134 153 170 18722 42 62 85 107 129 154 181 207 22524 46 69 93 118 144 171 199 225 24116 35 55 75 95 115 135 153 170 18220 39 58 80 104 129 155 181 207 22523 45 69 94 118 143 170 199 224 24114 32 50 68 89 109 129 150 164 18124 47 72 98 125 153 180 205 223 23923 44 66 88 112 134 156 179 204 23013 27 44 61 79 98 117 135 153 17024 47 70 93 116 140 164 186 207 22528 53 78 103 128 153 178 202 225 24115 33 50 67 85 103 119 135 153 17025 58 84 112 140 167 187 206 223 23924 46 71 96 121 147 175 202 225 2415 16 37 57 71 83 109 127 135 16225 72 79 99 112 145 159 192 208 23120 27 39 93 128 168 186 214 234 24116 35 55 75 95 115 135 153 170 25624 49 75 100 126 153 180 207 223 23924 46 69 91 114 136 159 182 205 23131 41 49 64 76 118 130 149 160 17525 40 58 85 114 149 179 191 207 21419 56 87 103 111 128 137 160 205 223
1213 29 45 61 77 93 109 124 139 155 170 18724 44 65 85 106 126 146 166 186 207 223 23921 40 60 80 100 120 140 161 182 204 225 24113 29 45 63 81 100 118 135 153 170 187 23620 37 54 73 94 114 135 158 181 204 222 23919 37 56 75 95 116 137 158 180 202 224 24113 28 44 61 77 92 108 123 138 153 170 23920 39 58 79 100 121 142 164 185 205 222 23918 37 57 76 96 115 136 157 180 203 225 24113 28 43 58 74 89 104 121 138 155 170 18924 47 67 86 105 124 143 163 187 207 223 23923 44 65 85 105 125 143 163 185 205 225 24116 34 52 71 90 107 123 138 153 170 187 25622 44 66 88 108 129 149 169 188 207 223 23925 46 67 86 106 126 148 169 189 207 225 24112 35 42 49 75 85 103 110 121 127 136 1867 25 66 107 142 154 168 175 181 200 226 23645 56 68 76 90 96 121 130 137 170 200 23213 27 44 60 75 90 105 121 138 153 170 18722 43 64 85 106 127 148 168 188 207 223 23921 41 61 81 102 122 143 164 185 205 225 24116 32 44 54 66 81 89 98 115 129 144 16651 61 78 97 109 141 156 176 193 209 222 24134 48 64 94 113 122 126 163 182 195 211 236
9462 111 164 21227 86 152 21844 88 120 15462 111 164 21227 86 154 22244 85 116 15462 111 163 21227 86 154 22248 88 120 15462 111 164 21227 86 154 22248 88 120 15462 111 164 21227 86 154 22248 88 120 15465 119 154 21331 72 154 20354 98 137 18062 111 164 21227 86 154 22244 85 120 15484 123 170 21627 70 125 16548 86 120 162
630 70 107 146 182 21927 68 106 145 185 22230 57 85 109 132 15819 53 91 131 173 21927 68 106 147 188 22730 57 85 109 135 16730 70 107 146 182 21927 65 100 139 181 22229 55 82 109 132 15819 61 99 139 179 21927 68 106 145 185 22230 57 85 109 132 15831 73 111 149 186 21927 65 101 144 188 22731 59 85 109 132 16150 83 142 154 178 22732 114 127 160 190 21718 25 55 94 130 18434 73 111 149 186 21927 69 109 149 189 22730 57 85 109 135 16735 68 110 165 196 21730 48 79 112 159 19825 70 92 115 143 162
818 47 77 107 138 168 197 22227 58 85 112 139 169 199 22727 48 68 89 109 127 153 17818 44 73 101 129 159 188 21921 41 65 93 124 156 191 22725 48 69 91 111 132 154 17818 45 75 106 136 166 194 22222 57 86 115 143 172 204 23125 45 67 88 109 127 152 17818 47 77 107 137 167 197 22222 57 86 115 145 175 206 23427 48 69 89 110 132 154 17818 50 82 113 144 172 199 22222 58 87 116 146 176 206 23429 52 73 91 109 127 149 17253 88 123 152 171 203 222 24425 77 110 147 173 205 227 23752 69 77 95 103 129 154 17118 47 77 106 136 166 197 22222 58 86 115 145 175 206 23427 48 70 91 109 132 154 17835 58 91 105 124 150 190 21929 60 88 122 157 177 185 21042 67 81 100 122 140 158 180
1018 35 53 72 92 114 137 162 190 21921 38 62 87 112 137 163 189 214 23625 42 59 77 93 109 126 143 161 17818 39 61 84 107 131 154 177 201 22421 36 56 77 100 126 153 181 209 23420 37 54 71 91 109 126 143 161 17818 37 56 77 96 119 142 167 193 21921 39 63 86 109 133 159 185 210 23424 41 58 73 91 109 126 153 178 22518 40 63 87 110 132 155 179 202 22421 40 65 88 113 139 163 187 210 23425 42 59 75 91 109 125 140 158 17818 43 66 89 113 138 164 193 219 24322 51 76 101 128 152 176 198 219 23824 40 56 73 91 109 126 143 161 17857 81 99 127 146 169 189 194 213 23731 55 94 118 145 167 187 193 208 23016 29 55 65 91 95 123 145 166 19518 41 67 92 118 143 169 194 219 24321 41 65 90 116 142 168 194 218 23824 40 59 77 92 109 126 143 161 17831 63 85 94 109 121 163 184 210 22424 53 72 108 135 147 164 178 208 24041 58 76 104 128 140 149 161 173 179
1218 35 55 75 95 115 135 155 176 197 219 24021 35 53 71 90 109 128 148 169 191 214 23620 37 54 72 89 106 120 132 144 156 169 18218 35 54 74 94 115 136 157 178 199 219 2439 21 38 61 82 102 124 146 169 191 214 23619 32 47 61 77 92 107 120 134 149 166 18218 33 50 68 87 105 127 148 169 190 212 23021 36 55 74 95 114 134 153 174 195 218 23614 25 37 51 65 79 94 109 125 143 161 17818 40 59 77 96 117 138 157 176 197 219 24321 37 58 77 98 119 141 161 181 201 222 23820 35 51 66 82 97 112 127 145 162 178 24418 40 61 81 99 118 136 153 177 201 222 24321 41 65 88 109 129 150 170 189 208 226 24216 30 45 61 77 91 106 120 135 153 169 18220 63 72 89 125 140 148 152 165 193 208 23425 77 100 119 125 152 166 177 193 218 240 24912 19 59 93 105 117 129 137 154 165 175 20918 40 61 82 102 124 145 166 186 206 224 24321 37 58 77 97 118 138 159 180 201 222 23816 29 43 57 71 85 97 111 127 146 162 17838 74 91 106 136 162 174 182 205 212 224 23031 44 69 80 89 115 133 166 174 188 212 23832 62 78 95 110 125 137 147 157 166 175 185
10411 55 155 20227 92 158 21552 96 147 19611 54 143 20227 92 158 21552 96 147 19611 55 155 20227 92 158 21552 96 147 19638 100 155 20252 100 158 21552 96 147 19611 54 143 20227 92 158 21552 96 147 19643 86 135 19757 111 160 20639 97 170 19911 55 155 20227 92 158 21552 96 147 19644 105 161 20039 90 145 22065 111 144 192
69 45 90 131 168 20824 54 90 129 168 21522 53 88 125 161 1999 43 88 130 168 20726 67 106 146 180 21749 83 117 150 182 2129 44 88 130 168 20826 67 104 144 179 21722 53 90 129 168 20210 47 90 131 168 20824 54 92 132 171 21722 53 88 127 166 20210 47 90 132 169 21224 55 94 140 180 21722 53 90 129 168 20226 67 115 156 192 24415 43 74 115 167 21340 71 85 131 174 21210 47 90 131 168 20826 67 106 146 180 21722 53 90 129 168 2024 41 96 141 176 21425 99 119 154 199 22523 59 95 133 185 213
89 41 70 102 135 166 196 22424 52 77 104 132 160 189 22022 51 81 108 134 161 188 2168 35 59 85 114 143 172 21224 52 79 107 137 165 192 22022 51 81 108 136 164 193 2219 40 66 94 124 155 189 21924 52 77 104 131 159 187 22022 52 82 111 140 169 197 2239 41 70 101 133 162 193 22124 52 78 106 134 161 190 22022 52 83 112 142 170 199 2249 41 69 99 130 162 194 22424 54 89 122 153 184 214 23422 53 86 121 155 186 214 24429 52 78 99 116 150 208 22626 54 106 150 178 222 238 24922 34 62 87 126 167 177 1999 41 69 99 131 162 194 22424 52 77 104 132 160 189 22022 52 83 112 140 169 197 22310 61 98 116 132 164 182 22125 75 95 117 152 166 207 22548 66 94 131 168 196 215 227
109 39 63 90 116 141 166 189 211 23220 36 53 73 95 118 141 165 190 22018 39 59 82 105 128 152 177 202 2268 29 50 73 96 121 145 169 196 22223 45 65 84 103 124 147 171 196 22118 43 63 87 108 129 152 175 199 2249 38 58 83 107 131 155 177 202 22423 49 72 96 120 144 166 190 214 23318 43 64 88 110 132 154 177 202 2259 39 62 85 108 132 155 178 202 22824 50 73 96 120 144 166 190 214 23419 46 67 88 110 135 157 180 202 2269 40 67 93 119 145 169 196 219 23823 46 67 91 115 139 163 189 214 23418 46 68 91 118 145 175 204 226 2449 20 43 112 146 174 193 212 239 25231 47 49 64 91 114 139 156 205 22720 34 75 97 111 134 170 177 205 2239 38 61 86 108 132 155 177 202 22824 50 73 96 120 144 167 190 214 23422 49 75 99 125 150 175 199 223 2444 32 49 76 99 124 143 181 207 22123 41 65 86 105 144 174 179 212 22718 63 87 119 143 158 180 209 229 244
127 27 47 69 90 111 132 153 172 192 212 23223 42 60 78 97 117 137 156 175 194 214 23317 34 52 70 88 107 125 144 162 182 202 2267 23 41 58 76 94 114 134 155 176 202 22523 42 60 79 98 117 137 156 175 194 214 23418 38 58 80 99 120 140 161 182 202 223 2447 24 41 60 81 101 120 138 156 177 202 22820 36 53 71 89 109 127 147 168 190 213 23216 32 49 66 83 101 123 144 165 185 204 2278 28 49 71 90 111 133 155 176 196 216 23822 39 56 76 96 116 136 156 175 194 214 23318 36 53 73 91 110 129 149 169 188 207 2287 23 45 65 90 113 131 153 174 196 215 23824 48 69 91 112 131 150 170 189 208 223 23919 44 65 87 108 128 149 170 191 209 228 24417 47 79 101 113 146 152 173 191 221 233 25321 37 58 79 97 119 133 155 172 192 222 23226 49 64 88 101 110 134 146 167 178 196 2388 28 49 69 90 113 134 155 174 196 216 23821 38 54 73 94 114 134 153 172 193 214 23418 38 58 80 100 121 142 163 184 204 226 24421 55 93 105 120 130 142 169 186 202 209 23723 31 52 61 82 109 133 146 175 194 205 23223 27 42 59 73 90 120 144 162 181 202 224
Table 4. The definition and description of performance measures.
Table 4. The definition and description of performance measures.
CategoryNameFormulationRemarkReference
Performance evaluationStructural Similarity Index S S I M ( I , I ^ ) = ( 2 μ I μ I ^ + c 1 ) ( 2 σ I σ I ^ + c 2 ) ( μ I 2 + μ I ^ 2 + c 1 ) ( σ I 2 + σ I ^ 2 + c 2 ) The index that measures the similarity between the two images before and after the segmentation, the closer the value is to 1, the better the image segmentation effect.[64]
Feature Similarity Index F S I M = x I ^ Ω S L x × P C m x x I ^ Ω P C m x An indicator for evaluating the local structural importance between the original image and the segmented image, the maximum value is 1.[65]
Peak Signal to Noise Ratio P S N R = 20 l o g ( 255 R M S E ) ( d B ) Represents the ratio between the maximum possible power of a signal and the power of corrupting noise. The larger the value, the better the effect. It is not absolutely proportional to the observation of the human eye, and has some limitations.[66]
Root Mean Squared Error R M S E = i = 1 M j = 1 N ( I ( i , j ) I ^ ( i , j ) ) 2 / M × N Computes the difference between the predicted value. In general, it is directly used in PSNR. As can be seen from the formula, it is inversely proportional to PSNR.[67]
Mean Operating Time T i m e = i = 1 N t i m e N The computational complexity is evaluated by experimental data. Average the execution time of each algorithm running independently for 30 times. The smaller the numerical value, the faster the algorithm is executed and the lower the computational complexity.[68]
Average fitness function value F i t n e s s = i = 1 N f i N The mathematical concept of optimization is the method of calculating the value of a function and finding the optimal result by maximizing and minimizing an objective function in a given domain. Therefore, the average fitness value obtained through multiple measurements can be used to evaluate the optimization results.[69]
Statistical evaluationWilcoxon’s Rank-Sum test R + = d i > 0 r a n k d i + 1 1 d i = 0 r a n k d i R = d i < 0 r a n k d i + 1 2 d i = 0 r a n k d i Used to answer the question “Does two samples represent two different populations?” In this paper, it is used to compare the difference between the proposed algorithm and the comparison algorithm. If the p-value > 0.05 (or h = 1), there is a significant difference, otherwise it is not.[70]
Friedman test F f = 12 n k k + 1 j R j 2 k k + 1 2 4 The Friedman test is a nonparametric simulation of nonparametric variance bidirectional analysis. Used to answer the question “Does at least two samples in a group of k samples represent populations with different median values?” Designed to detect significant differences between the behavior of two or more algorithms, the overall performance of the algorithm can be ranked.[70]
Table 5. The SSIM of each algorithm under Masi entropy.
Table 5. The SSIM of each algorithm under Masi entropy.
TEST IMAGESKTLMVOLMVOMVOALODAFPAPSOCS
140.77440.77150.77400.77150.77230.75020.77150.7512
60.85660.85590.85580.84670.85560.78680.84080.8337
80.89940.89650.88620.89840.89230.82790.89710.8819
100.92960.92910.92390.92930.92780.87800.92620.8645
120.94380.94230.94130.94350.93930.89030.93830.9115
240.71220.64520.68720.68550.69090.67020.61500.6914
60.83490.81510.85350.85420.84770.74710.82990.7989
80.91350.89640.88880.90520.88950.86490.89030.8605
100.94080.93170.92590.92710.92570.87080.93570.8901
120.95470.94890.94680.95280.95190.90700.94430.9265
340.79590.78980.78300.78970.79140.70270.75020.7826
60.87260.87140.86940.85900.86500.85230.86540.8605
80.91330.90930.90850.91260.91010.88810.90910.8827
100.94150.93830.93860.93990.94040.89440.93830.9236
120.95800.95330.95370.95520.95290.91280.95690.9359
440.40830.38090.38090.37620.38050.36740.37620.3791
60.60190.60020.59260.59290.59100.58360.59190.4427
80.63640.63620.63640.61950.61200.55710.61690.5880
100.76920.65260.65750.65320.64460.76140.76660.6435
120.77360.67440.67410.66490.66160.68950.77340.6183
540.66820.66810.62390.64290.62710.65730.64300.6239
60.80530.81330.80220.81420.80740.78610.80340.7772
80.88190.88040.87860.87340.87390.80240.87890.8362
100.91420.91200.91150.91380.91040.89400.91190.8937
120.94200.93750.93480.94070.94160.85780.94020.9046
640.71560.71560.71380.71380.71150.65120.71380.6914
60.80330.80840.80460.80320.80180.79280.80300.8075
80.85620.85480.85510.85500.85510.78030.85410.8022
100.88620.88470.88300.88020.86740.83320.88440.8738
120.90500.90070.89710.90370.89750.85670.90070.8661
740.57520.61570.61520.61520.59650.59030.60460.5536
60.82520.78800.82010.82000.82440.78170.82500.8182
80.89070.88250.87560.89680.87750.80910.87890.8479
100.92940.92840.91850.92580.92280.74860.92490.8523
120.95070.94920.94490.94910.94120.86730.95020.9157
840.69100.69990.68110.69990.67940.66870.68050.6399
60.77610.77660.78960.80210.78710.68950.78920.7106
80.86480.86160.85550.85650.85070.72280.85740.8287
100.89610.89590.89300.89520.88850.87640.88540.8154
120.91590.91260.91210.91040.89670.85020.91390.8714
940.55780.55760.54350.54340.54340.50770.55750.5120
60.70240.70470.70590.69930.69400.70320.70160.6858
80.75780.75550.74700.74840.73800.61070.74800.6813
100.79670.77800.78250.77620.77890.77410.77710.6913
120.86250.80420.85060.80630.83820.76350.83930.7152
1040.62740.62370.62370.59680.62380.59120.62370.5927
60.74290.70010.73310.74120.73600.69110.73160.7057
80.77790.78290.77770.77570.76140.73530.77640.6985
100.81470.81430.80050.79910.79170.77980.79580.7905
120.84390.84060.84340.83610.83150.79400.83280.7981
Table 6. The FSIM of each algorithm under Masi entropy.
Table 6. The FSIM of each algorithm under Masi entropy.
TEST IMAGESKTLMVOLMVOMVOALODAFPAPSOCS
140.84080.84010.83790.83790.83890.81380.83790.8199
60.91090.90930.88700.90390.90890.84400.89900.8856
80.93320.93950.94160.94100.93520.88500.94050.9193
100.95720.95140.96070.96160.95990.92090.95970.9079
120.96970.96950.96710.96900.96840.92790.96720.9396
240.84330.83980.82140.82790.83380.82180.78550.8108
60.91570.90550.93210.93310.92230.86180.91580.9019
80.95920.95340.94900.95560.94820.92160.95010.9306
100.97360.96920.96620.96720.96600.92980.97170.9369
120.98030.97350.97760.97910.97860.94330.97520.9570
340.89670.89410.89350.86790.89620.83580.87230.8842
60.94470.93980.94390.93900.93980.91880.94200.9269
80.96410.96250.95870.96150.96050.93930.96100.9380
100.97510.97430.97430.97460.97410.95130.97380.9581
120.98160.98040.98010.98060.97990.95280.98120.9682
440.87170.86400.86400.86300.86500.84920.86300.8595
60.89280.91370.91240.91300.91230.89320.91230.9062
80.93370.93350.93350.93120.93010.88390.93080.9115
100.94960.94530.94350.94520.93770.92190.94880.9255
120.95580.95360.95410.95330.95120.92000.95400.9299
540.73430.77290.73430.75430.74270.76610.75400.7724
60.88780.88740.88050.88090.88170.85700.88070.8546
80.93350.93350.93470.93140.93020.86670.93320.8994
100.95520.95400.95370.95440.95150.93160.95360.9294
120.97030.96760.96680.96510.96950.90230.96940.9421
640.80920.80920.80810.80810.80620.76410.80810.7926
60.88070.87540.87940.87940.87930.84940.87920.8724
80.92320.91710.92180.92190.92230.85450.92070.8690
100.94420.94380.92790.94150.93570.89810.93530.9289
120.95550.95450.95390.95510.95260.91450.95410.9186
740.79740.73760.73690.73690.72120.71060.72840.7651
60.90640.87790.89850.89830.90140.87860.90530.8959
80.94950.94230.93790.94710.94020.87630.93990.9125
100.96460.96320.96850.96850.96710.83560.96670.9082
120.97850.97640.97560.97800.97430.90760.97360.9528
840.83780.83950.82430.83950.82300.81010.82460.7957
60.89140.89040.90100.90780.89620.81730.90140.8249
80.94000.93600.93960.93850.93470.85080.93910.9090
100.95840.95540.95620.95820.95460.92110.95380.9145
120.96860.96750.96660.96620.96320.92620.96810.9396
940.85410.85340.84730.84720.84720.82780.85340.8221
60.92850.92760.92830.92770.92490.89280.92740.9081
80.95020.94870.94870.94850.94660.89130.94820.9213
100.95850.96180.95880.95900.95800.94020.95750.9241
120.97470.97090.96580.96660.97080.92920.97150.9377
1040.76400.76400.75990.76340.76400.75280.75990.7514
60.82420.82100.82400.82500.82260.80730.82440.8015
80.86200.85980.85960.85920.84780.82420.85920.8300
100.89170.88370.88340.88290.87620.84940.88100.8619
120.91130.90920.91080.90840.90360.88190.90590.8802
Table 7. The PSNR of each algorithm under Masi entropy.
Table 7. The PSNR of each algorithm under Masi entropy.
TEST IMAGESKTLMVOLMVOMVOALODAFPAPSOCS
1420.792520.772520.767520.712520.791520.253220.712520.1630
624.157623.446024.124023.773224.131620.899922.950422.8607
826.259226.018525.523526.202425.971223.578526.134225.3450
1028.371728.196228.173728.274028.226925.604628.054824.8368
1229.610029.388429.310929.605029.221026.491329.070827.2000
2418.843018.824918.613418.930718.929018.252117.295118.1679
622.326621.696022.857822.886322.543920.473222.187221.1393
824.247624.667525.387424.964124.353323.543424.386923.5563
1027.289227.262127.287426.344626.220424.141426.840624.8671
1228.553527.999627.993928.344728.349625.887327.634226.8304
3419.926218.800119.604418.801719.864817.831918.979919.5485
622.625222.317322.565622.244922.623921.850222.485322.4241
824.782324.585424.567024.743924.376523.634424.295123.1364
1026.411626.324826.324626.402626.382024.731325.504525.7397
1228.206027.656727.835927.875927.759825.113828.018026.7576
4421.794719.567619.567619.539419.567519.223519.539419.5386
621.083223.852123.721823.733023.685622.511423.710123.4854
825.087525.078925.085224.834724.727923.273924.813423.3235
1027.186126.118725.967726.105225.499525.703527.071525.3684
1227.495026.996626.942026.900626.576825.577126.739424.9418
5416.980617.886616.980617.436716.851217.282317.448317.8100
621.366221.185920.916421.268121.021920.631520.957820.5071
823.570223.634423.678123.479223.384321.127323.596522.0975
1025.353525.324925.325025.329525.186824.788025.206324.7622
1226.215326.916626.688227.138127.348323.728227.130325.8037
6420.502720.502720.473220.473220.433319.097220.473219.9978
623.453323.439023.433423.405423.407921.977323.395823.1176
825.900825.849925.848625.840025.848622.502525.773923.2438
1026.962426.521027.518627.222626.685824.702227.497426.6856
1228.477028.511128.493828.516628.127425.885428.397126.2981
7417.311017.377817.381417.381417.145017.272817.177717.2192
622.171621.891321.827222.056621.927020.543421.906521.8887
824.804224.071423.995724.796523.996421.958224.126223.0275
1026.686326.353526.039726.633826.494821.629026.436724.1686
1228.356128.313427.949228.313827.672624.444127.668026.2470
8420.046120.046119.477520.046119.471919.553719.462719.0435
623.235822.745522.730223.097722.426119.476122.779119.9978
825.215725.102324.783825.214024.900521.572425.197323.3424
1027.311526.746326.732327.216526.785025.131226.625824.5564
1228.438728.371728.270528.385428.013725.477928.435027.1038
9419.211119.184319.020319.014819.014818.489119.181618.8663
622.866222.767122.859822.673022.557921.629022.761722.0944
824.635524.627224.768524.552324.300921.555724.544323.4442
1026.103326.349526.242126.017125.956824.692825.793823.8834
1228.186827.753827.584227.277827.925524.166027.023424.3194
10418.541818.809518.541819.960118.809519.782518.541819.6373
622.989422.605522.815422.984322.864422.268422.834721.0550
825.281125.562925.343425.226124.493223.505325.255222.7493
1027.366327.365826.764126.707426.183024.066526.580725.4793
1228.832428.670428.657628.604428.020627.010128.392627.1410
Table 8. The optimal fitness value of each algorithm under Masi entropy.
Table 8. The optimal fitness value of each algorithm under Masi entropy.
TEST IMAGESKTLMVOLMVOMVOALODAFPAPSOCS
1426.784126.782926.775926.782926.781426.505526.782926.5970
631.527032.388432.473332.428732.470130.825032.465031.7859
837.455937.419637.401237.453437.357234.700536.405136.3904
1041.754540.320341.652341.715041.630337.999941.505439.5423
1245.446045.439845.258745.408145.406342.128244.294242.7526
2428.670828.670828.670828.639528.633027.886628.652328.3837
634.839034.756034.875734.878234.834433.558034.840634.3164
840.254240.195740.165940.254040.204538.099940.213339.6369
1045.065045.026544.940945.012644.822842.306744.857843.0264
1249.160149.070948.923449.110849.099045.713348.545346.3682
3429.757729.732329.777829.783029.776029.447329.783129.6724
636.054036.046236.033736.049036.031235.172136.042035.4629
841.412341.424941.476441.479541.481740.057541.481640.2871
1046.398146.375946.351346.390846.327043.841546.349244.9901
1250.665450.641650.518850.029350.607048.567850.619448.8457
4431.863831.863131.863131.863831.862831.552031.863831.7064
638.465838.445738.322938.471238.454137.674238.470138.0972
844.140944.129944.121544.137944.113041.880944.128143.0865
1049.175749.138049.040249.140348.926146.731649.045347.3696
1253.606153.597653.583753.542953.437350.201252.890551.2963
5431.263531.263531.263531.267431.240030.996331.266731.0917
638.062438.059038.059538.048138.059937.051138.059837.6129
843.948643.954143.928343.947443.939042.329943.947643.0948
1049.085649.081249.038649.073549.000946.909048.998146.9546
1253.658953.647653.596653.648053.564451.329053.409251.4370
6430.188130.188130.188430.188430.186829.811830.188430.0943
636.319036.311636.316636.318936.310735.288436.318935.7087
841.541141.535741.456641.538141.537639.027341.519140.3121
1046.143746.133645.894346.124546.048444.184646.142145.1448
1250.402550.349549.704250.401150.349446.857250.072747.8994
7428.218228.344528.345328.345328.310627.556528.345628.0657
635.002834.983934.922934.984234.977833.810934.985034.4786
840.632340.464140.610440.599840.524238.674840.626439.6272
1045.498145.479945.469245.472245.323242.777144.765243.0443
1249.750749.546049.531249.732749.627045.906349.432746.5936
8430.614430.645530.643430.635530.643430.087430.643530.4565
637.041937.003237.039137.038537.001735.576237.002736.3631
842.592442.540742.579342.591242.496240.581442.577141.4359
1047.211047.179147.247447.333547.304845.169246.668745.1569
1251.662750.957051.022651.642151.002447.762351.654349.7426
9430.265030.265030.264730.265030.265029.796130.261529.9921
636.592936.589436.584836.592436.590334.792936.587735.9927
842.089042.078942.073942.075742.050140.792542.080341.0783
1046.855446.792846.077446.840846.811044.569346.758645.2086
1251.118450.983850.969950.526551.042447.454450.993948.8786
10432.319132.312732.319132.295332.312731.886932.319132.0323
638.931838.876738.925038.930038.922337.955938.925838.3460
844.648644.536844.640844.644044.462842.902044.629243.5905
1049.664049.510349.505849.649449.529947.038649.635348.4979
1254.163154.103854.021354.120754.056552.134354.087252.3326
Table 9. The the average CPU time of each algorithm under Masi.
Table 9. The the average CPU time of each algorithm under Masi.
TEST IMAGESKTLMVOLMVOMVOALODAFPAPSOCS
140.49300.42600.44101.76000.79500.37900.41001.3240
60.51000.43700.46402.39000.80900.38000.41201.3380
80.54300.46400.48703.04400.81800.41100.43301.3460
100.57000.49500.49903.78500.82000.42300.45201.3700
120.61700.52300.58004.33200.84300.45200.48101.3860
240.64400.53300.60702.15501.02100.49900.52301.3950
60.66500.58200.61302.96601.04300.51300.55201.4220
80.70700.60300.64103.71501.07800.54600.56701.4390
100.75500.64300.68404.66601.13900.57000.60701.4530
120.79300.67700.71705.28501.15200.59800.63801.4920
340.62200.58200.61002.14400.93000.50200.55501.4400
60.69700.60200.63602.96801.08700.52400.56901.4500
80.72000.63600.66603.75301.08400.57000.59501.4610
100.76500.67700.69704.66001.11900.58400.63501.4920
120.78700.73000.74805.26801.15600.60500.65501.5000
440.64000.58200.61002.21101.04000.50800.54301.4210
60.69100.60600.64403.08201.08300.53200.57101.4480
80.72600.63100.67003.83801.10700.56800.60601.4640
100.76500.66000.69304.74101.13800.58800.62501.4880
120.81000.70100.74705.33801.19500.62300.65901.5140
540.63700.56800.62902.62201.02900.54500.55701.4130
60.69300.59900.64502.98901.09500.55500.57001.4470
80.73700.62600.66703.77101.12700.56600.59901.4500
100.81000.67500.71804.70501.16500.58700.62701.4850
120.81800.69000.74305.32901.14400.60800.65001.5030
640.63300.57400.59502.18300.98900.53400.54801.3790
60.69000.59100.64502.97801.08400.54500.55901.4270
80.74200.65100.68003.78901.12700.56600.59701.4570
100.74700.66100.69604.71901.19200.61100.61501.4770
120.81200.68800.73005.32301.23600.60400.64701.4960
740.64700.58080.60002.15501.01800.50300.54401.4140
60.66700.59000.62903.06201.10500.55100.58401.4260
80.71700.65300.69005.14101.24400.60500.63501.4920
100.82700.70500.75505.44101.46800.66100.67701.6110
120.96500.78800.79806.10201.33700.63900.65601.5610
840.70200.62800.65502.52301.14290.49800.58401.4040
60.73600.64200.67303.58801.14700.52200.59101.4260
80.77400.65400.69704.05501.14900.54800.60301.4440
100.78900.67400.74605.23801.15100.58400.62301.4690
120.84400.72000.73905.86701.23200.62700.69101.5100
940.72100.63900.69202.47501.02500.59200.61501.4800
60.78600.66800.75603.30601.18200.59500.63301.5070
80.86300.72100.79304.37001.39300.60800.64701.5110
100.89000.73000.76605.50701.25700.66900.70701.5300
120.95900.76900.82106.33101.41000.68700.72801.6470
1040.68380.55800.60202.21401.01700.51800.54101.4290
60.70700.58800.64003.06601.07000.54000.57901.4500
80.73900.62500.64903.86701.10800.59000.61101.4710
100.77900.67900.70504.83301.12800.61000.63901.4940
120.83200.71100.75905.52701.18100.63200.66901.5140
Table 10. Average p-value of Wilcoxon test after 30 times of operation under Masi. (The data of p > 0.05 has been bolded, “+” indicates significant difference.).
Table 10. Average p-value of Wilcoxon test after 30 times of operation under Masi. (The data of p > 0.05 has been bolded, “+” indicates significant difference.).
TEST IMAGESTLMVO vs. LMVOTLMVO vs. MVOTLMVO vs. ALOTLMVO vs. DATLMVO vs. FPATLMVO vs. PSOTLMVO vs. CS
phphphphphphph
1<0.05+1<0.051<0.05+1<0.05+1<0.05+1<0.05+1<0.05+1
2<0.05+1<0.05+10.05790<0.05+1<0.05+1<0.05+1<0.05+1
3<0.051<0.051<0.051<0.05+1<0.05+1<0.051<0.05+1
4<0.05+1<0.051<0.05+1<0.05+1<0.05+1<0.05+1<0.05+1
5<0.05+1<0.051<0.05+1<0.05+1<0.05+1<0.05+1<0.05+1
6<0.05+1<0.051<0.051<0.05+1<0.05+1<0.05+1<0.05+1
70.19520<0.0510.30760<0.05+1<0.05+10.00721<0.05+1
8<0.05+1<0.051<0.05+1<0.05+1<0.05+1<0.05+1<0.05+1
9<0.05+1<0.051<0.051<0.05+1<0.05+1<0.05+1<0.05+1
10<0.05+1<0.051<0.051<0.05+1<0.05+1<0.051<0.05+1
Table 11. The Friedman test of each algorithm under Masi.
Table 11. The Friedman test of each algorithm under Masi.
TEST
IMAGES
KTLMVOLMVOMVOALODAFPAPSOCS
141.83.24.25.33.86.44.17.2
633.43.453.46.64.46.8
82.83.64.23.25.26.63.47
102.64.443464.47.6
121.82.64.63.64.86.657
242.43.64.24.645.266
62.45.43.43.446.63.87
82.83.44.43.25.26.43.47.2
101.82.844.866.637
121.84.24.63.43.46.657
342.64.43.85.43.26.64.25.8
61.83.73.464.76.63.46.4
82.83.44.83.6463.87.6
101.83.84.13.44.46.65.16.8
121.844.44.65.46.62.27
4423.23.45.54.46.64.36.6
62.53.93.74.35.86.545.5
81.92.934.466.64.27
1014.24.6476.42.46.6
121.833.45.465.43.67.4
542.84.25.94.46.443.25.1
62.435.24.23.6647.6
81.53.33.45.65.66.637
101.8343.45.864.47.6
122.83.84.84.23.26.63.67
641.83.43.64.466.63.27
62.43.43.34.65.46.64.36
81.8444.43.46.64.87
102.43.44.44.65.46.62.86.4
122.42.94.835.46.63.97
742.63.843.86.25.646
61.84.45.14.54.86.63.25.6
823.853.456.63.27
102.63.64.33.54.46.647
121.83.24.43.656.64.47
841.83.34.83.65.55.447.6
61.64.44.235.26.647
81.83.8445.86.637
102.43.63.83.24.25.85.27.8
121.83.84.24.85.86.627
942.12.44.25.456.43.37.2
62.43.234.85.65.64.27.2
822.73.54.666.63.67
101.83.13.94.44.464.87.6
121.83.84.25.83.66.43.27.2
1043.43.64.553.85.24.16.4
62.25.64.234.46.23.27.2
82.42.434.966.23.77.4
101.82.83.84.45.66.647
121.82.83.44.45.86.44.27.2

Share and Cite

MDPI and ACS Style

Jia, H.; Peng, X.; Song, W.; Oliva, D.; Lang, C.; Li, Y. Masi Entropy for Satellite Color Image Segmentation Using Tournament-Based Lévy Multiverse Optimization Algorithm. Remote Sens. 2019, 11, 942. https://doi.org/10.3390/rs11080942

AMA Style

Jia H, Peng X, Song W, Oliva D, Lang C, Li Y. Masi Entropy for Satellite Color Image Segmentation Using Tournament-Based Lévy Multiverse Optimization Algorithm. Remote Sensing. 2019; 11(8):942. https://doi.org/10.3390/rs11080942

Chicago/Turabian Style

Jia, Heming, Xiaoxu Peng, Wenlong Song, Diego Oliva, Chunbo Lang, and Yao Li. 2019. "Masi Entropy for Satellite Color Image Segmentation Using Tournament-Based Lévy Multiverse Optimization Algorithm" Remote Sensing 11, no. 8: 942. https://doi.org/10.3390/rs11080942

APA Style

Jia, H., Peng, X., Song, W., Oliva, D., Lang, C., & Li, Y. (2019). Masi Entropy for Satellite Color Image Segmentation Using Tournament-Based Lévy Multiverse Optimization Algorithm. Remote Sensing, 11(8), 942. https://doi.org/10.3390/rs11080942

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop