Dynamic Analysis of Mangrove Forests Based on an Optimal Segmentation Scale Model and Multi-Seasonal Images in Quanzhou Bay, China
<p>Location of the study area (QBEWNR represents the Quanzhou Bay Estuary Wetland Nature Reserve).</p> "> Figure 2
<p>Comparisons of image characteristics and spectral reflectance for mangrove forests, <span class="html-italic">Spartina</span>, and mudflats in different seasons. (<b>a</b>) Image of leaf-on season; (<b>b</b>) image of leaf-off season; (<b>c</b>) spectral reflectance curve of leaf-on season for mangrove forests, <span class="html-italic">Spartina</span>, and mudflats; (<b>d</b>) spectral reflectance curve of leaf-off season for mangrove forests, <span class="html-italic">Spartina</span>, and mudflats (A: mangrove forests, B: <span class="html-italic">Spartina</span>, C: mudflats; Band combination Landsat OLI: R: G: B = Band 5: Band 4: Band 3).</p> "> Figure 3
<p>Segmentation effects and segmentation quality evaluation with different scales.</p> "> Figure 4
<p>Land cover maps of Quanzhou Bay Estuary Wetland Nature Reserve (QBEWNR) from 1990 to 2017.</p> "> Figure 5
<p>Change in total area of Mangrove, aquaculture pond and <span class="html-italic">Spartina</span> from 1990 to 2017.</p> "> Figure 6
<p>Comparisons of land cover dynamics. (<b>a</b>) Sankey diagram for comparison of total land cover dynamics from 1990 to 2017; (<b>b</b>) spatial distribution of conversion between mangrove forests and other land cover types in four time intervals from the years 1990, 1997, 2005, 2010, and 2017.</p> "> Figure 7
<p>Spatial distribution map of centroid migration for mangrove forests and <span class="html-italic">Spartina</span> from 1990 to 2017.</p> "> Figure 8
<p>Positive and negative effects for mangrove forests. (<b>a</b>) <span class="html-italic">Spartina</span> invading the mangrove seedling area; (<b>b</b>) <span class="html-italic">Spartina</span> expansion into mudflats; (<b>c</b>) aquaculture ponds as a threat to mangrove forests; (<b>d</b>) aquaculture development in mudflats; (<b>e</b>) mangrove seedling milestone recorded during the mangrove afforestation project carried out initially in 2001; (<b>f</b>) mangrove seedling cultivation base; (<b>g</b>) artificial control of <span class="html-italic">Spartina</span> by mowing; (<b>h</b>) <span class="html-italic">Spartina</span> were cut off.</p> "> Figure 8 Cont.
<p>Positive and negative effects for mangrove forests. (<b>a</b>) <span class="html-italic">Spartina</span> invading the mangrove seedling area; (<b>b</b>) <span class="html-italic">Spartina</span> expansion into mudflats; (<b>c</b>) aquaculture ponds as a threat to mangrove forests; (<b>d</b>) aquaculture development in mudflats; (<b>e</b>) mangrove seedling milestone recorded during the mangrove afforestation project carried out initially in 2001; (<b>f</b>) mangrove seedling cultivation base; (<b>g</b>) artificial control of <span class="html-italic">Spartina</span> by mowing; (<b>h</b>) <span class="html-italic">Spartina</span> were cut off.</p> "> Figure 9
<p>Artificial seawalls with landward mangrove forests. (<b>a</b>) Artificial seawall located in the western boundary of the study area; (<b>b</b>) artificial seawall located in the eastern boundary of the study area.</p> "> Figure 10
<p>Change in annual average temperature and annual precipitation in the Quanzhou Bay Estuary Wetland Nature Reserve (QBEWNR) from 1990 to 2017. (<b>a</b>) Annual average temperature in QBEWNR from 1990 to 2017; (<b>b</b>) annual precipitation in QBEWNR from 1990 to 2017.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Preparation and Fieldwork
2.3. Land Cover Classification System
2.4. Optimal Segmentation Scale Model Based on Object-Oriented Classification
2.5. Mangrove Forest Change
2.6. Calculation of Centroid Migration
3. Results
3.1. Optimal Segmentation Scale
3.2. Temporal and Spatial Changes of Mangrove Forests
3.3. Conversions between Mangrove Forests and Other Land Cover Types
4. Discussion
4.1. Mangrove Forest Losses Associated by Human Activities and Possible Environmental Threats
4.2. Positive Effects of Reforestation Projects and Spartina Control
4.3. Suggestions for Conserving and Managing Mangrove Forests
4.4. Advantages and Uncertainties of the Methods for Mangrove Forest Monitoring
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Costanza, R.; Groot, R.D.; Sutton, P.; Ploeg, S.V.D.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Brown, M.I.; Pearce, T.; Leon, J.; Sidle, R.; Wilson, R. Using remote sensing and traditional ecological knowledge (TEK) to understand mangrove change on the Maroochy River, Queensland, Australia. Appl. Geogr. 2018, 94, 71–83. [Google Scholar] [CrossRef]
- Pham, T.D.; Kaida, N.; Yoshino, K.; Xuan, H.N.; Bui, D.T. Willingness to pay for mangrove restoration in the context of climate change in the Cat Ba biosphere reserve, Vietnam. Ocean Coast. Manag. 2018, 163, 269–277. [Google Scholar] [CrossRef]
- Kathiresan, K.; Bingham, B.L. Biology of mangroves and mangrove Ecosystems. Adv. Mar. Biol. 2001, 40, 81–251. [Google Scholar]
- Giri, C.; Ochieng, E.; Tieszen, L.L.; Zhu, Z.; Singh, A.; Loveland, T.; Masek, J.; Duke, N. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 2011, 20, 154–159. [Google Scholar] [CrossRef]
- Jia, M.M.; Liu, M.Y.; Wang, Z.M.; Mao, D.H.; Ren, C.Y.; Cui, H.S. Evaluating the effectiveness of conservation on mangroves: A remote sensing-based comparison for two adjacent protected areas in Shenzhen and Hong Kong, China. Remote Sens. 2016, 8, 627. [Google Scholar] [CrossRef]
- Gao, Y.; Yu, G.R.; Yang, T.T.; Jia, Y.L.; He, N.P.; Zhuang, J. New insight into global blue carbon estimation under human activity in land-sea interaction area: A case study of China. Earth-Sci. Rev. 2016, 159, 36–46. [Google Scholar] [CrossRef] [Green Version]
- Pham, T.D.; Yoshino, K.; Le, N.; Bui, D.T. Estimating aboveground biomass of a mangrove plantation on the northern coast of Vietnam using machine learning techniques with an integration of ALOS-2 PALSAR-2 and Sentinel-2A data. Int. J. Remote Sens. 2018. [Google Scholar] [CrossRef]
- Pham, T.D.; Yoshino, K.; Bui, D.T. Biomass estimation of Sonneratia caseolaris (L.) Engler at a coastal area of Hai Phong city (Vietnam) using ALOS-2 PALSAR imagery and GIS-based multi-layer perceptron neural networks. GISci. Remote Sens. 2017, 54, 329–353. [Google Scholar] [CrossRef]
- Tamooh, F.; Huxham, M.; Karachi, M.; Mencuccini, M.; Kairo, J.G.; Kirui, B. Below-ground root yield and distribution in natural and replanted mangrove forests at Gazi bay, Kenya. For. Ecol. Manag. 2008, 256, 1290–1297. [Google Scholar] [CrossRef]
- Alongi, D.M. Carbon sequestration in mangrove forests. Carbon Manag. 2012, 3, 313–322. [Google Scholar] [CrossRef]
- Kauffman, J.B.; Heider, C.; Norfolk, J.; Payton, F. Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Republic. Ecol. Appl. 2013, 24, 518–527. [Google Scholar] [CrossRef]
- Cavanaugh, K.C.; Kellner, J.R.; Forde, A.J.; Gruner, D.S.; Parker, J.D.; Rodriguez, W.; Feller, I.C. Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proc. Natl. Acad. Sci. USA 2014, 111, 723–727. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.Q.; Xiao, X.M.; Li, X.P.; Pan, L.H.; Doughty, R.; Ma, J.; Dong, J.W.; Qin, Y.W.; Zhao, B.; Wu, Z.X.; et al. A mangrove forest map of China in 2015: Analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform. ISPRS J. Photogramm. Remote Sens. 2017, 131, 104–120. [Google Scholar] [CrossRef]
- Rahman, A.F.; Dragoni, D.; Didan, K.; Barreto-Munoz, A.; Hutabarat, J.A. Detecting large scale conversion of mangroves to aquaculture with change point and mixed-pixel analyses of high-fidelity MODIS data. Remote Sens. Environ. 2014, 130, 96–107. [Google Scholar] [CrossRef]
- Giri, C.; Long, J.; Abbas, S.; Murali, R.M.; Qamer, F.M.; Pengra, B.; Thau, D. Distribution and dynamics of mangrove forests of South Asia. J. Environ. Manag. 2015, 148, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Matthews, G.V.T. The Ramsar Covention on Wetlands: Its History and Development; Secretariat, R.C., Ed.; Imprimerie Dupuis SA: Gland, Switzerland, 2013. [Google Scholar]
- Hu, L.J.; Li, W.Y.; Xu, B. Monitoring mangrove forest change in China from 1990 to 2015 using Landsat-derived spectral-temporal variability metrics. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 88–98. [Google Scholar] [CrossRef]
- Kuenzer, C.; Bluemel, A.; Gebhard, S.; Vo Quoc, T.; Dech, S. Remote sensing of mangrove ecosystems: A review. Remote Sens. 2011, 3, 878–928. [Google Scholar] [CrossRef]
- Heumann, B.W. Satellite remote sensing of mangrove forests: Recent advances and future opportunities. Prog. Phys. Geogr. 2011, 35, 87–108. [Google Scholar] [CrossRef]
- Jia, M.; Wang, Z.; Li, L.; Song, K.; Ren, C.; Liu, B.; Mao, D. Mapping China’s mangroves based on an object-oriented classification of Landsat imagery. Wetlands 2014, 34, 277–283. [Google Scholar] [CrossRef]
- Tian, J.Y.; Wang, L.; Li, X.J.; Gong, H.L.; Shi, C.; Zhong, R.F.; Liu, X.M. Comparison of UAV and WorldView-2 imagery for mapping leaf area index of mangrove forest. Int. J. Appl. Earth Obs. Geoinf. 2017, 61, 22–31. [Google Scholar] [CrossRef]
- Wang, L.; Silván-Cárdenas, L.; Sousa, W.P. Neural network classification of mangrove species from multi-seasonal IKONOS imagery. Photogramm. Eng. Remote Sens. 2008, 74, 921–927. [Google Scholar] [CrossRef]
- Lee, T.M.; Yeh, H.C. Applying remote sensing techniques to monitor shifting wetland vegetation: A case study of Danshui River estuary mangrove communities, Taiwan. Ecol. Eng. 2009, 35, 487–496. [Google Scholar] [CrossRef]
- Ibharim, N.A.; Mustapha, M.A.; Lihan, T.; Mazlan, A.G. Mapping mangrove changes in the Matang Mangrove Forest using multi temporal satellite imageries. Ocean Coast. Manag. 2015, 114, 64–76. [Google Scholar] [CrossRef]
- Castillo, J.A.A.; Apan, A.A.; Maraseni, T.N.; Salmo, S.G. Estimation and mapping of above-ground biomass of mangrove forests and their replacement land uses in the Philippines using Sentinel imagery. ISPRS J. Photogramm. 2017, 134, 70–85. [Google Scholar] [CrossRef]
- Cissell, J.R.; Delgado, A.M.; Sweetman, B.M.; Steinberg, M.K. Monitoring mangrove forest dynamics in Campeche, Mexico, using Landsat satellite data. Remote Sens. Appl. Soc. Environ. 2018, 9, 60–68. [Google Scholar] [CrossRef]
- Xia, Q.; Qin, C.Z.; Li, H.; Huang, C.; Su, F.Z. Mapping mangrove forests based on multi-tidal high-resolution satellite imagery. Remote Sens. 2018, 10, 1343. [Google Scholar] [CrossRef]
- Baatz, M.; Schäpe, A. Multiresolution Segmentation: An Optimization Approach for High Quality Multi-Scale Image Segmentation. 2000. Available online: http://www.ecognition.com/sites/default/files/405_baatz_fp_12.pdf (accessed on 25 October 2018).
- Jia, M.M.; Wang, Z.M.; Zhang, Y.Z.; Mao, D.H.; Wang, C. Monitoring loss and recovery of mangrove forests during 42 years: The achievements of mangrove conservation in China. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 535–545. [Google Scholar] [CrossRef]
- Liu, M.Y.; Li, H.Y.; Li, L.; Man, W.D.; Jia, M.M.; Wang, Z.M.; Lu, C.Y. Monitoring the invasion of Spartina alterniflora using multi-source high-resolution imagery in the Zhangjiang Estuary, China. Remote Sens. 2017, 9, 539. [Google Scholar] [CrossRef]
- Conchedda, G.; Durieux, L.; Mayaux, P. An object-based method for mapping and change analysis in mangrove ecosystems. ISPS J. Photogramm. 2008, 63, 578–589. [Google Scholar] [CrossRef]
- Su, T.F.; Zhang, S.W. Local and global evaluation for remote sensing image segmentation. ISPS J. Photogramm. 2017, 130, 256–276. [Google Scholar] [CrossRef]
- Schultz, B.; Immitzer, M.; Formaggio, A.R.; Sanches, I.D.A.; Luiz, A.J.B.; Atzberger, C. Self-Guided segmentation and classification of multi-temporal Landsat 8 images for crop type mapping in Southeastern Brazil. Remote Sens. 2015, 7, 14482–14508. [Google Scholar] [CrossRef]
- D’Antonio, C.M.; Hobbie, S.E. Plant species effects on ecosystem processes: Insights from invasive species. In Species Invasions: Insights into Ecology, Evolution and Biogeography; Sax, D.F., Stachowicz, J.J., Gaines, S.D., Eds.; Sinauer Associates, Inc.: Sunderland, UK, 2005; pp. 65–84. [Google Scholar]
- FLAASH User’s Guide; ENVI FLAASH Version 4.1; Research Systems, Inc.: Boulder, CO, USA, 2004; pp. 1–80.
- Congalton, R.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices; Mapping Science Series; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Chabrier, S.; Emile, B.; Rosenberger, C.; Laurent, H. Unsupervised performance evaluation of image segmentation. EURASIP J. Adv. Signal Process. 2006, 1, 1–12. [Google Scholar] [CrossRef]
- Espindola, G.M.; Camara, G.; Reis, I.A.; Bins, L.S.; Monteiro, A.M. Parameter selection for region-growing image segmentation algorithms using spatial autocorrelation. Int. J. Remote Sens. 2006, 27, 3035–3040. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Ma, K.M.; Fu, B.J. Wetland loss under the impact of agricultural development in the Sanjiang Plain, NE China. Environ. Monit. Assess. 2010, 166, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Wan, H.; Wang, Q.; Jiang, D.; Fu, J.; Yang, Y.; Liu, X. Monitoring the invasion of Spartina alterniflora using very high resolution unmanned aerial vehicle imagery in Beihai, Guangxi (China). Sci. World J. 2014, 2014, 638296. [Google Scholar] [CrossRef] [PubMed]
- ESRI Inc. ArcGIS Desktop: Release 10, Environmental Systems Research Institute: Redlands, CA, USA, 2011.
- Cuba, N. Research note: Sankey diagrams for visualizing land cover dynamics. Landsc. Urban Plan. 2015, 139, 163–167. [Google Scholar] [CrossRef]
- Li, H.Y.; Man, W.D.; Li, X.Y.; Ren, C.Y.; Wang, Z.M.; Li, L.; Jia, M.M.; Mao, D.H. Remote sensing investigation of anthropogenic land cover expansion in the low-elevation coastal zone of Liaoning Province, China. Ocean Coast. Manag. 2017, 148, 245–259. [Google Scholar] [CrossRef]
- Jia, M.M.; Wang, Z.M.; Zhang, Y.Z.; Ren, C.Y.; Song, K.S. Landsat-based estimation of mangrove forest loss and restoration in Guangxi Province, China, influenced by human and natural factors. IEEE J.-STARS 2015, 8, 311–323. [Google Scholar] [CrossRef]
- Chung, C.H. Forty years of ecological engineering with Spartina plantations in China. Ecol. Eng. 2006, 27, 49–57. [Google Scholar] [CrossRef]
- Rogers, K.; Saintilan, N.; Heijnis, H. Mangrove encroachment of salt marsh in Western Port Bay, Victoria: The role of sedimentation, subsidence, and sea level rise. Estuar. Coast. 2005, 28, 551–559. [Google Scholar] [CrossRef]
- Li, Z.J.; Wang, W.Q.; Zhang, Y.H. Recruitment and herbivory affect spread of invasive Spartina alterniflorain China. Ecology 2014, 95, 1972–1980. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.H.; Huang, G.M.; Wang, W.Q.; Chen, L.Z.; Lin, G.H. Interactions between mangroves and exotic Spartina in an anthropogenically disturbed estuary in southern China. Ecology 2012, 93, 588–597. [Google Scholar] [CrossRef] [PubMed]
- Biswasa, S.R.; Biswasb, P.L.; Limon, S.H.; Yan, E.R.; Xu, M.S.; Khan, M.S.I. Plant invasion in mangrove forests worldwide. For. Ecol. Manag. 2018, 429, 480–492. [Google Scholar] [CrossRef]
- Zhou, T.; Liu, S.C.; Feng, Z.L.; Liu, G.; Gan, Q.; Peng, S.L. Use of exotic plants to control Spartina alterniflora invasion and promote mangrove restoration. Sci. Rep. 2015, 5, 12980. [Google Scholar] [CrossRef] [PubMed]
- Jayanthi, M.; Thirumurthy, S.; Muralidhar, M.; Ravichandran, P. Impact of shrimp aquaculture development on important ecosystems in India. Glob. Environ. Chang. 2018, 52, 10–21. [Google Scholar] [CrossRef]
- Senarath, U.; Visvanathan, C. Environmental issues in brackishwater shrimp aquaculture in Sri Lanka. Environ. Manag. 2001, 27, 335–348. [Google Scholar] [CrossRef] [PubMed]
- Alongi, D.M. Present state and future of the world’s mangrove forests. Environ. Conserv. 2002, 29, 331–349. [Google Scholar] [CrossRef]
- Simard, M.; Rivera-Monroy, V.H.; Mancera-Pineda, J.E.; Castañeda-Moya, E.; Twilley, R.R. A systematic method for 3D mapping of mangrove forests based on Shuttle Radar Topography Mission elevation data, ICEsat/GLAS waveforms, and field data: Application to Ciénaga Grande de Santa Marta, Colombia. Remote Sens. Environ. 2008, 112, 2131–2144. [Google Scholar] [CrossRef]
- Woodruff, J.D. Future of tidal wetlands depends on coastal management. Nature 2018, 561, 183–185. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, J.F.; Saco, P.M.; Sandi, S.; Saintilan, N.; Riccardi, G. Potential increase in coastal wetland vulnerability to sea-level rise suggested by considering hydrodynamic attenuation effects. Nat. Commun. 2017, 8, 16094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, W.Z.; Chen, L.Z.; Wang, W.Q.; Tam, N.F.; Lin, G.H. Effects of sea level rise on mangrove Avicennia population growth, colonization and establishment: Evidence from a field survey and greenhouse manipulation experiment. Acta Oecol. 2013, 49, 83–91. [Google Scholar] [CrossRef]
- Yuan, F.C.; Zhang, W.Z.; Yang, J.X.; Chen, D.W. Study on sea level variability in off shore Fujian. J. Appl. Oceanogr. 2016, 35, 20–32. [Google Scholar]
- Soares, M.L.G. A conceptual model for the responses of mangrove forests to sea level rise. J. Coast. Res. 2009, 25, 267–271. [Google Scholar]
- Wang, W.Q.; Wang, M. The Mangrove of China; Science Press: Beijing, China, 2007. [Google Scholar]
- Rivera-Monroy, V.H.; Twilley, R.R.; Davis, S.E.; Childers, D.L.; Simard, M.; Chambers, R.; Jaffe, R.; Boyer, J.N.; Rudnick, D.T.; Zhang, K.; et al. The role of the everglades mangrove ecotone region (EMER) in regulating nutrient cycling and wetland productivity in South Florida. Crit. Rev. Environ. Sci. Technol. 2011, 41, 633–669. [Google Scholar] [CrossRef]
- Osland, M.J.; Feher, L.C.; Lopez-Portillo, J.; Day, R.H.; Suman, D.O.; Menéndez, J.M.G.; Rivera-Monroy, V.H. Mangrove forests in a rapidly changing world: Global change impacts and conservation opportunities along the Gulf of Mexico coast. Estuar. Coast. Shelf Sci. 2018, 214, 120–140. [Google Scholar] [CrossRef]
- Ecological Restoration of Mangrove Forests in Quanzhou Bay. Available online: http://qz.fjsen.com/2013-09/28/content_12612308.htm (accessed on 28 September 2013).
- National Ecological City “Flowers Bloom All over the City”. Available online: http://www.qzepb.gov.cn/xxgk/ztzl/cjgjsts/gzdt/201609/t20160907_54283.htm (accessed on 7 September 2016).
- Tan, F.L. Spartina control strategy of China. Wetlands Sci. 2007, 5, 105–110. [Google Scholar]
- Cai, N.N. Status and strategy of wetland conservation in Quanzhou Bay Estuary. Mod. Agric. Sci. Technol. 2009, 21, 253–254. [Google Scholar]
- Giri, C.; Zhu, Z.; Tieszen, L.L.; Singh, A.; Gillette, S.; Kelmelis, J.A. Mangrove forest distributions and dynamics (1975–2005) of the tsunami-affected region of Asia. J. Biogeogr. 2008, 35, 519–528. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Li, X.; Shi, X.; Wang, S.G. Monitoring mangrove forest changes using remote sensing and GIS data with decision-tree learning. Wetlands 2008, 28, 336–346. [Google Scholar] [CrossRef]
- Drǎguţ, L.; Tiede, D.; Levick, S.R. ESP: A tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data. Int. J. Geogr. Inf. Sci. 2010, 24, 859–871. [Google Scholar] [CrossRef]
- Hesketh, M.; Sánchez-Azofeifa, G.A. The effect of seasonal spectral variation on species classification in the Panamanian tropical forest. Remote Sens. Environ. 2012, 118, 73–82. [Google Scholar] [CrossRef] [Green Version]
Image Date | Sensor | Season | Transit Sea Level/m | Tidal Level | Tidal Level of High Tide * | Tidal Level of Low Tide * | |||
---|---|---|---|---|---|---|---|---|---|
Tidal Time | Tidal Height/m | Tidal Time | Tidal Height/m | Tidal Time | Tidal Height/m | ||||
03/01/2017 | OLI | Leaf-off season | −0.48 | 10:33 | 3.12 | 6:54 | 4.44 | 12:52 | 2.29 |
27/07/2016 | OLI | Leaf-on season | −1.48 | 10:33 | 2.12 | 5:25 | 5.52 | 11:47 | 1.30 |
13/09/2010 | TM | Leaf-on season | 0.24 | 10:21 | 3.84 | 9:47 | 4.08 | 15:54 | 1.45 |
18/03/2009 | TM | Leaf-off season | 0.79 | 10:20 | 4.39 | 8:43 | 5.23 | 14:42 | 2.13 |
13/07/2005 | TM | Leaf-on season | −0.31 | 10:20 | 3.29 | 6:41 | 4.96 | 13:18 | 1.93 |
02/01/2005 | TM | Leaf-off season | −0.86 | 10:12 | 2.74 | 5:49 | 4.66 | 11:49 | 2.02 |
08/08/1997 | TM | Leaf-on season | −2.01 | 10:01 | 1.59 | 16:01 | 5.43 | 9:38 | 1.34 |
28/01/1997 | TM | Leaf-off season | −2.02 | 9:57 | 1.58 | 15:21 | 5.71 | 8:51 | 0.72 |
11/10/1991 | TM | Leaf-on season | 0.44 | 9:55 | 4.04 | 8:06 | 4.86 | 14:24 | 1.98 |
11/12/1990 | TM | Leaf-off season | 0.05 | 9:53 | 3.65 | 10:08 | 3.76 | 3:33 | 0.86 |
Land Cover Type | Description | Image Example * | Image Feature |
---|---|---|---|
Mangrove | Areas covered by mangrove forests | With dark red or red, obvious boundary, irregular shape, smooth texture | |
Spartina | Salt marshes covered by Spartina | With red or light red, fan-shaped or dot shape, smooth texture | |
Mudflat | Muddy beaches in the intertidal zone | With grey or dark grey, irregular shape, fine and uniform texture | |
Water body | Land covered by rivers and shallow sea areas | With blue or dark blue, obvious geometric shape, fine and uniform texture | |
Aquaculture pond | Man-made farming of aquatic plants and animals in enclosures | With dark blue, blue or light blue, obvious configuration, small rectangle shape, smooth texture | |
Built-up area | Lands used for urban and rural settlements, factories or transportation facilities | With obvious geometric configuration, cyan or grey, coarse structure | |
Woodland | Woody plants grew in terrene greater than 30% | With scarlet or dark red, irregular shape, fine and smooth texture | |
Cropland | Cultivated land for crops, including paddy field and dry land | With dark red or grayish yellow, clear boundary and larger rectangle shape, smooth texture | |
Grassland | Natural areas with herbaceous vegetation greater than 30% | With red or brown, unclear boundary, irregular shape, smooth structure | |
Barren land | Sandy land and areas with less than 5% vegetation cover | With bright white, yellowish white or white brown; irregular shape, uniform texture |
Land Cover Type | 1990 | 1997 | 2005 | 2010 | 2017 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Pro | Use | Pro | Use | Pro | Use | Pro | Use | Pro | Use | |
Mangrove | 0.96 | 0.92 | 0.96 | 0.92 | 0.96 | 0.92 | 0.96 | 0.93 | 0.95 | 0.97 |
Spartina | 0.90 | 0.90 | 0.92 | 0.92 | 0.93 | 0.93 | 0.93 | 0.93 | 0.97 | 0.91 |
Mudflat | 0.93 | 0.93 | 0.91 | 0.91 | 0.89 | 0.89 | 0.94 | 0.94 | 0.94 | 0.94 |
Water body | 0.94 | 1.00 | 0.94 | 0.94 | 0.94 | 0.94 | 0.89 | 0.94 | 0.88 | 0.93 |
Aquaculture pond | 0.95 | 1.00 | 0.90 | 1.00 | 0.90 | 1.00 | 0.90 | 0.95 | 0.92 | 0.96 |
Built-up area | 0.89 | 0.80 | 0.89 | 0.80 | 0.89 | 0.80 | 0.89 | 0.89 | 0.91 | 0.91 |
Woodland | 0.88 | 1.00 | 0.88 | 1.00 | 0.86 | 1.00 | 0.88 | 0.88 | 0.92 | 0.92 |
Cropland | 1.00 | 1.00 | 0.86 | 1.00 | 0.86 | 1.00 | 0.86 | 1.00 | 0.88 | 1.00 |
Grassland | 0.88 | 0.88 | 0.89 | 0.80 | 0.89 | 0.80 | 0.89 | 0.80 | 0.90 | 0.82 |
Barren land | 0.89 | 0.80 | 0.88 | 0.78 | 0.89 | 0.80 | 1.00 | 0.88 | 1.00 | 0.90 |
Overall accuracy | 0.93 | 0.91 | 0.91 | 0.92 | 0.93 | |||||
Kappa coefficient | 0.92 | 0.90 | 0.90 | 0.91 | 0.92 |
Land Cove Type | 1990–997 | 1997–2005 | 2005–2010 | 2010–2017 | 1990–2017 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Change Area/km2 | ALCR/% | Change Area/km2 | ALCR/% | Change Area/km2 | ALCR/% | Change Area/km2 | ALCR/% | Change Area/km2 | ALCR/% | |
Mangrove | 0.09 | 14.29 | −0.02 | −1.39 | 0.62 | 77.5 | 1.79 | 32.78 | 2.48 | 102.06 |
Spartina | 0.79 | 38.92 | 3.15 | 36.46 | 2.10 | 9.93 | 1.80 | 4.06 | 7.84 | 100.13 |
Aquaculture pond | 0.12 | 1.11 | 0.68 | 5.12 | −0.19 | −1.62 | 2.96 | 19.67 | 3.57 | 8.59 |
Mudflat | −0.83 | −0.27 | −4.51 | −1.33 | −3.63 | −1.92 | −6.78 | −2.83 | −15.75 | −1.35 |
Water body | 0.00 | 0.00 | 0.14 | 0.07 | −0.20 | −0.17 | −0.19 | −0.12 | −0.25 | −0.04 |
Grassland | 0.01 | 7.14 | 0.02 | 8.33 | 0.04 | 16.00 | 0.06 | 9.52 | 0.13 | 24.07 |
Cropland | 0.13 | 9.77 | −0.10 | −3.91 | −0.02 | −1.82 | 0.00 | 0.00 | 0.01 | 0.19 |
Woodland | 0.06 | 0.61 | 0.05 | 0.43 | 0.03 | 0.39 | 0.03 | 0.28 | 0.17 | 0.45 |
Built-up area | −0.36 | −4.15 | 0.56 | 7.95 | 0.57 | 7.92 | 0.99 | 7.04 | 1.76 | 5.26 |
Barren land | 0.00 | 0.00 | 0.01 | 12.50 | 0.67 | 670 | −0.65 | −13.46 | 0.03 | 11.11 |
Change Type | Conversion Area/ha | |||
---|---|---|---|---|
1990–1997 | 1997–2005 | 2005–2010 | 2010–2017 | |
Mangrove → Cropland | — | 1.12 | — | — |
Mangrove → Spartina | — | 2.21 | — | 0.54 |
Mangrove → Built-up area | 0.13 | 1.36 | 0.87 | 0.74 |
Mangrove →Aquaculture pond | — | 0.25 | — | — |
Mangrove → Mudflat | 1.37 | 2.49 | 3.00 | 0.90 |
Spartina → Mangrove | — | — | 7.20 | 46.22 |
Built-up area → Mangrove | 4.81 | — | 0.09 | 0.06 |
Aquaculture pond → Mangrove | 0.69 | 0.02 | 0.38 | 2.75 |
Mudflat → Mangrove | 5.22 | 5.22 | 57.81 | 132.38 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, C.; Liu, J.; Jia, M.; Liu, M.; Man, W.; Fu, W.; Zhong, L.; Lin, X.; Su, Y.; Gao, Y. Dynamic Analysis of Mangrove Forests Based on an Optimal Segmentation Scale Model and Multi-Seasonal Images in Quanzhou Bay, China. Remote Sens. 2018, 10, 2020. https://doi.org/10.3390/rs10122020
Lu C, Liu J, Jia M, Liu M, Man W, Fu W, Zhong L, Lin X, Su Y, Gao Y. Dynamic Analysis of Mangrove Forests Based on an Optimal Segmentation Scale Model and Multi-Seasonal Images in Quanzhou Bay, China. Remote Sensing. 2018; 10(12):2020. https://doi.org/10.3390/rs10122020
Chicago/Turabian StyleLu, Chunyan, Jinfu Liu, Mingming Jia, Mingyue Liu, Weidong Man, Weiwei Fu, Lianxiu Zhong, Xiaoqing Lin, Ying Su, and Yibin Gao. 2018. "Dynamic Analysis of Mangrove Forests Based on an Optimal Segmentation Scale Model and Multi-Seasonal Images in Quanzhou Bay, China" Remote Sensing 10, no. 12: 2020. https://doi.org/10.3390/rs10122020
APA StyleLu, C., Liu, J., Jia, M., Liu, M., Man, W., Fu, W., Zhong, L., Lin, X., Su, Y., & Gao, Y. (2018). Dynamic Analysis of Mangrove Forests Based on an Optimal Segmentation Scale Model and Multi-Seasonal Images in Quanzhou Bay, China. Remote Sensing, 10(12), 2020. https://doi.org/10.3390/rs10122020