Abstract
Surface elevation tables, feldspar marker horizons, and210Pb analysis of core profiles were implemented at four sites in Western Port Bay, Victoria, Australia, to provide information on the role of sedimentation, subsidence or compaction, and enhanced sea-level rise in contributing to salt marsh decline. Photogrammetric surveys indicate that the rate of salt marsh decline that is attributable to mangrove encroachment is lower in Western Port Bay than in comparable sites in New South Wales. Differences in the rate of mangrove encroachment at Western Port Bay may be attributed to the inverse relationship found between the degree of mangrove encroachment and surface elevation increase. While sedimentation contributes to surface elevation changes, surface elevation is not solely explained by sedimentation; factors including autocompaction and changes in the water table also play a significant role in Western Port Bay. Historic sedimentation rates measured using210Pb dating techniques corresponded to contemporary sedimentation rates determined from feldspar marker horizons. Core sediment profiles show no change in sedimentation rates at three sites. A fourth site (French Island) was the only site that exhibited high rates of sedimentation, which appears to be related to local land-use changes in the area. All sites maintained their elevation with respect to sea level over the study period. Historic sedimentation exceeded sea-level rise for the past 32 yr, but it is difficult to determine the extent to which belowground processes affect surface elevation, causing deviations between surface elevation and sedimentation over longer periods.
Similar content being viewed by others
Literature Cited
Adam, P. 1990. Saltmarsh Ecology, 1st edition. Cambridge University Press, Cambridge, Massachusetts.
Boumans, R. M. J. andJ. W. Day, Jr. 1993. High precision measurements of sediment elevation in shallow coastal areas using a sedimentation-erosion table.Estuaries 16:375–380.
Cahoon, D. R., J. W. Day, andD. J. Reed. 1999. The influence of surface and shallow subsurface soil processes on wetland elevation: A synthesis.Current Topics in Wetland Biogeochemistry 3:72–88.
Cahoon, D. R., J. French, T. Spencer, D. J. Reed, andI. Moller. 2000. Vertical accretion versus elevational adjustment in U. K. saltmarshes: An evaluation of alternativo methodologies, p. 223–238.In K. Pye and J. R. L. Allen (eds.) Coastal and Estuarine Environments: Sedimentology, Geomorphology, and Geoarchaeology. Special Publications 175. Geological Society, London, U.K.
Cahoon, D. R. andJ. C. Lynch. 1997. Vertical accrction and shallow subsidence in Southwestern Florida, U.S.A..Mangroves and Salt Marshes 1:173–186.
Cahoon, D. R., J. C. Lynch, H. Phillippe, R. Boumans, B. C. Perez, B. Segura, andJ. W. Day. 2002a. High precision measurements of wetland sediment elevation: I. Tecent improvements to the sedimentation-erosion table.Journal of Sedimentary Research 72:730–733.
Cahoon, D. R., J. C. Lynch, T. J. Smith, In, K. R. T. Whelan, G. H. Anderson, and C. Walker. 2002b. Do surface and groundwater fluctuations influence sediment surface elevation in the coastal Everglades wetlands?, p. 29–30.In A. E. Torres, A. L. Higer, H. S. Henkel, P. R. Mixson, V. R. Eggleston, T. L. Embry, and G. Clement (eds.), U.S. Geological Survey Greater Everglades Science Program: 2002 Biennial Report. U.S. Geological Survey Open File 03–54, Palm Harbor, Florida.
Cahoon, D. R., D. J. Reed, andJ. W. Day. 1995. Estimating shallow subsidence in microtidal salt marshes of the southeastern United States: Kaye and Barghoorn revisited.Marine Geology 128:1–9.
Chapman, R. 1974. Western Port region conservation survey: A report to the Western Port Region Planning Authority. Conservation Council of Victoria, Melbourne, Australia.
Clarke, P. J. andW. G. Allaway. 1993. The regeneration niche of the grey mangrove (Avicennia marina): Effects of salinity, light, and sediment factors on establishment, growth and survival in the field.Oecologia 93:548–556.
Clough, B. F. andP. M. Attiwill. 1975. Nutrient cycling in a community ofAvicenia marina in a temperate region of Australia, p. 137–146.In G. E. Walsh, S. C. Snedaker, and H. J. Teas (eds.), Proceedings of the International Symposium on Biology and Management of Mangroves, Volume 1. University of Florida, Gainesville, Florida.
Edwards, R. J. andB. P. Horton. 2000. Reconstructing relative sea-level change using U.K. salt-marsh formainifera.Marine Geology 169:41–56.
Hancock, G. J., J. M. Olley, and P. J. Wallbrink, 2001. Sediment transport and accumulation in Western Port. CSIRO Land and Water technical report 47/01, Canberra, Australia.
Hancock, G. J., I. T. Webster, P. F. Ford, andW. S. Moore. 2000. Using Ra isotopes to examine transport processes controlling benthic fluxes into a shallow estuarine lagoon.Geochimica et Cosmochimica Acta 64:3685–3699.
Horton, B. P., P. Larcombe, S. A. Woodroffe, J. E. Whittaker, M. R. Wright, andC. Wynn. 2003. Contemporary foraminiferal distributions of a mangrove environment, Great Barrier Reef coastline, Australia: Implications of sea-level reconstructions.Marine Geology 198:225–243.
Mckee, K. L. and J. E. Rooth. 2003. Impacts of elevated CO2 and nutrients on biomass production and allocation in a mangrovesaltmarsh community.In Proceedings of Society of Wetland Scientists 24th Annual Meeting, New Orleans, Louisiana.
McMillan, C. 1975. Adaptive differentiation to chilling in mangrove populations, p. 62–70.In G. E. Walsh, S. C. Snedaker, and H. J. Teas (eds.) Proceedings of the International Symposium on Biology and Management of Mangroves, Volume I. University of Florida. Cainesville, Florida.
Mitchell, W., J. Chittleborough, B. Ronal, andG. W. Lennon. 2000. Sea level rise in Australia and the Pacific.Climate Change Newsleter 12:7–10.
Paquette, C., K. L. Sundberg, R. M. J. Boumans, andG. L. Chmura. 2004. Changes in saltmarsh surface elevation due to variability in evapotranspiration and tidal flooding.Estuaries 27:70–89.
Patterson, S., K. L. McKee, andI. A. Mendelssohn. 1997. Effects of tidal inundation and predation onAvicennia germinans seedling establishment and survival in a sub-tropical mangal/salt marsh community.Mangroves and Salt Marshes 1:103–111.
Patterson, C. S., I. A. Mendelssohn, andE. M. Swenson. 1993. Growth and survival ofAvicennia germinans seedlings in a mangal salt marsh community in Louisiana, U.S.A..Journal of Coastal Research 9:801–810.
Rogers, K., N. Saintilan, and D. Cahoon. in press. Surface elevation dynamics in a regenerating mangrove forest at Homebush Bay, Australia.Wetlands Ecology and Management.
Rogers, K., N. Saintilan, and K. M. Wilton. 2002. Monitoring the loss of saltmarsh in South East Australia. Report prepared for Environment Australia by the Centre for Environmental Restoration and Stewardship, Australian Catholic University National, Sydney, Australia.
Rooth, J. E. andJ. C. Stevenson. 2000. Sediment deposition inPhragmites australis communities: Implications for coastal areas threatened by rising sea-level.Wetlands Ecology and Management 8:173–183.
Saenger, P. andJ. Moverley. 1985. Vegetative phenology of mangroves along the Queensland coastline.Proceedings of the Ecological Society of Australia 13:257–265.
Saintilan, N. andR. J. Williams. 1999. Mangrove transgression into saltmarsh environments in south-east Australia.Global Ecology and Biogeography 8:117–124.
Saintilan, N. andR. J. Williams. 2000. Short note: The decline of saltmarsh in southeast Australia: Results of recent surveys.Wetlands (Australia) 18:49–54.
Wilk, R. R., J. B. Keene, and M. A. H. Marden. 1979. Sediment characteristics in the embayment head of Western Port: The impact of swamp drainage and erosion on sedimentation and seagrass distribution Ministry of Conservation, Environmental Studies Series Publication No. 24. Melbourne, Australia.
Wilton, K. M. and N. Saintilan. 2000. Protocols for magrove and saltmarsh habital mapping. Australian Catholic University National Coastal Wetlands Unit Technical Report 2000/01, Sydney, Australia.
Zann, L. P. 1997. Our Sea, Our Future: Major findings of the State of the Marine Environment Report for Australia. Ocean Reseur 2000, Department of Environment, Sport and Territories, Canberra, Australia.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Rogers, K., Saintilan, N. & Heijnis, H. Mangrove encroachment of salt marsh in Western Port Bay, Victoria: The role of sedimentation, subsidence, and sea level rise. Estuaries 28, 551–559 (2005). https://doi.org/10.1007/BF02696066
Received:
Revised:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF02696066