Co-Orbital Sentinel 1 and 2 for LULC Mapping with Emphasis on Wetlands in a Mediterranean Setting Based on Machine Learning
"> Figure 1
<p>The National Park of Koronia and Volvi Lakes (NPKV) lies in the Mygdonia basin, northern Greece. The detail shows the land uses according to Corine Land Cover (CLC) 2012.</p> "> Figure 2
<p>Spectral signatures of selected land use/land cover (LULC) classes (<b>left</b>). Vertical and horizontal axis represents the reflectance values (multiplied with scale factor of 10,000) of the Sentinel 2 summer image and the spectral bands used in this study in nanometers, respectively. Spectral mean values for Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI). Vertical axis represents the index values (<b>right</b>). The chart shows the values for the summer image (2 August 2016).</p> "> Figure 3
<p>Spectral mean values of: Principal Component Analysis (PCA) (<b>left</b>); and Minimum Noise Fraction (MNF) (<b>right</b>) components. Vertical axis represents the transformed values in both charts.</p> "> Figure 4
<p>Mean values of texture indicators. Vertical axis represents the texture values for Normalized Difference Vegetation Index (NDVI).</p> "> Figure 5
<p>A representative scene from the segmented image with both summer and winter crops using R, G, B, Near Infrared (NIR) and Normalized Difference Vegetation Index (NDVI) channels.</p> "> Figure 6
<p>C value selection graph for Support Vector Machines (SVM) plotted against the overall accuracy of the scene.</p> "> Figure 7
<p>The decision tree approach is based on series of decisions that are used to determine the correct class for each pixel. The chart shows the binary decisions implemented in this study.</p> "> Figure 8
<p>The figure above represents the overall accuracy. All Support Vector Machines (SVM)-based classifications were grouped into six groups according to the legend: SB, Spectral Bands; T, Transformations; MS, Multi Seasonal; GLCM, Texture Analysis and SAR, Synthetic Aperture Radar (as also shown in <a href="#remotesensing-09-01259-t004" class="html-table">Table 4</a>).</p> "> Figure 9
<p>The final classified image after the post-classification corrections (PCC).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Datasets
3. EO Data Processing
3.1. Pre-Processing
3.2. Analysis of Spectral Features
3.3. Analysis of Texture Features
3.4. Analysis of Shape Features
3.5. Crop Features Extraction
4. Wetlands Mapping from Sentinel
4.1. LULC Classes
4.2. Support Vector Machines
4.3. Post-Classification Corrections
4.4. Accuracy Assessment
5. Results
5.1. Support Vector Machines
5.2. Post Classification
6. Discussion
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Aune-Lundberg, L.; Strand, G.-H. Comparison of variance estimation methods for use with two-dimensional systematic sampling of land use/land cover data. Environ. Model. Softw. 2014, 61, 87–97. [Google Scholar] [CrossRef]
- Hu, S.; Niu, Z.; Chen, Y.; Li, L.; Zhang, H. Global wetlands: Potential distribution, wetland loss, and status. Sci. Total Environ. 2017, 586, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Ramsar Convention Secretariat. An Introduction to the Convention on Wetlands (Previously The Ramsar Convention Manual); Ramsar Convention Secretariat: Gland, Switzerland, 2016. [Google Scholar]
- Tiner, R. Introduction to wetland mapping and its challenges. In Remote Sensing of Wetlands; Tiner, R.W., Lang, M.W., Klemas, V.V., Eds.; CRC Press: Boca Raton, FL, USA, 2015; pp. 43–66. [Google Scholar]
- Kaiserli, A.; Voutsa, D.; Samara, C. Phosphorus fractionation in lake sediments—Lakes Volvi and Koronia, N. Greece. Chemosphere 2002, 46, 1147–1155. [Google Scholar] [CrossRef]
- Mitra, S.; Wassmann, R.; Vlek, P.L.G. Global Inventory of Wetlands and Their Role in the Carbon Cycle; ZEF Discusson Papers on Development Policy; ZEF: Bonn, Germany, 2003; p. 57. [Google Scholar]
- Russi, D.; Brink, P.; Farmer, A.; Badura, T.; Coates, D.; Förster, J.; Kumar, R.; Davidson, N. The Economics of Ecosystems and Biodiversity for Water and Wetlands; IEEP: London, UK, 2016. [Google Scholar]
- Siachalou, S.; Doxani, G.; Tsakiri-strati, M. Time-series analysis of high temporal remote sensing data to model wetland dynamics: A hidden Markov Model approach. In Proceedings of the SENTINEL-2 for Science Workshop—ESA-ESRIN, Frascati, Italy, 20–22 May 2014. [Google Scholar]
- Malak, D.A.; Hilarides, L. Guidelines for the Delimitation of Wetland Ecosystems; ETC-UMA: Málaga, Spain, 2016; pp. 1–23. [Google Scholar]
- Davidson, N.C. How Much Wetland Has the World Lost? Long-Term and Recent Trends in Global Wetland Area. Mar. Freshw. Res. 2014, 65, 934–941. [Google Scholar]
- Singh, S.K.; Srivastava, P.K.; Szabo, S.; Petropoulos, G.P.; Gupta, M.; Islam, T. Landscape transform and spatial metrics for mapping spatiotemporal land cover dynamics using Earth Observation data-sets. Geocarto Int. 2016, 1–15. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Townsend, P.A.; Gross, J.E.; Cohen, W.B.; Bolstad, P.; Wang, Y.Q.; Adams, P. Remote sensing change detection tools for natural resource managers: Understanding concepts and tradeoffs in the design of landscape monitoring projects. Remote Sens. Environ. 2009, 113, 1382–1396. [Google Scholar] [CrossRef]
- Lamine, S.; Petropoulos, G.P.; Singh, S.K.; Szabó, S.; Bachari, N.E.I.; Srivastava, P.K.; Suman, S. Quantifying land use/land cover spatio-temporal landscape pattern dynamics from Hyperion using SVMs classifier and FRAGSTATS. Geocarto Int. 2017, 1–17. [Google Scholar] [CrossRef]
- Bassa, Z.; Bob, U.; Szantoi, Z.; Ismail, R. Land cover and land use mapping of the iSimangaliso Wetland Park, South Africa: Comparison of oblique and orthogonal random forest algorithms. J. Appl. Remote Sens. 2016, 10, 15017. [Google Scholar] [CrossRef]
- Szantoi, Z.; Escobedo, F.; Abd-Elrahman, A.; Smith, S.; Pearlstine, L. Analyzing fine-scale wetland composition using high resolution imagery and texture features. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 204–212. [Google Scholar] [CrossRef]
- Szantoi, Z.; Escobedo, F.J.; Abd-Elrahman, A.; Pearlstine, L.; Dewitt, B.; Smith, S. Classifying spatially heterogeneous wetland communities using machine learning algorithms and spectral and textural features. Environ. Monit. Assess. 2015, 187, 262. [Google Scholar] [CrossRef] [PubMed]
- Barrett, B.; Nitze, I.; Green, S.; Cawkwell, F. Assessment of multi-temporal, multi-sensor radar and ancillary spatial data for grasslands monitoring in Ireland using machine learning approaches. Remote Sens. Environ. 2014, 152, 109–124. [Google Scholar] [CrossRef]
- Stratoulias, D.; Balzter, H.; Sykioti, O.; Zlinszky, A.; Tóth, V.R. Evaluating sentinel-2 for lakeshore habitat mapping based on airborne hyperspectral data. Sensors 2015, 15, 22956–22969. [Google Scholar] [CrossRef] [PubMed]
- Baker, C.; Lawrence, R.L.; Montagne, C.; Patten, D. Change detection of wetland ecosystems using Landsat imagery and change vector analysis. Wetlands 2007, 27, 610–619. [Google Scholar] [CrossRef]
- Wright, C.; Gallant, A. Improved wetland remote sensing in Yellowstone National Park using classification trees to combine TM imagery and ancillary environmental data. Remote Sens. Environ. 2007, 107, 582–605. [Google Scholar] [CrossRef]
- Psomiadis, E.; Papazoglou, E.G.; Kafkala, I.; Antoniou, V. Sentinel-1 and -2 data for watershed and coastal area mapping: A case study from Central Greece. In Proceedings of the 2nd Conference on Geographic Information Systems and Spatial Analysis in Agriculture and the Environment, Athens, Greece, 25–26 May 2017. [Google Scholar]
- Dong, Z.; Wang, Z.; Liu, D.; Song, K.; Li, L.; Jia, M.; Ding, Z. Mapping Wetland Areas Using Landsat-Derived NDVI and LSWI: A case study of West Songnen Plain, Northeast China. J. Indian Soc. Remote Sens. 2014, 42, 569–576. [Google Scholar] [CrossRef]
- Kavzoglu, T.; Colkesen, I. A kernel functions analysis for Support Vector Machines for land cover classification. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 352–359. [Google Scholar] [CrossRef]
- Otukei, J.R.; Blaschke, T. Land cover change assessment using decision trees, Support Vector Machines and maximum likelihood classification algorithms. Int. J. Appl. Earth Obs. Geoinf. 2010, 12 (Suppl. 1), 27–31. [Google Scholar] [CrossRef]
- Szuster, B.W.; Chen, Q.; Borger, M. A comparison of classification techniques to support land cover and land use analysis in tropical coastal zones. Appl. Geogr. 2011, 31, 525–532. [Google Scholar] [CrossRef]
- Petropoulos, G.P.; Knorr, W.; Scholze, M.; Boschetti, L.; Karantounias, G. Combining ASTER multispectral imagery analysis and Support Vector Machines for rapid and cost-effective post-fire assessment: A case study from the Greek wildland fires of 2007. Nat. Hazards Earth Syst. Sci. 2010, 10, 305–317. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Xie, Z. Object-based vegetation mapping in the Kissimmee River Watershed using HyMap data and machine learning techniques. Wetlands 2013, 33, 233–244. [Google Scholar] [CrossRef]
- Petropoulos, G.P.; Kalivas, D.P.; Griffiths, H.M.; Dimou, P.P. Remote sensing and GIS analysis for mapping spatio-temporal changes of erosion and deposition of two Mediterranean river deltas: The case of the Axios and Aliakmonas rivers, Greece. Int. J. Appl. Earth Obs. Geoinf. 2015, 35, 217–228. [Google Scholar] [CrossRef]
- Petropoulos, G.P.; Kalivas, D.P.; Georgopoulou, I.A.; Srivastava, P.K. Urban vegetation cover extraction from hyperspectral imagery and geographic information system spatial analysis techniques: Case of Athens, Greece. J. Appl. Remote Sens. 2015, 9, 96088. [Google Scholar] [CrossRef]
- Said, Y.A.; Petropoulos, G.P.; Srivastava, P.K. Assessing the influence of atmospheric and topographic correction and inclusion of SWIR bands in burned scars detection from high-resolution EO imagery: A case study using ASTER. Nat. Hazards 2015, 78, 1609–1628. [Google Scholar] [CrossRef]
- Li, N.; Frei, M.; Altermann, W. Textural and knowledge-based lithological classification of remote sensing data in Southwestern Prieska sub-basin, Transvaal Supergroup, South Africa. J. Afr. Earth Sci. 2011, 60, 237–246. [Google Scholar] [CrossRef]
- Zhang, R.; Zhu, D. Study of land cover classification based on knowledge rules using high-resolution remote sensing images. Expert Syst. Appl. 2011, 38, 3647–3652. [Google Scholar] [CrossRef]
- Barkhordari, J.; Vardanian, T. Using post-classification enhancement in improving the classification of land use/cover of arid region (A case study in Pishkouh Watershed, Center of Iran). J. Rangel. Sci. 2012, 2, 521–534. [Google Scholar]
- Visser, F.; Wallis, C.; Sinnott, A.M. Optical remote sensing of submerged aquatic vegetation: Opportunities for shallow clearwater streams. Limnologica 2013, 43, 388–398. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, H.; Lin, H. Improving the impervious surface estimation with combined use of optical and SAR remote sensing images. Remote Sens. Environ. 2014, 141, 155–167. [Google Scholar] [CrossRef]
- Haralick, R.M. Statistical and structural approaches to texture. Proc. IEEE 1979, 67, 786–804. [Google Scholar] [CrossRef]
- Alexandridis, T.K.; Zalidis, G.C.; Silleos, N.G. Mapping irrigated area in Mediterranean basins using low cost satellite Earth Observation. Comput. Electron. Agric. 2008, 64, 93–103. [Google Scholar] [CrossRef]
- Perivolioti, T.; Mouratidis, A.; Doxani, G.; Bobori, D. Monitoring the Water Quality of Lake Koronia Using Long Time-Series of Multispectral Satellite Images; AUC Geographica: Praha, Czech Republic, 2016; Volume 54124, pp. 9–13. [Google Scholar]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007. [Google Scholar] [CrossRef]
- Smith, B.; Sandwell, D. Accuracy and resolution of shuttle radar topography mission data. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Cloude, S.R.; Pottier, E. An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 1997, 35, 68–78. [Google Scholar] [CrossRef]
- Howley, T.; Madden, M.G.; O’Connell, M.L.; Ryder, A.G. The effect of principal component analysis on machine learning accuracy with high-dimensional spectral data. Knowl. Based Syst. 2006, 19, 363–370. [Google Scholar] [CrossRef]
- Boardman, J.W.; Kruse, F.A. Automated spectral analysis: A geological example using AVIRIS data, north Grapevine Mountains, NevadaNo Title. In Proceedings of the ERIM Tenth Thematic Conference on Geologic Remote Sensing, San Antonio, TX, USA, 9–12 May 1994; pp. I-407–I-418. [Google Scholar]
- Coburn, C.A.; Roberts, A.C.B. A multiscale texture analysis procedure for improved forest stand classification. Int. J. Remote Sens. 2004, 25, 4287–4308. [Google Scholar] [CrossRef]
- Culbert, P.D.; Pidgeon, A.M.; St.-Louis, V.; Bash, D.; Radeloff, V.C. The impact of phenological variation on texture measures of remotely sensed imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2009, 2, 299–309. [Google Scholar] [CrossRef]
- Shao, P.; Yang, G.; Niu, X.; Zhang, X.; Zhan, F.; Tang, T. Information extraction of high-resolution remotely sensed image based on multiresolution segmentation. Sustainability 2014, 6, 5300–5310. [Google Scholar] [CrossRef]
- Liu, D.; Xia, F. Assessing object-based classification: Advantages and limitations. Remote Sens. Lett. 2010, 1, 187–194. [Google Scholar] [CrossRef]
- Robson, B.A.; Nuth, C.; Dahl, S.O.; Hölbling, D.; Strozzi, T.; Nielsen, P.R. Automated classification of debris-covered glaciers combining optical, SAR and topographic data in an object-based environment. Remote Sens. Environ. 2015, 170, 372–387. [Google Scholar] [CrossRef]
- Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: New York, NY, USA, 1995. [Google Scholar]
- Mountrakis, G.; Im, J.; Ogole, C. Support Vector Machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Petropoulos, G.P.; Kontoes, C.; Keramitsoglou, I. Burnt area delineation from a uni-temporal perspective based on Landsat TM imagery classification using Support Vector Machines. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 70–80. [Google Scholar] [CrossRef]
- Chasmer, L.; Hopkinson, C.; Montgomery, J.; Petrone, R. A physically based terrain morphology and vegetation structural classification for wetlands of the Boreal Plains, Alberta, Canada. Can. J. Remote Sens. 2016, 42, 521–540. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Warner, T.A.; Strager, M.P. Predicting palustrine wetland probability using random forest machine learning and digital elevation data-derived terrain variables. Photogramm. Eng. Remote Sens. 2016, 82, 437–447. [Google Scholar] [CrossRef]
- Serran, J.N.; Creed, I.F. New mapping techniques to estimate the preferential loss of small wetlands on prairie landscapes. Hydrol. Process. 2016, 30, 396–409. [Google Scholar] [CrossRef]
- Lu, D.; Weng, Q. A survey of image classification methods and techniques for improving classification performance International Journal of Remote Sensing. Int. J. Remote Sens. 2007, 8, 823–870. [Google Scholar] [CrossRef]
- Zhang, C.; Zang, S.; Liu, L.; Sun, Y.; Li, H. The application of support vector machine on Zhalong Wetland remote sensing classification research. In Proceedings of the 3rd International Conference on Computer Design and Applications (ICCDA 2011), Xi’an, China, 27–29 May 2011; Volume 2, pp. 255–260. [Google Scholar]
- Hong, S.-H.; Kim, H.-O.; Wdowinski, S.; Feliciano, E. Evaluation of polarimetric SAR decomposition for classifying wetland vegetation types. Remote Sens. 2015, 7, 8563–8585. [Google Scholar] [CrossRef]
- White, L.; Brisco, B.; Dabboor, M.; Schmitt, A.; Pratt, A. A collection of SAR methodologies for monitoring wetlands. Remote Sens. 2015, 7, 7615–7645. [Google Scholar] [CrossRef] [Green Version]
- Elatawneh, A.; Kalaitzidis, C.; Petropoulos, G.P.; Schneider, T. Evaluation of diverse classification approaches for land use/cover mapping in a Mediterranean region utilizing Hyperion data. Int. J. Digit. Earth 2014, 7, 194–216. [Google Scholar] [CrossRef]
- Volpi, M.; Petropoulos, G.P.; Kanevski, M. Flooding extent cartography with Landsat TM imagery and regularized kernel Fisher’s discriminant analysis. Comput. Geosci. 2013, 57, 24–31. [Google Scholar] [CrossRef]
- Laurin, G.V.; Puletti, N.; Hawthorne, W.; Liesenberg, V.; Corona, P.; Papale, D.; Chen, Q.; Valentini, R. Discrimination of tropical forest types, dominant species, and mapping of functional guilds by hyperspectral and simulated multispectral Sentinel-2 data. Remote Sens. Environ. 2016, 176, 163–176. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, G.P.; Partsinevelos, P.; Mitraka, Z. Change detection of surface mining activity and reclamation based on a machine learning approach of multi-temporal Landsat TM imagery. Geocarto Int. 2013, 28, 323–342. [Google Scholar] [CrossRef]
- Petropoulos, G.P.; Arvanitis, K.; Sigrimis, N. Hyperion hyperspectral imagery analysis combined with machine learning classifiers for land use/cover mapping. Expert Syst. Appl. 2012, 39, 3800–3809. [Google Scholar] [CrossRef]
- Gauci, A.; Abela, J.; Austad, M.; Cassar, L.F.; Zarb Adami, K. A Machine Learning approach for automatic land cover mapping from DSLR images over the Maltese Islands. Environ. Model. Softw. 2018, 99, 1–10. [Google Scholar] [CrossRef]
- Fernández-Delgado, M.; Cernadas, E.; Barro, S.; Amorim, D.; Amorim Fernández-Delgado, D. Do we need hundreds of classifiers to solve real world classification problems? J. Mach. Learn. Res. 2014, 15, 3133–3181. [Google Scholar]
- Gong, P.; Wang, J.; Yu, L.; Zhao, Y.; Zhao, Y.; Liang, L.; Niu, Z.; Huang, X.; Fu, H.; Liu, S.; et al. Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 2013, 34, 2607–2654. [Google Scholar] [CrossRef]
- Aslan, A.; Rahman, A.F.; Warren, M.W.; Robeson, S.M. Mapping spatial distribution and biomass of coastal wetland vegetation in Indonesian Papua by combining active and passive remotely sensed data. Remote Sens. Environ. 2016, 183, 65–81. [Google Scholar] [CrossRef]
- Petropoulos, G.P.; Kalaitzidis, C.; Prasad Vadrevu, K. Support vector machines and object-based classification for obtaining land-use/cover cartography from Hyperion hyperspectral imagery. Comput. Geosci. 2012, 41, 99–107. [Google Scholar] [CrossRef]
- Sonobe, R.; Tani, H.; Wang, X.; Kobayashi, N.; Shimamura, H. Parameter tuning in the support vector machine and random forest and their performances in cross- and same-year crop classification using TerraSAR-X. Int. J. Remote Sens. 2014, 35, 7898–7909. [Google Scholar] [CrossRef]
- Erener, A. Classification method, spectral diversity, band combination and accuracy assessment evaluation for urban feature detection. Int. J. Appl. Earth Obs. Geoinf. 2012, 21, 397–408. [Google Scholar] [CrossRef]
- Muro, J.; Canty, M.J.; Conradsen, K.; Hüttich, C.; Nielsen, A.A.; Skriver, H.; Remy, F.; Strauch, A.; Thonfeld, F.; Menz, G. Short-term change detection in wetlands using Sentinel-1 time series. Remote Sens. 2016, 8, 795. [Google Scholar] [CrossRef]
- Qiu, L.; Du, Z.; Zhu, Q.; Fan, Y. An integrated flood management system based on linking environmental models and disaster-related data. Environ. Model. Softw. 2017, 91, 111–126. [Google Scholar] [CrossRef]
- Schlaffer, S.; Matgen, P.; Hollaus, M.; Wagner, W. Flood detection from multi-temporal SAR data using harmonic analysis and change detection. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 15–24. [Google Scholar] [CrossRef]
Sensor Name | Sensor Type | Acquisition Date | Band Information | Resolution (m) |
---|---|---|---|---|
Sentinel 1 | C-band Radar | 2 August 2016 | VV + VH | 5 × 20 |
Sentinel 2 | Optical | 2 August and 28 January 2016 | 490–2190 nm | 10–20 |
SRTM | C/X-band Radar | 2005 | DEM | 30 |
Attribute | Minimum | Maximum | |
---|---|---|---|
Spectral mean | NDVI | 0.3 | 0.9 |
Slope | 1.5 | 5.0 | |
Shape indicator | Rectangle Fit | 0.45 | 1.00 |
Area | 8000 | 800,000 | |
Compactness | 0.005 | 0.035 |
LULC Classes | Class Description |
---|---|
Crops | Non-wetland class, healthy and high yield arable farming land |
Water | Wetland class, exposed surface water |
Artificial Surfaces | Non-wetland class, impervious surfaces, urban fabric, roads, industrial facilities |
Forest | Non-wetland class, mixed forest with trees from medium to large size |
Shrub | Non-wetland class, long or short grass species, sparse trees and bushes |
Sand | Non-wetland class, exposed lake, river or estuarine bed, coarse sand |
Soil | Non-wetland class, bare land, very low or no vegetation |
Marshes | Wetland class, aquatic plants that are either emerge, submerge or floating in water |
Swamps | Wetland class, aquatic forest or shrubs |
v2.0 | v2.1 | v2.2 | v2.3 | v2.4 | v2.5 | |
---|---|---|---|---|---|---|
Spectral Bands (SB) | X | X | X | X | X | |
Transformations (T) | X | X | X | X | X | |
SAR | X | X | X | |||
GLCM | X | X | ||||
Multi-seasonal (MS) | X |
Training | Validation | |
---|---|---|
marshes | 857 | 200 |
swamps | 681 | 120 |
forest | 2741 | 550 |
shrubs | 853 | 170 |
crops | 1457 | 300 |
sand | 1188 | 200 |
soil | 1493 | 300 |
urban | 1862 | 370 |
water | 2856 | 570 |
SB | T | T + SB | SAR | GLCM | MS | ||
---|---|---|---|---|---|---|---|
marshes | PA (%) | 95.83 | 95.83 | 95.00 | 95.00 | 95.83 | 96.67 |
UA (%) | 61.17 | 56.65 | 62.64 | 62.98 | 66.86 | 68.24 | |
swamps | PA (%) | 78.00 | 70.50 | 78.50 | 78.50 | 83.50 | 82.50 |
UA (%) | 82.54 | 81.03 | 83.96 | 83.96 | 82.27 | 80.88 | |
forest | PA (%) | 99.64 | 99.64 | 99.64 | 99.64 | 99.64 | 98.73 |
UA (%) | 99.46 | 99.82 | 99.82 | 99.82 | 100.00 | 100.00 | |
shrubs | PA (%) | 97.65 | 99.41 | 98.82 | 98.82 | 98.82 | 98.24 |
UA (%) | 75.11 | 85.35 | 81.55 | 80.77 | 90.32 | 89.78 | |
crops | PA (%) | 69.67 | 70.00 | 72.00 | 72.33 | 74.33 | 73.67 |
UA (%) | 84.27 | 84.34 | 85.38 | 85.43 | 88.14 | 87.01 | |
sand | PA (%) | 100.00 | 94.50 | 100.00 | 100.00 | 100.00 | 100.00 |
UA (%) | 86.96 | 86.30 | 88.11 | 87.72 | 89.69 | 90.91 | |
soil | PA (%) | 93.33 | 91.00 | 92.67 | 92.33 | 96.33 | 96.33 |
UA (%) | 94.28 | 88.93 | 93.92 | 93.58 | 98.63 | 98.30 | |
urban | PA (%) | 77.30 | 77.57 | 81.62 | 80.81 | 91.62 | 93.51 |
UA (%) | 98.62 | 90.82 | 97.11 | 97.08 | 99.41 | 99.43 | |
water | PA (%) | 99.12 | 98.95 | 99.30 | 99.30 | 98.25 | 98.25 |
UA (%) | 99.82 | 99.82 | 99.47 | 99.47 | 99.82 | 99.82 | |
Overall (%) | 90.83 | 89.78 | 91.69 | 91.58 | 93.85 | 93.78 | |
Kappa | 0.89 | 0.88 | 0.90 | 0.90 | 0.93 | 0.93 |
OA (%)|Kappa | 94.82%|0.9362 | |||||
---|---|---|---|---|---|---|
water | marshes | swamps | forest | shrubs | grass | |
UA (%) | 99.05% | 94.37% | 89.40% | 79.32% | 98.03% | 96.47% |
PA (%) | 99.78% | 85.59% | 89.89% | 97.06% | 88.85% | 95.85% |
crops s | crops w | crops p | urban | sand | soil | |
UA (%) | 91.59% | 97.25% | 98.02% | 95.59% | 99.87% | 88.53% |
PA (%) | 84.58% | 96.50% | 95.77% | 80.90% | 76.62% | 99.38% |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chatziantoniou, A.; Psomiadis, E.; Petropoulos, G.P. Co-Orbital Sentinel 1 and 2 for LULC Mapping with Emphasis on Wetlands in a Mediterranean Setting Based on Machine Learning. Remote Sens. 2017, 9, 1259. https://doi.org/10.3390/rs9121259
Chatziantoniou A, Psomiadis E, Petropoulos GP. Co-Orbital Sentinel 1 and 2 for LULC Mapping with Emphasis on Wetlands in a Mediterranean Setting Based on Machine Learning. Remote Sensing. 2017; 9(12):1259. https://doi.org/10.3390/rs9121259
Chicago/Turabian StyleChatziantoniou, Andromachi, Emmanouil Psomiadis, and George P. Petropoulos. 2017. "Co-Orbital Sentinel 1 and 2 for LULC Mapping with Emphasis on Wetlands in a Mediterranean Setting Based on Machine Learning" Remote Sensing 9, no. 12: 1259. https://doi.org/10.3390/rs9121259
APA StyleChatziantoniou, A., Psomiadis, E., & Petropoulos, G. P. (2017). Co-Orbital Sentinel 1 and 2 for LULC Mapping with Emphasis on Wetlands in a Mediterranean Setting Based on Machine Learning. Remote Sensing, 9(12), 1259. https://doi.org/10.3390/rs9121259