Abstract
Mapping of wetlands (marsh vs. swamp vs. upland) is a common remote sensing application.Yet, discriminating between similar freshwater communities such as graminoid/sedge from remotely sensed imagery is more difficult. Most of this activity has been performed using medium to low resolution imagery. There are only a few studies using high spatial resolution imagery and machine learning image classification algorithms for mapping heterogeneous wetland plant communities. This study addresses this void by analyzing whether machine learning classifiers such as decision trees (DT) and artificial neural networks (ANN) can accurately classify graminoid/sedge communities using high resolution aerial imagery and image texture data in the Everglades National Park, Florida. In addition to spectral bands, the normalized difference vegetation index, and first- and second-order texture features derived from the near-infrared band were analyzed. Classifier accuracies were assessed using confusion tables and the calculated kappa coefficients of the resulting maps. The results indicated that an ANN (multilayer perceptron based on back propagation) algorithm produced a statistically significantly higher accuracy (82.04 %) than the DT (QUEST) algorithm (80.48 %) or the maximum likelihood (80.56 %) classifier (α<0.05). Findings show that using multiple window sizes provided the best results. First-order texture features also provided computational advantages and results that were not significantly different from those using second-order texture features.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Armentano, T. V., Sah, J. P., Ross, M. S., Jones, D. T., Cooley, H. C., & Smith, C. S. (2006). Rapid responses of vegetation to hydrological changes in Taylor Slough, Everglades National Park, Florida, USA. Hydrobiologia, 569(1), 293–309. doi:10.1007/s10750-006-0138-8.
Ashish, D., McClendon, R. W., & Hoogenboom, G. (2009). Land-use classification of multispectral aerial images using artificial neural networks. International Journal of Remote Sensing, 30(8), 1989–2004. doi:10.1080/01431160802549187.
Baker, C., Lawrence, R., Montagne, C., & Patten, D. (2006). Mapping wetlands and riparian areas using Landsat ETM+ imagery and decision-tree-based models. Wetlands, 26(2), 465–474.
Barbosa, I. (2010). Mapping wetland environments in the Brazilian Savannah from high resolution IKONOS image data. In W. Wagner & B. Székely (Eds.), ISPRS TC VII symposium (Vol. XXXVIII, Part 7B, pp. 62–67.).
Belluco, E., Camuffo, M., Ferrari, S., Modenese, L., Silvestri, S., Marani, A., & Marani, M. (2006). Mapping salt-marsh vegetation by multispectral and hyperspectral remote sensing. Remote Sensing of Environment, 105(1), 54–67.
Benediktsson, J. A., Swain, P. H., & Ersoy, O. K. (1993). Conjugate-gradient neural networks in classification of multisource and very-high-dimensional remote sensing data. International Journal of Remote Sensing, 14(15), 2883–2903. doi:10.1080/01431169308904316.
Berberoglu, S., Yilmaz, K. T., & Ozkan, C. (2004). Mapping and monitoring of coastal wetlands of Cukurova Delta in the Eastern Mediterranean region. Biodiversity and Conservation, 13, 615–633.
Berberoglu, S., Curran, P. J., Lloyd, C. D., & Atkinson, P. M. (2007). Texture classification of Mediterranean land cover. International Journal of Applied Earth Observation and Geoinformation, 9(3), 322–334.
Breiman, L., Friedman, J., Stone, C., & Olshen, R. (1984). Classification and regression trees. New York: Chapman & Hall.
Bwangoy, J. R., Hansen, M. C., Roy, D. P., Grandi, G. D., & Justice, C. O. (2010). Wetland mapping in the Congo Basin using optical and radar remotely sensed data and derived topographical indices. Remote Sensing of Environment, 114(1), 73–86.
Canty, M. J. (2010). Image analysis, classification, and change detection in remote sensing: With algorithms for ENVI/IDL, second edition (2nd ed.). Boca Raton: CRC Press.
Childers, D. L., Jones, R. F., Noe, R., Rugge, G. B., Scinto, M., & Leonard, J. (2003). Decadal change in vegetation and soil phosphorus pattern across the Everglades landscape. Journal of Environmental Quality, 32(1), 344–362.
Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37(1), 35–46.
Davis, S. M., Gunderson, L. H., Park, W. A., Richardson, J. R., & Mattson, J. E. (1994). Landscape dimension, composition, and function in a changing Everglades ecosystem. In S. M. Davis & J. C. Ogden (Eds.), Everglades: The ecosystem and its restoration (pp. 419–444.).
Davis, S. M., Gaiser, E. E., Loftus, W. F., & Huffman, A. E. (2005). Southern marl prairies conceptual ecological model. Wetlands, 25(4), 821–831.
Donner, A., Shoukri, M. M., Klar, N., & Bartfay, E. (2000). Testing the equality of two dependent kappa statistics. Statistics in Medicine, 19(3), 373–387.
Foody, G. M., McCulloch, M. B., & Yates, W. B. (1995). The effect of training set size and composition on artificial neural network classification. International Journal of Remote Sensing, 16(9), 1707–1723. doi:10.1080/01431169508954507.
Friedl, M. A., & Brodley, C. E. (1997). Decision tree classification of land cover from remotely sensed data. Remote Sensing of Environment, 61(3), 399–409.
Fuller, D. O. (2005). Remote detection of invasive Melaleuca trees (Melaleuca quinquenervia) in South Florida with multispectral IKONOS imagery. International Journal of Remote Sensing, 26(5), 1057–1063. doi:10.1080/01430060512331314119.
Ghedira, H., Bernier, M., & Ouarda, T. B. M. J. (2000). Application of neural networks for wetland classification in RADARSAT SAR imagery. In Geoscience and Remote Sensing Symposium Proceedings. (Vol. 2, pp. 675–677.). Presented at the Geoscience and Remote Sensing Symposium. IGARSS 2000. IEEE 2000 International.
Gilmore, M. S., Wilson, E. H., Barrett, N., Civco, D. L., Prisloe, S., Hurd, J. D., & Chadwick, C. (2008). Integrating multi-temporal spectral and structural information to map wetland vegetation in a lower Connecticut River tidal marsh. Remote Sensing of Environment, 112(11), 4048–4060.
Goel, P. K., Prasher, S. O., Patel, R. M., Landry, J. A., Bonnell, R. B., & Viau, A. A. (2003). Classification of hyperspectral data by decision trees and artificial neural networks to identify weed stress and nitrogen status of corn. Computers and Electronics in Agriculture, 39(2), 67–93.
Gunderson, L. H. (1997). Vegetation of the Everglades: Determinants of community composition. In S. M. Davis & J. C. Ogden (Eds.), Everglades: The ecosystem and its restoration (pp. 323–340). Baca Raton: CRC Press.
Haralick, R. M., Dinstein, I., & Shanmugam, K. (1973). Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, 3(6), 610–621.
Harvey, K. R., & Hill, G. J. E. (2001). Vegetation mapping of a tropical freshwater swamp in the Northern Territory, Australia: a comparison of aerial photography, Landsat TM and SPOT satellite imagery. International Journal of Remote Sensing, 22(15), 2911–2925. doi:10.1080/01431160119174.
Haykin, S. (1999). Neural networks: A comprehensive foundation (2nd ed.). Upper Saddle River N.J.: Prentice Hall.
Hepner, G., Logan, T., Ritter, N., & Bryant, N. (1990). Artificial neural network classification using a minimal training set: comparison to conventional supervised classification. Photogrammetric Engineering and Remote Sensing, 56(4), 469–473.
Jenkins, C. N., Powell, R. D., Bass, O. L., & Pimm, S. L. (2003). Demonstrating the destruction of the habitat of the Cape Sable seaside sparrow (Ammodramus maritimus mirabilis). Animal Conservation, 6(1), 29–38.
Johansen, K., Coops, N. C., Gergel, S. E., & Stange, Y. (2007). Application of high spatial resolution satellite imagery for riparian and forest ecosystem classification. Remote Sensing of Environment, 110(1), 29–44.
Junk, W. J., Brown, M., Campbell, I. C., Finlayson, M., Gopal, B., Ramberg, L., & Warner, B. G. (2006). The comparative biodiversity of seven globally important wetlands: a synthesis. Aquatic Sciences, 68(3), 400–414. doi:10.1007/s00027-006-0856-z.
Kim, H., & Loh, W. Y. (2001). Classification trees with unbiased multiway splits. Journal of the American Statistical Association, 96(454), 589–604.
Kindscher, K., Fraser, A., Jakubauskas, M. E., & Debinski, D. M. (1997). Identifying wetland meadows in Grand Teton National Park using remote sensing and average wetland values. Wetlands Ecology and Management, 5(4), 265–273.
Larose, D. T. (2004). Discovering knowledge in data: An introduction to data mining (1st ed.). Hoboken, New Jersey: Wiley, John & Sons.
Larsen, L., Aumen, N., Bernhardt, C., Engel, V., Givnish, T., Hagerthey, S., et al. (2011). Recent and historic drivers of landscape change in the Everglades ridge, slough, and tree island mosaic. Critical Reviews in Environmental Science and Technology, 41, 344–381. doi:10.1080/10643389.2010.531219.
Lloyd, C. D., Berberoglu, S., Curran, P. J., & Atkinson, P. M. (2004). A comparison of texture measures for the per-field classification of Mediterranean land cover. International Journal of Remote Sensing, 25(19), 3943–3965. doi:10.1080/0143116042000192321.
Lockwood, J. L., Fenn, K. H., Caudill, J. M., Okines, D., Bass, O. L., Duncan, J. R., & Pimm, S. L. (2001). The implications of Cape Sable seaside sparrow demography for Everglades restoration. Animal Conservation, 4(3), 275–281.
Loh, W. Y., & Shih, Y. S. (1997). Split selection methods for classification trees. Statistica Sinica, 7, 815–840.
Madden, M., Jones, D., & Vilchek, L. (1999). Photointerpretation key for the Everglades vegetation classification system. Photogrammetric Engineering & Remote Sensing, 65(2), 171–177.
Marella, R. L. (2009). Water withdrawals, use, and trends in Florida, 2005 (Scientific Investigations Report No. 2009–5125). Reston, Virginia: Florida Department of Environmental Protection, U.S. Department of the Interior, U.S. Geological Survey.
Mas, J. F. (2004). Mapping land use/cover in a tropical coastal area using satellite sensor data, GIS and artificial neural networks. Estuarine, Coastal and Shelf Science, 59(2), 219–230.
Mas, J. F., & Flores, J. J. (2008). The application of artificial neural networks to the analysis of remotely sensed data. International Journal of Remote Sensing, 29(3), 617–663. doi:10.1080/01431160701352154.
Mather, P. (2004). Computer processing of remotely sensed images: An introduction (3rd ed.). Chichester: Wiley.
Maxa, M., & Bolstad, P. (2009). Mapping northern wetlands with high resolution satellite images and LiDAR. Wetlands, 29(1), 248–260.
Michishita, R., Xu, B., & Gong, P. (2008). A decision tree classifier for the monitoring of wetland vegetation using Aster data in the Poyang lake region, China. In The international archives of the photogrammetry, remote sensing and spatial information sciences. (Vol. XXXVII. Part B8., p. 8). Beijing, China.
Mitsch, W., & Gosselink, J. (2007). Wetlands (4th ed.). Hoboken: Wiley.
Nielsen, E. M., Prince, S. D., & Koeln, G. T. (2008). Wetland change mapping for the US mid-Atlantic region using an outlier detection technique. Remote Sensing of Environment, 112(11), 4061–4074.
Nott, M. P., Bass, O. L., Fleming, D. M., Killeffer, S. E., Fraley, N., Manne, L., et al. (1998). Water levels, rapid vegetational changes, and the endangered Cape Sable seaside-sparrow. Animal Conservation, 1(1), 23–32.
Olmsted, I. C., & Armentano, T. V. (1997). Vegetation of Shark Slough, Everglades National Park (Technical Report No. 97-001) (p. 43). Everglades National Park: South Florida Natural Resources Center.
Ozesmi, S. L., & Bauer, M. E. (2002). Satellite remote sensing of wetlands. Wetlands Ecology and Management, 10(5), 381–402.
Pal, M., & Mather, P. M. (2003). An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sensing of Environment, 86(4), 554–565.
Paola, J. D., & Schowengerdt, R. A. (1995). A detailed comparison of backpropagation neural network and maximum-likelihood classifiers for urban land use classification. IEEE Transactions on Geoscience and Remote Sensing, 33(4), 981–997.
Pearlstine, L. G., Smith, S. E., Brandt, L. A., Allen, C. R., & Kitchens, W. M. (2002). Assessing state-wide biodiversity in the Florida Gap analysis project. Journal of Environmental Management, 66, 127–144.
Pimm, S. L., Lockwood, J. L., Jenkins, C., Curnutt, J. L., Nott, M. P., Powell, R., & Bass Jr., O. L. (2002). A sparrow in the grass. A report on the first ten years of research on the Cape Sable Seaside Sparrow (p. 182). Homestead, Florida: National Park Service, Everglades National Park.
Ranawana, R., & Palade, V. (2005). A neural network based multi-classifier system for gene identification in DNA sequences. Neural Computing and Applications, 14(2), 122–131.
RECOVER (Restoration Coordination & Verification). (2004). CERP monitoring and assessment plan: Part 1 monitoring and supporting research. West Palm Beach: United States Army Corps of Engineers, FL, USA and South Florida Water Management District.
Richards, J., & Jia, X. (2006). Remote sensing digital image analysis an introduction. Berlin: Springer.
Richardson, C. (2010). The Everglades: North America’s subtropical wetland. Wetlands Ecology and Management, 18(5), 517–542.
Ross, M. S., Reed, D. L., Sah, J. P., Ruiz, P. L., & Lewin, M. T. (2003). Vegetation: environment relationships and water management in Shark Slough, Everglades National Park. Wetlands Ecology and Management, 11(5), 291–303.
Ross, M. S., Mitchell-Bruker, S., Sah, J. P., Stothoff, S., Ruiz, P. L., Reed, D. L., et al. (2006). Interaction of hydrology and nutrient limitation in the Ridge and Slough landscape of the southern Everglades. Hydrobiologia, 569(1), 37–59. doi:10.1007/s10750-006-0121-4.
Rutchey, K., Schall, T., Doren, R., Atkinson, A., Ross, M., Jones, D., et al. (2006). Vegetation classification for South Florida natural areas (Open-File Report No. 2006-1240) (p. 142). Saint Petersburg: United States Geological Survey.
Rutchey, K., Schall, T., & Sklar, F. (2008). Development of vegetation maps for assessing Everglades restoration progress. Wetlands, 28(3), 806–816.
Schmidt, K. S., & Skidmore, A. K. (2003). Spectral discrimination of vegetation types in a coastal wetland. Remote Sensing of Environment, 85(1), 92–108.
Sesnie, S. E., Gessler, P. E., Finegan, B., & Thessler, S. (2008). Integrating Landsat TM and SRTM-DEM derived variables with decision trees for habitat classification and change detection in complex neotropical environments. Remote Sensing of Environment, 112(5), 2145–2159.
Szantoi, Z., Escobedo, F., Abd-Elrahman, A., Smith, S., & Pearlstine, L. (2013). Analyzing fine-scale wetland composition using high resolution imagery and texture features. International Journal of Applied Earth Observation and Geoinformation, 23, 204–212. doi:10.1016/j.jag.2013.01.003.
Wang, L., Sousa, W. P., Gong, P., & Biging, G. S. (2004). Comparison of IKONOS and QuickBird images for mapping mangrove species on the Caribbean coast of Panama. Remote Sensing of Environment, 91(3–4), 432–440.
Wolf, P., & Dewitt, B. (2000). Elements of photogrammetry: With applications in GIS (3rd ed.). Boston: McGraw-Hill.
Wright, C., & Gallant, A. (2007). Improved wetland remote sensing in Yellowstone National Park using classification trees to combine TM imagery and ancillary environmental data. Remote Sensing of Environment, 107(4), 582–605.
Yang, C. C., Prasher, S. O., Enright, P., Madramootoo, C., Burgess, M., Goel, P. K., & Callum, I. (2003). Application of decision tree technology for image classification using remote sensing data. Agricultural Systems, 76(3), 1101–1117.
Zhang, S., Liu, H. X., Gao, D. T., & Wang, W. (2003). Surveying the methods of improving ANN generalization capability. In Proceedings of the second international conference on machine learning and cybernetics (Vol. 2, pp. 1259–1263.). Presented at the Second International Conference on Machine Learning and Cybernetics, Xian, China.
Zweig, C. L., & Kitchens, W. M. (2008). Effects of landscape gradients on wetland vegetation communities: information for large-scale restoration. Wetlands, 28(4), 1086–1096.
Author information
Authors and Affiliations
Corresponding author
Additional information
Research was conducted in the Geomatics program at the University of Florida's School of Forest Resources & Conservation.
Rights and permissions
About this article
Cite this article
Szantoi, Z., Escobedo, F.J., Abd-Elrahman, A. et al. Classifying spatially heterogeneous wetland communities using machine learning algorithms and spectral and textural features. Environ Monit Assess 187, 262 (2015). https://doi.org/10.1007/s10661-015-4426-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10661-015-4426-5