Quantifying the Impact of NDVIsoil Determination Methods and NDVIsoil Variability on the Estimation of Fractional Vegetation Cover in Northeast China
"> Figure 1
<p>The sampling areas of <span class="html-italic">in situ</span> fractional vegetation covers (<b>a</b>) and the soil types (<b>b</b>) in Northeast China.</p> "> Figure 2
<p>The spectral reflectances of different soil types in Northeast China (<b>a</b>); and the histogram of NDVI computed from soil reflectance spectra (<b>b</b>).</p> "> Figure 3
<p>Regressions between <span class="html-italic">in situ</span> FVC and SAVI (<b>a</b>) and MSAVI (<b>b</b>).</p> "> Figure 4
<p>Relationship between <math display="inline"> <semantics> <mrow> <mo>Δ</mo> <msup> <mi>f</mi> <mo>*</mo> </msup> </mrow> </semantics> </math> and pixel NDVI over deciduous broadleaf forest (<b>a</b>); mixed forest (<b>b</b>); woody savanna; (<b>c</b>); grasslands (<b>d</b>); croplands (<b>e</b>) and croplands/natural vegetation (<b>f</b>), with different soil backgrounds.</p> "> Figure 5
<p>The uncertainty <math display="inline"> <semantics> <mrow> <mi mathvariant="sans-serif">σ</mi> </mrow> </semantics> </math> in FVC estimations over deciduous broadleaf forests (<b>a</b>); mixed forests (<b>b</b>); woody savannas (<b>c</b>); grasslands (<b>d</b>); croplands (<b>e</b>) and croplands/natural vegetation (<b>f</b>), with different soil backgrounds.</p> "> Figure 6
<p>Spatial distributions of yearly mean NDVI (<b>a</b>); the NDVI<sub>soil</sub> (<b>b</b>); the bias (<b>c</b>); and the standard deviation (<b>d</b>) throughout the Northeast China.</p> "> Figure 7
<p>Validation of FVC values using aggregated 1 km FVC reference maps at two locations. (<b>a</b>) Dehui, on 17 June 2013; (<b>b</b>) on 13 July 2013; and (<b>c</b>) Hulun Buir, on 11 August 2013.</p> "> Figure 8
<p>EVI (<b>a</b>) and SAVI (<b>b</b>) calculated from the 564 soil reflectance spectra.</p> ">
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data
2.2.1. Collection of Soil Spectral Reflectances
2.2.2. Estimation of Fine-Resolution FVC Maps
In-Situ Area | Image Data | Land Cover | Image Date | Ground Sampling Date |
---|---|---|---|---|
Dehui | Landsat 8 OLI | Croplands | 17 June 2013, 12 July 2013 | 19 June 2013, 13 July 2013 |
Hulun Buir | HJ-1B CCD | Steppe | 11 August 2013 | 3 August 2013 |
2.2.3. SPOT-VGT Data and Processing
2.3. Theory
2.3.1. NDVIsoil Determining Methods
The HWSD Soil Type | NDVIsoil | IGBP Land Cover Type | NDVIveg |
---|---|---|---|
1. Anthrosols | 0.16 ± 0.03 | 1. Evergreen Needleleaf Forest | 0.77 |
2. Arenosols | 0.16 ± 0.03 | 3. Deciduous Needleleaf Forest | 0.75 |
3. Calcisols | 0.12 ± 0.04 | 4. Deciduous Broadleaf Forest | 0.76 |
4. Cambisols | 0.16 ± 0.03 | 5. Mixed Forest | 0.77 |
5. Chernozems | 0.16 ± 0.03 | 6. Closed Shrublands | 0.78 |
6. Flubvisols | 0.17 ± 0.02 | 7. Open Shrublands | 0.80 |
7. Gleysols | 0.13 ± 0.04 | 8. Woody Savannas | 0.76 |
8. Histosols | 0.16 ± 0.03 | 9. Savannas | 0.77 |
9. Kastanozems | 0.14 ± 0.04 | 10. Grasslands | 0.64 |
10. Leptosols | 0.15 ± 0.04 | 11. Permanent Wetlands | 0.76 |
11. Luvisols | 0.15 ± 0.04 | 12. Croplands | 0.74 |
12. Phaeozems | 0.15 ± 0.03 | 13. Urban and Built-up | 0.74 |
13. Podzoluvisols | 0.15 ± 0.03 | 14. Cropland/Natural Vegetation | 0.66 |
14. Regosols | 0.17 ± 0.04 | 16. Barren or Sparsely Vegetated | 0.50 |
15. Solonchaks | 0.15 ± 0.03 | ||
16. Solonetz | 0.15 ± 0.03 |
2.3.2. Analysis of the Effect of Uncertainty of NDVIsoil in FVC Calculation
3. Results
3.1. Influence of NDVIsoil Variability on FVC Calculation
3.2. Uncertainty on FVC Estimation
Std () | Luvisols | Phaeozems | Arenosols | Cambisols | Chernozems | Flubvisols | Gleysols |
---|---|---|---|---|---|---|---|
Mean, Max | Mean, Max | Mean, Max | Mean, Max | Mean, Max | Mean, Max | Mean, Max | |
Deciduous broadleaf forest | 0.043, 0.062 | 0.039, 0.051 | 0.033, 0.049 | 0.035, 0.050 | 0.036, 0.045 | 0.025, 0.029 | 0.039, 0.052 |
Mixed forest | 0.044, 0.062 | 0.039, 0.050 | 0.038, 0.048 | 0.034, 0.049 | 0.036, 0.045 | 0.021, 0.031 | 0.040, 0.053 |
Woody savannas | 0.049, 0.062 | 0.043, 0.051 | 0.041, 0.049 | 0.043, 0.050 | 0.040, 0.046 | 0.025, 0.031 | 0.044, 0.054 |
Grasslands | 0.063, 0.076 | 0.054, 0.061 | 0.055, 0.060 | 0.055, 0.061 | 0.049, 0.056 | 0.033, 0.038 | 0.057, 0.065 |
Croplands | 0.052, 0.064 | 0.045, 0.052 | 0.044, 0.051 | 0.042, 0.051 | 0.042, 0.047 | 0.027, 0.032 | 0.048, 0.055 |
Cropland/Natural vegetation | 0.052, 0.073 | 0.049, 0.059 | 0.052, 0.057 | 0.047, 0.059 | 0.044, 0.054 | 0.031, 0.037 | 0.053, 0.063 |
3.3. Comparison of FVC Derived from Two NDVIsoil Methods
Deciduous Broadleaf Forest | Mixed Forest | Woody Savannas | Grasslands | Croplands | Cropland/Natural Vegetation | Over All | |
---|---|---|---|---|---|---|---|
Average | |||||||
FVC1 * | 0.43 | 0.41 | 0.33 | 0.27 | 0.31 | 0.36 | 0.35 |
FVC2 | 0.37 | 0.35 | 0.26 | 0.19 | 0.24 | 0.28 | 0.28 |
RMSE | 0.07 | 0.07 | 0.07 | 0.08 | 0.07 | 0.08 | 0.07 |
Bias | 0.06 | 0.06 | 0.07 | 0.08 | 0.07 | 0.08 | 0.07 |
3.4. Validation of FVC Estimations Using 30 m FVC Reference Maps
Dehui, on 17 June 2013 | Dehui, on 13 July 2013 | Hulun Buir | ||||
---|---|---|---|---|---|---|
RMSE | Bias | RMSE | Bias | RMSE | Bias | |
In situ NDVIsoil | 0.04 | 0.02 | 0.05 | 0 | - | - |
invariant NDVIsoil | 0.14 | 0.04 | 0.06 | 0.03 | 0.04 | 0.04 |
NDVIsoil based on the HWSD | 0.09 | 0.02 | 0.05 | 0.02 | 0.03 | 0.02 |
4. Discussion
4.1. Impact of Soil Backgrounds on Canopy Vegetation Indices
4.2. Impact of Soil Backgrounds on VIsoil
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gutman, G.; Ignatov, A. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int. J. Remote Sens. 1998, 19, 1533–1543. [Google Scholar] [CrossRef]
- Deardorff, J.W. Efficient prediction of ground temperature and moisture with inclusion of a layer of vegetation. J. Geophys. Res. 1978, 83, 1889–1903. [Google Scholar] [CrossRef]
- Baret, F.; Clevers, J.G.P.W.; Steven, M.D. The robustness of canopy gap fraction estimates from red and near-infrared reflectances: A comparison of approaches. Remote Sens. Environ. 1995, 54, 141–151. [Google Scholar] [CrossRef]
- Gutmann, E.D.; Small, E.E. A comparison of land surface model soil hydraulic properties estimated by inverse modeling and pedotransfer functions. Water Resour. Res. 2007, 43, 1–13. [Google Scholar] [CrossRef]
- Montandon, L.; Small, E. The impact of soil reflectance on the quantification of the green vegetation fraction from NDVI. Remote Sens. Environ. 2008, 112, 1835–1845. [Google Scholar] [CrossRef]
- Zhang, X.; Liao, C.; Li, J.; Sun, Q. Fractional vegetation cover estimation in arid and semi-arid environments using HJ-1 satellite hyperspectral data. Int. J. Appl. Earth Obs. 2013, 21, 506–512. [Google Scholar] [CrossRef]
- Jiménez-Muñoz, J.C.; Sobrino, J.A.; Plaza, A.; Guanter, L.; Moreno, J.; Martinez, P. Comparison between fractional vegetation cover retrievals from vegetation indices and spectral mixture analysis: Case study of PROBA/CHRIS data over an agricultural area. Sensors 2009, 9, 768–793. [Google Scholar] [CrossRef] [PubMed]
- Johnson, B.; Tateishi, R.; Kobayashi, T. Remote sensing of fractional green vegetation cover using spatially-interpolated endmembers. Remote Sens. 2012, 4, 2619–2634. [Google Scholar] [CrossRef]
- Wu, D.; Wu, H.; Zhao, X.; Zhou, T.; Tang, B.; Zhao, W.; Jia, K. Evaluation of spatiotemporal variations of global fractional vegetation cover based on GIMMS NDVI data from 1982 to 2011. Remote Sens. 2014, 6, 4217–4239. [Google Scholar] [CrossRef]
- Li, F.; Chen, W.; Zeng, Y.; Zhao, Q.; Wu, B. Improving estimates of grassland fractional vegetation cover based on a pixel dichotomy model: A case study in Inner Mongolia, China. Remote Sens. 2014, 6, 4705–4722. [Google Scholar] [CrossRef]
- Zeng, X.B.; Dickinson, R.E.; Walker, A.; Shaikh, M.; DeFries, R.S.; Qi, J.G. Derivation and evaluation of global 1-km fractional vegetation cover data for land modeling. J. Appl. Meteorol. 2000, 39, 826–839. [Google Scholar] [CrossRef]
- Matsui, T.; Lakshmi, V.; Small, E.E. The effects of satellite-derived vegetation cover variability on simulated land-atmosphere interactions in the NAMS. J. Clim. 2005, 18, 21–40. [Google Scholar] [CrossRef]
- Baumgardner, M.; Silva, L.; Biehl, L.; Stoner, E. Reflectance properties of soils. Adv. Agron. 1985, 38, 1–44. [Google Scholar]
- Jensen, J. Introductory Digital Image Processing: A Remote Sensing Perspective, 3rd ed.; Person Prentice Hall: Upper Saddle River, NJ, USA, 2004. [Google Scholar]
- Yang, H.; Yang, Z. A modified land surface temperature split window retrieval algorithm and its applications over China. Glob. Planet Chang. 2006, 52, 207–215. [Google Scholar] [CrossRef]
- Gan, T.Y.; Burges, S.J. Assessment of soil-based and calibrated parameters of the Sacramento model and parameter transferability. J. Hydrol. 2006, 320, 117–131. [Google Scholar] [CrossRef]
- Sridhar, V.; Elloitt, R.L.; Chen, F. Scaling effects on modeled surface energy-balance components using the NOAH-OSU land surface model. J. Hydrol. 2003, 280, 105–123. [Google Scholar] [CrossRef]
- Jiang, L.; Kogan, F.N.; Guo, W.; Tarpley, J.D.; Mitchell, K.E.; Ek, M.B.; Tian, Y.; Zheng, W.; Zou, C.-Z.; Ramsay, B.H. Real-time weekly global green vegetation fraction derived from advanced very high resolution radiometer-based NOAA operational global vegetation index (GVI) system. J. Geophys. Res. 2010, 115, 1–22. [Google Scholar] [CrossRef]
- Xie, H.; Zhao, J.; Wang, Q.; Sui, Y.; Wang, J.; Yang, X.; Zhang, X.; Liang, C. Soil type recognition as improved by genetic algorithm-based variable selection using near infrared spectroscopy and partial least squares discriminant analysis. Sci. Rep. 2015, 5. [Google Scholar] [CrossRef] [PubMed]
- Nachtergaele, F.; Batjes, N. Harmonized World Soil Database; FAO: Rome, Italy, 2012. [Google Scholar]
- Ji, W.; Li, S.; Chen, S.; Shi, Z.; Viscarra Rossel, R.A.; Mouazen, A.M. Prediction of soil attributes using the Chinese soil spectral library and standardized spectra recorded at field conditions. Soil Till. Res. 2015, 155, 492–500. [Google Scholar] [CrossRef]
- Ni, J.; Zhang, X.S. Climate variability, ecological gradient and the Northeast China Transect (NECT). J. Arid. Environ. 2000, 46, 313–325. [Google Scholar] [CrossRef]
- Fensholt, R.; Rasmussen, K.; Nielsen, T.T.; Mbow, C. Evaluation of earth observation based long term vegetation trends—Intercomparing NDVI time series trend analysis consistency of Sahel from AVHRR GIMMS, Terra MODIS and SPOT VGT data. Remote Sens. Environ. 2009, 113, 1886–1898. [Google Scholar] [CrossRef]
- Maisongrande, P.; Duchemin, B.; Dedieu, G. VEGETATION/SPOT: An operational mission for the Earth monitoring; presentation of new standard products. Int. J. Remote Sens. 2004, 25, 9–14. [Google Scholar] [CrossRef]
- Felde, G.W.; Anderson, G.P.; Cooley, T.W.; Mattew, M.W.; Adler-Golden, S.M.; Berk, A.; Lee, J. Analysis of hyperion data with the FLAASH atmospheric correction algorithm. In Proceedings of the Geoscience and Remote Sensing Symposium, Toulouse, France, 21–25 July 2003; pp. 90–92.
- Li, Z.; Tang, H.; Xin, X.; Zhang, B.; Wang, D. Assessment of the MODIS LAI product using ground measurement data and HJ-1A/1B imagery in the meadow steppe of Hulunber, China. Remote Sens. 2014, 6, 6242–6265. [Google Scholar] [CrossRef]
- Baret, F.; Weiss, M.; Allard, D.; Garrigue, S.; Leroy, M.; Jeanjean, H.; Fernandes, R.; Myneni, R.; Privette, J.; Morisette, J. VALERI: A network of sites and a methodology for the validation of medium spatial resolution land satellite products. Available online: http://w3.avignon.inra.fr/valeri/documents/VALERI-RSESubmitted.pdf/ (accessed on 6 June 2012).
- Tang, L.; Tian, L.; Steward, B.L. Classification of broadleaf and grass weeds using Gabor wavelets and artificial neural network. Trans. ASAE 2003, 46, 1247–1254. [Google Scholar] [CrossRef]
- Ding, Y.L.; Zhao, K.; Li, X.F.; Zheng, X.M. An automatic extraction approach to fractional vegetaion cover of saline land with digital images. J. Geo inf. Sci. 2013, 15, 618–624. (In Chinese) [Google Scholar]
- Wang, Y.; Woodcock, C.E.; Buermann, W.; Stenberg, P.; Voipio, P.; Smolander, H.; Häme, T.; Tian, Y.; Hu, J.; Knyazikhin, Y.; et al. Evaluation of the MODIS LAI algorithm at a coniferous forest site in Finland. Remote Sens. Environ. 2004, 91, 114–127. [Google Scholar] [CrossRef]
- Rahman, H.; Dedieu, G. SMAC: A simplified method for the atmospheric correction of satellite measurements in the solar spectrum. Int. J. Remote Sens. 1994, 15, 123–143. [Google Scholar] [CrossRef]
- Holben, B. Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens. 1986, 7, 1417–1434. [Google Scholar] [CrossRef]
- Camacho, F.; Cernicharo, J.; Lacaze, R.; Baret, F.; Weiss, M. GEOV1: LAI, FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part 2: Validation and intercomparison with reference products. Remote Sens. Environ. 2013, 137, 310–329. [Google Scholar] [CrossRef]
- Chen, J.M.; Pavlic, G.; Brown, L.; Cihlar, J.; Leblanc, S.G.; White, H.P.; Hall, R.J.; Peddle, D.R.; King, D.J.; Trofymow, J.A.; et al. Derivation and validation of Canada-wide coarse-resolution leaf area index maps using high-resolution satellite imagery and ground measurements. Remote Sens. Environ. 2002, 80, 165–184. [Google Scholar] [CrossRef]
- Huete, A.; Jackson, R.D.; Post, D.F. Spectral responses of a plant canopy with difference soil backgrounds. Remote Sens. Environ. 1985, 17, 37–53. [Google Scholar] [CrossRef]
- Leprieur, C.; Verstraete, M.M.; Pinty, B. Evaluation of the performance of various vegetation indices to retrieve vegetation cover from AVHRR data. Remote Sens. Rev. 1994, 10, 265–284. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.L.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index (MSAVI). Int. J. Remote Sens. 1994, 48, 11–126. [Google Scholar]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Boegh, E.; Soegaard, H.; Broge, N.; Hasager, C.B.; Jensen, N.O.; Schelde, K.; Thomsen, A. Airborne multispectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture. Remote Sens. Environ. 2002, 81, 179–193. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Gitelson, A.A. Remote estimation of crop fractional vegetation cover: The use of noise equivalent as an indicator of performance of vegetation indices. Int. J. Remote Sens. 2013, 34, 6054–6066. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.R.; Chen, J.; Chen, Y.; Li, J.; Yan, G.; Zhang, X. Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction. Remote Sens. Environ. 2006, 101, 366–378. [Google Scholar] [CrossRef]
- Bänninger, D.; Lehmann, P.; Flühler, H. Modeling the effect of particle size, shape and orientation of light transfer through porous media. Eur. J. Soil Sci. 2006, 57, 906–915. [Google Scholar] [CrossRef]
- Nagler, P.L.; Daughtry, C.S.T.; Goward, S.N. Plant litter and soil reflectance. Remote Sens. Environ. 2000, 71, 207–215. [Google Scholar] [CrossRef]
- Stenberg, B. Effects of soil sample pretreatments and standardised rewetting as interacted with sand classes on Vis-NIR predictions of clay and soil organic carbon. Geoderma 2010, 158, 15–22. [Google Scholar] [CrossRef]
- Liu, W.D.; Baret, F.; Gu, X.F.; Tong, Q.X.; Zheng, L.F.; Zhang, B. Relating soil surface moisture to reflectance. Remote Sens. Environ. 2002, 81, 238–246. [Google Scholar]
- Viscarra Rossel, R.A.; McGlynn, R.N.; McBratney, A.B. Determining the composition of mineral-organic mixes using UV-vis-NIR diffuse reflectance spectroscopy. Geoderma 2006, 137, 70–82. [Google Scholar] [CrossRef]
- Baret, F.; Jacquemoud, S.; Hanocq, J.F. The soil line concept in remote sensing. Remote Sens. Rev. 1993, 7, 65–82. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, Y.; Zheng, X.; Zhao, K.; Xin, X.; Liu, H. Quantifying the Impact of NDVIsoil Determination Methods and NDVIsoil Variability on the Estimation of Fractional Vegetation Cover in Northeast China. Remote Sens. 2016, 8, 29. https://doi.org/10.3390/rs8010029
Ding Y, Zheng X, Zhao K, Xin X, Liu H. Quantifying the Impact of NDVIsoil Determination Methods and NDVIsoil Variability on the Estimation of Fractional Vegetation Cover in Northeast China. Remote Sensing. 2016; 8(1):29. https://doi.org/10.3390/rs8010029
Chicago/Turabian StyleDing, Yanling, Xingming Zheng, Kai Zhao, Xiaoping Xin, and Huanjun Liu. 2016. "Quantifying the Impact of NDVIsoil Determination Methods and NDVIsoil Variability on the Estimation of Fractional Vegetation Cover in Northeast China" Remote Sensing 8, no. 1: 29. https://doi.org/10.3390/rs8010029
APA StyleDing, Y., Zheng, X., Zhao, K., Xin, X., & Liu, H. (2016). Quantifying the Impact of NDVIsoil Determination Methods and NDVIsoil Variability on the Estimation of Fractional Vegetation Cover in Northeast China. Remote Sensing, 8(1), 29. https://doi.org/10.3390/rs8010029