Long-Term Pattern of Primary Productivity in the East/Japan Sea Based on Ocean Color Data Derived from MODIS-Aqua
"> Figure 1
<p>Study site in the East Sea (NW = northwestern, NE = northeastern, SW = southwestern, and SE = southeastern). SPF stands for the sub-polar front.</p> "> Figure 2
<p>Monthly variability of euphotic depths for the four sub-research areas in the East Sea from January 2003 to December 2012.</p> "> Figure 3
<p>Climatological monthly Chl-a maps in the East Sea.</p> "> Figure 4
<p>Spatial distribution of climatological monthly primary productivity in the East Sea.</p> "> Figure 5
<p>Time series of monthly variability in primary productivity for the four sub-research areas in the East Sea from January 2003 to December 2012.</p> "> Figure 6
<p>Climatological seasonal patterns of primary productivity for the southern and northern areas in the East Sea. Dashed and solid boxes represent annual averaged primary productivity values in the southern and northern areas, respectively. The error bars stand for standard deviation.</p> "> Figure 7
<p>Long-term patterns of annual primary productions for the southern and northern areas in the East Sea from 2003 to 2012. Dashed and solid lines represent decadal trends in annual primary productions in the southern and northern areas, respectively.</p> "> Figure 8
<p>Long-term pattern of annual primary production in the East Sea from 2003 to 2012.</p> "> Figure 9
<p>Spatial distribution of annual production difference between 2003 and 2012 in the East Sea.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Satellite Ocean Color Data
2.2. Primary Productivity Algorithm
3. Results
3.1. Temporal Variations of Euphotic Depths
3.2. Spatial and Temporal Variation of MODIS-Derived Chl-a
3.3. Spatial and Temporal Variation of MODIS-Derived Primary Productivity
3.4. Long-Term Variation of the Annual Primary Production in the East Sea
4. Discussion
4.1. The Spatial and Seasonal Variations in Chl-a Concentrations in the East Sea
4.2. Primary Productivity in the East Sea
Month | NW (%) | NE (%) | SW (%) | SE (%) | East Sea (%) |
---|---|---|---|---|---|
1 | 3.8 | 3.9 | 6.0 | 5.6 | 4.9 |
2 | 4.2 | 4.7 | 7.0 | 7.2 | 5.8 |
3 | 5.7 | 6.4 | 8.8 | 9.2 | 7.7 |
4 | 9.5 | 9.6 | 12.2 | 12.3 | 11.0 |
5 | 13.2 | 13.5 | 12.0 | 12.5 | 12.8 |
6 | 12.4 | 12.7 | 10.0 | 10.6 | 11.3 |
7 | 11.0 | 11.0 | 8.5 | 8.7 | 9.7 |
8 | 9.1 | 9.1 | 7.0 | 6.6 | 7.9 |
9 | 9.5 | 8.8 | 7.7 | 7.2 | 8.3 |
10 | 9.1 | 8.5 | 7.9 | 7.7 | 8.3 |
11 | 7.6 | 6.8 | 6.9 | 6.8 | 7.0 |
12 | 4.9 | 5.0 | 5.9 | 5.7 | 5.4 |
4.3. Long-Term Pattern of the Annual Primary Production in the East Sea
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Onitsuka, G.; Yanagi, T.; Yoon, J.H. A numerical study on nutrient sources in the surface layer of the Japans Sea using a coupled physical-ecosystem model. J. Geophys. Res. 2007, 112, C05042. [Google Scholar] [CrossRef]
- Kang, Y.S.; Kim, J.Y.; Kim, H.G.; Park, J.H. Long_term changes in zooplankton and its relation_ship with squid, Todarodes pacificus, catch in Japan/East Sea. Fish. Oceanogr. 2002, 11, 337–346. [Google Scholar] [CrossRef]
- Kim, D.; Yang, E.J.; Kim, K.H.; Shin, C.-W.; Park, J.; Yoo, S.; Hyun, J.-H. Impact of an anticyclonic eddy on the summer nutrient and Chl-a a distributions in the Ulleung Basin, East Sea (Japan Sea). ICES J. Mar. Sci. 2012, 69, 23–29. [Google Scholar] [CrossRef]
- Lim, J.-H.; Son, S.; Park, J.-W.; Kwak, J.H.; Kang, C.-K.; Son, Y.B.; Kwon, J.-N.; Lee, S.H. Enhanced biological activity by an anticyclonic warm eddy during early spring in the East Sea (Japan Sea) detected by the geostationary ocean color satellite. Ocean Sci. J. 2012, 47, 377–385. [Google Scholar] [CrossRef]
- Chiba, S.; Aita, M.N.; Tadokoro, K.; Saino, T.; Sugisaki, H.; Nakata, K. From climate regime shifts to lower-trophic level phenology: Synthesis of recent progress in retrospective studies of the western North Pacific. Prog. Oceanogr. 2008, 77, 112–126. [Google Scholar] [CrossRef]
- Kim, K.-R.; Kim, K.; Kang, D.-J.; Park, S.Y.; Park, M.-K.; Kim, Y.-G.; Min, H.S.; Min, D. The East Sea (Japan Sea) in change: A story of dissolved oxygen. Mar. Technol. Soc. J. 1999, 33, 15–22. [Google Scholar] [CrossRef]
- Kim, K.; Kim, K.-R.; Min, D.-H.; Volkov, Y.; Yoon, J.-H.; Takematsu, M. Warming and structural changes in the East (Japan) Sea: A clue to future changes in global oceans? Geophys. Res. Lett. 2001, 28, 3293–3296. [Google Scholar] [CrossRef]
- Kang, D.J.; Park, S.; Kim, Y.G.; Kim, K.; Kim, K.-R. A moving-boundary box model (MBBM) for oceans in change: An application to the East/Japan Sea. Geophys. Res. Lett. 2003, 30, 1299. [Google Scholar] [CrossRef]
- Sasaoka, K.; Chiba, S.; Saino, T. Climatic forcing and phytoplankton phenology over the subarctic North Pacific from 1998 to 2006, as observed from ocean color data. J. Geophys. Lett. 2011, 38, L15609. [Google Scholar] [CrossRef]
- Chiba, S.; Batten, S.; Sasaoka, K.; Sasai, Y.; Sugisaki, H. Influence of the Pacific Decadal Oscillation on phytoplankton phenology and community structure in the western North Pacific. Geophys. Res. Lett. 2012, 39, L15603. [Google Scholar] [CrossRef]
- Chiba, S.; Saino, T. Variation in mesozooplankton community structure in the Japan/East Sea (1991–1999) with possible influence of the ENSO scale climatic variability. Prog. Oceanogr. 2002, 213, 23–25. [Google Scholar] [CrossRef]
- Zhang, C.I.; Lee, J.B.; Young, I.S.; Yoon, S.C.; Kim, S. Variations in the abundance of fisheries resources and ecosystem structure in the Japan/East Sea. Prog. Oceanogr. 2004, 61, 245–265. [Google Scholar] [CrossRef]
- Joo, H.; Park, J.W.; Son, S.; Noh, J.-H.; Jeong, J.-Y.; Kwak, J.H.; Saux-Picart, S.; Choi, J.H.; Kang, C.-K.; Lee, S.H. Long-term annual primary production in the Ulleung Basin as a biological hot spot in the East/Japan Sea. J. Geophys. Res. Oceans 2014, 119, 3002–3011. [Google Scholar] [CrossRef]
- Grebmeier, J.M.; Bluhm, B.A.; Cooper, L.W.; Danielson, S.L.; Arrigo, K.R.; Blanchard, A.I.; Clarke, J.T.; Day, R.H.; Frey, K.E.; Gradinger, R.R.; et al. Ecosystem characteristics and processes facilitating persistent macrobenthic biomass hotspots and associated benthivory in the Pacific Arctic. Prog. Oceanogr. 2015, 136, 92–114. [Google Scholar] [CrossRef]
- Lee, S.H.; Joo, H.T.; Lee, J.H.; Kang, J.J.; Lim, J.-H.; Yun, M.S.; Lee, J.H.; Kang, C.-K. Potential overestimation in primary and new productivitys of phytoplankton from a short time incubation method. Ocean Sci. J. 2015, 50, 509–517. [Google Scholar] [CrossRef]
- Platt, T.; Sathyendranath, S. Oceanic primary productivity: Estimation by remote sensing at local and regional scales. Science 1988, 241, 1613–1620. [Google Scholar] [CrossRef] [PubMed]
- Behrenfeld, M.J.; Falkowski, P.G. Photosynthetic rates derived from satellite-based Chl-a concentration. Limnol. Oceanogr. 1997, 42, 1–20. [Google Scholar] [CrossRef]
- Son, S.; Campbell, J.; Dowell, M.; Yoo, S.; Noh, J. Primary productivity in the Yellow Sea determined by ocean color remote sensing. Mar. Ecol. Prog. Ser. 2005, 303, 91–103. [Google Scholar] [CrossRef]
- Yamada, K.; Ishizaka, J.; Nagata, H. Spatial and temporal variability of satellite primary productivity in the Japan Sea from 1998 to 2002. J. Oceanogr. 2005, 61, 857–869. [Google Scholar] [CrossRef]
- Lee, S.H.; Son, S.; Dahms, H.-U.; Park, J.W.; Lim, J.-H.; Noh, J.-H.; Kwon, J.-I.; Joo, H.T.; Jeong, J.Y.; Kang, C.-K. Decadal changes of phytoplankton Chl-a-a in the East Sea/Sea of Japan. Oceanology 2014, 6, 771–779. [Google Scholar] [CrossRef]
- Helbling, E.W.; Villafañe, V.E. Phytoplankton and primary productivity. In Fisheries and Aquaculture; Safran, P., Ed.; Eolss Publishers: Paris, France, 2009; Volume 5. [Google Scholar]
- Wassmann, P.; Duarte, C.M.; Agusti, S.; Sejr, M.K. Footprints of climate change in the Arctic marine ecosystem. Glob. Chang. Biol. 2011, 17, 1235–1249. [Google Scholar] [CrossRef]
- Arrigo, K.R.; Dijken, G.L.V. Continued increases in Arctic Ocean primary productivity. Prog. Ocenogr. 2015, 136, 60–70. [Google Scholar] [CrossRef]
- Falkowski, P.G.; Rave, J.A. Aquatic Photosynthesis, 2nd ed.; Blackwell: Oxford, UK, 1997. [Google Scholar]
- Yoder, J.A.; Kennelly, M.A. Seasonal and ENSO variability in global ocean phytoplankton Chl-a derived from 4 years of Sea WiFS measurements. Glob. Biogeochem. Cycles 2003, 17, 1112. [Google Scholar] [CrossRef]
- Kameda, T. Studies on oceanic primary productivity using ocean color remote sensing data. Bull. Fish. Res. Agency 2003, 9, 118–148. [Google Scholar]
- Kameda, T.; Ishizaka, J. Size-fractionated primary productivity estimated by a two-phytoplankton community model applicable to ocean color remote sensing. J. Oceanogr. 2005, 61, 663–672. [Google Scholar] [CrossRef]
- Kirt, J.T.O. Light and Photosynthesis in Aquatic Ecosystems, 2nd ed.; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Cushing, D.H. The seasonal variation in oceanic productivity as a problem in population dynamics. J. Cons. Int. Explor. Mer. 1959, 24, 455–464. [Google Scholar] [CrossRef]
- Son, S. The Chl-a Pigment Distribution in the East/Japan Sea Observed by Coastal Zone Color Scanner (CZCS). Master’s Thesis, Pusan National University, Busan, Korea, 1998. [Google Scholar]
- Yamada, K.; Ishizaka, J.; Yoo, S.; Kim, H.-C.; Chiba, S. Seasonal and interannual variability of sea surface Chl-a a concentration in the Japan/East Sea (JES). Prog. Oceanogr. 2004, 61, 193–211. [Google Scholar] [CrossRef]
- Senjyu, T. The Japan Sea intermediate water; characteristics and circulation. J. Oceanogr. 1999, 55, 111–122. [Google Scholar] [CrossRef]
- Ashjian, C.J.; Davis, C.S.; Gallager, S.M.; Alatalo, P. Characterization of the zooplankton community, size composition, and distribution in relation to hydrography in the Japan/East Sea. Deep Sea Res. II 2005, 52, 1363–1392. [Google Scholar] [CrossRef]
- Nishimura, S. Okhotsk Sea, Japan Sea, East China Sea. In Estuaries and Enclosed Seas; Ketchum, B.H., Ed.; Elsevier Scientific Publishing Company: Amsterdam, The Netherlands, 1983; pp. 375–401. [Google Scholar]
- Nagata, H. The relationship between Chl-a a and transparency in the southern Japan Sea. Proc. Jpn. Sci. Coun. Fish. Resour. 1992, 28, 29–44. [Google Scholar]
- Yoo, S.; Kim, H.C. Primary productivity in the East Sea. In The Plankton Ecology of Korean Coastal Waters; Choi, J.K., Ed.; Dongwha Press: Seoul, Korea, 2003; pp. 96–111. [Google Scholar]
- Estrada, M. Primary productivity in the northwestern Mediterranean. Sci. Mar. 1996, 60, 55–64. [Google Scholar]
- Sarmiento, J.L.; Hughes, T.M.C.; Stouffer, R.J.; Manabe, S. Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature 1998, 393, 245–249. [Google Scholar] [CrossRef]
- Gregg, W.W.; Conkright, M.E.; Ginoux, P.; O’Reilly, J.E.; Casey, N.W. Ocean Primary productivity and climate: Global decadal changes. Geophys. Res. Lett. 2003, 15, 1809. [Google Scholar] [CrossRef]
- Jo, Y.H.; Breaker, L.C.; Tseng, Y.-H.; Yeh, S.-W. A temporal multiscale analysis of the waters off the east coast of south Korea over the past four decades. Terr. Atoms. Ocean. Sci. 2014, 3, 415–434. [Google Scholar] [CrossRef]
- Gregg, W.W.; Conkright, M.E. Decadal changes in global ocean Chl-a. Geophys. Res. Lett. 2002, 29, 130. [Google Scholar] [CrossRef]
- Yatsu, A.; Chiba, S.; Yamanaka, Y.; Ito, S.I.; Shimize, Y.; Kaeriyama, M.; Watanabe, Y. Climate forcing and the Kuroshio/Oyashio ecosystem. ICES J. Mar. Sci. 2013, 70, 922–933. [Google Scholar] [CrossRef]
- Nixon, S.; Thomas, A. On the size of the Peru upwelling ecosystem. Deep Sea Res. I 2001, 48, 2521–2528. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joo, H.; Son, S.; Park, J.-W.; Kang, J.J.; Jeong, J.-Y.; Lee, C.I.; Kang, C.-K.; Lee, S.H. Long-Term Pattern of Primary Productivity in the East/Japan Sea Based on Ocean Color Data Derived from MODIS-Aqua. Remote Sens. 2016, 8, 25. https://doi.org/10.3390/rs8010025
Joo H, Son S, Park J-W, Kang JJ, Jeong J-Y, Lee CI, Kang C-K, Lee SH. Long-Term Pattern of Primary Productivity in the East/Japan Sea Based on Ocean Color Data Derived from MODIS-Aqua. Remote Sensing. 2016; 8(1):25. https://doi.org/10.3390/rs8010025
Chicago/Turabian StyleJoo, HuiTae, SeungHyun Son, Jung-Woo Park, Jae Joong Kang, Jin-Yong Jeong, Chung Il Lee, Chang-Keun Kang, and Sang Heon Lee. 2016. "Long-Term Pattern of Primary Productivity in the East/Japan Sea Based on Ocean Color Data Derived from MODIS-Aqua" Remote Sensing 8, no. 1: 25. https://doi.org/10.3390/rs8010025
APA StyleJoo, H., Son, S., Park, J. -W., Kang, J. J., Jeong, J. -Y., Lee, C. I., Kang, C. -K., & Lee, S. H. (2016). Long-Term Pattern of Primary Productivity in the East/Japan Sea Based on Ocean Color Data Derived from MODIS-Aqua. Remote Sensing, 8(1), 25. https://doi.org/10.3390/rs8010025