Do Not Throw Pet Faeces Away: Composted Manures Obtained from Dog and Cat Faeces Contain High Nutrients and Effectively Cultivate Plants
<p>Colour of control (rice bran and rice husk), fresh manures from dogs, cats, pigs, cows, and hens mixed with rice bran and rice husk (day 0), and composted manure on day 14.</p> "> Figure 2
<p>Temperature change during composting process.</p> "> Figure 3
<p>Growth of sweet corn after treatment with different composts including control 1 (soil only), control 2 (rice brand and husk compost), composted dog manure, composted cattle manure, composted pig manure, composted cat manure, and composted hen manure.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Comparison of the Physical and Chemical Properties Among Different Types of Fresh Manure
2.2. Physical and Chemical Composition of Composted Manures Obtained from Pets and Livestock
2.3. Transition of Colour, Odour, and Temperature Change During Composting
2.4. Effect of the Animal Manures on Growth of Sweet Corn
3. Discussion
4. Materials and Methods
4.1. Sample Collection
4.2. Preparation of Compost
4.3. Physical and Chemical Analysis of Manure
4.4. The Ability of Composted Dog and Cat Manure to Support Plant Growth
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Okin, G.S. Environmental impacts of food consumption by dogs and cats. PLoS ONE 2017, 12, e0181301. [Google Scholar] [CrossRef] [PubMed]
- Mai, L.; Zeng, E.; Zeng, E.Y. Dog poop bags: A non-negligible source of plastic pollution. Environ. Pollut. 2022, 292, 118355. [Google Scholar] [CrossRef] [PubMed]
- Jalongo, M.R. Pet keeping in the time of COVID-19: The canine and feline companions of Young children. Early Child. Educ. J. 2023, 51, 1067–1077. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Mall, R.K. Urban ecology and human health: Implications of urban heat island, air pollution and climate change nexus. In Urban Ecology; Elsevier: Amsterdam, The Netherlands, 2020; pp. 317–334. [Google Scholar] [CrossRef]
- Haldeman, T.; Schmidt, W. Using Community-Based Social Marketing to Reduce Pet Waste Bacteria in Streams. Soc. Mark. Q. 2022, 28, 109–129. [Google Scholar] [CrossRef]
- Berendes, D.M.; Yang, P.J.; Lai, A.; Hu, D.; Brown, J. Estimation of global recoverable human and animal faecal biomass. Nat. Sustain. 2018, 1, 679–685. [Google Scholar] [CrossRef]
- Boonhoh, W.; Wongtawan, T.; Sriphavatsarakom, P.; Waran, N.; Boonkaewwan, C. The validation of Thai version of Canine Behavioral Assessment and Research Questionnaire (C-BARQ) and the exploration of dog ownership in Thailand. J. Veter. Behav. 2023, 68, 7–14. [Google Scholar] [CrossRef]
- Walker, T.R. What not to do with dog poop. Sci. Total Environ. 2023, 896, 165332. [Google Scholar] [CrossRef]
- Frenne, P.D.; Cougnon, M.; Janssens, G.P.J.; Vangansbeke, P. Nutrient fertilization by dogs in peri-urban ecosystems. Ecol. Solut. Evid. 2022, 3, e12128. [Google Scholar] [CrossRef]
- Phetyim, N.; Wanthong, T.; Kannika, P.; Supngam, A. Biogas production from vegetable waste by using dog and cattle manure. Energy Procedia 2015, 79, 436–441. [Google Scholar] [CrossRef]
- Okoroigwe, E.C.; Ibeto, C.N.; Okpara, C.G. Comparative study of the potential of dog waste for biogas production. Trends Appl. Sci. Res. 2010, 5, 71–77. [Google Scholar] [CrossRef]
- Bryson, E.; Anastasi, A.; Bricknell, L.; Kift, R. Household dog fecal composting: Current issues and future directions. Integr. Environ. Assess. Manag. 2024, 20, 1876–1891. [Google Scholar] [CrossRef] [PubMed]
- Mohd Noor Keeflee, S.N.K.; Wan Mohd Zain, W.N.A.; Mohd Nor, M.N.; Jamion, N.A.; Yong, S.K. Growth and metal uptake of spinach with application of co-compost of cat manure and spent coffee ground. Heliyon 2020, 6, e05086. [Google Scholar] [CrossRef]
- Nemiroff, L.; Patterson, J. Design, testing and implementation of a large-scale urban dog waste composting program. Compost. Sci. Util. 2007, 15, 237–242. [Google Scholar] [CrossRef]
- Martínez-Sabater, E.; García-Muñoz, M.; Bonete, P.; Rodriguez, M.; Sánchez-García, F.B.; Pérez-Murcia, M.D.; Bustamante, M.A.; López-Lluch, D.B.; Moral, R. Comprehensive management of dog faeces: Composting versus anaerobic digestion. J. Environ. Manag. 2019, 250, 109437. [Google Scholar] [CrossRef]
- Davies, M.; Alborough, R.; Jones, L.; Davis, C.; Williams, C.; Gardner, D.S. Mineral analysis of complete dog and cat foods in the UK and compliance with European guidelines. Sci. Rep. 2017, 7, 17107. [Google Scholar] [CrossRef]
- Wernimont, S.M.; Radosevich, J.; Jackson, M.; Eden, E.; Dayakar, B.V. The Effects of Nutrition on the Gastrointestinal Microbiome of Cats and Dogs: Impact on Health and Disease. Front. Microbiol. 2020, 11, 1266. [Google Scholar] [CrossRef] [PubMed]
- Amissah, S.; Ankomah, G.; Agyei, B.K.; Lee, R.D.; Harris, G.H.; Cabrera, M.; Franklin, D.H.; Diaz-Perez, J.C.; Habteselassie, M.Y.; Sintim, H.Y. Nutrient Sufficiency Ranges for Corn at the Early Growth Stage. Implic. Nutr. Manag. Plants 2023, 12, 713. [Google Scholar] [CrossRef]
- Luo, L.; Zhang, Y.; Xu, G. How does nitrogen shape plant architecture? J. Exp. Bot. 2020, 71, 4415–4427. [Google Scholar] [CrossRef] [PubMed]
- Hepler, P.K. Calcium: A central regulator of plant growth and development. Plant Cell Rep. 2005, 17, 2142–2155. [Google Scholar] [CrossRef]
- Malhotra, H.; Vandana; Sharma, S.; Pandey, R. Phosphorus nutrition: Plant growth in response to deficiency and excess. In Plant Nutrients and Abiotic Stress Tolerance; Springer: Berlin/Heidelberg, Germany, 2018; pp. 171–190. [Google Scholar] [CrossRef]
- Chauhan, R.; Awasthi, S.; Srivastava, S.; Dwivedi, S.; Pilon-Smits, E.A.H.; Dhankher, O.P.; Tripathi, R.D. Understanding selenium metabolism in plants and its role as a beneficial element. Crit. Rev. Environ. Sci. Technol. 2019, 49, 1937–1958. [Google Scholar] [CrossRef]
- Ruiz-Barrera, O.; Rivera-Sida, J.; Arzola-Alvarez, C.; Itza-Ortiz, M.; Ontiveros-Magadan, M.; Murillo-Ortiz, M.; Angulo-Montoya, C.; Corral-Luna, A.; Castillo-Castillo, Y. Composting of laying hen manure with the addition of a yeast probiotic. Ital. J. Anim. Sci. 2018, 17, 1054–1058. [Google Scholar] [CrossRef]
- Jeon, K.; Song, M.; Lee, J.; Hanjin, O.; Dongcheol, S.; Seyeon, C.; Jaewoo, A.; Hyunah, C.; Sehyun, P.; Hyeunbum, K.; et al. Effects of Single and Complex Probiotics in Growing-Finishing Pigs and Swine Compost. J. Anim. Sci. Technol. 2023, 66, 763–780. [Google Scholar] [CrossRef]
- Qu, G.; Cai, Y.; Lv, P.; Ma, X.; Xie, R.; Xu, Y.; Ning, P. Effect of EM microbial agent on aerobic composting for dairy cattle manure. Int. J. Environ. Sci. Technol. 2019, 16, 6945–6958. [Google Scholar] [CrossRef]
- Harrison, T.R.; Gupta, V.K.; Alam, P.; Perriman, A.W.; Scarpa, F.; Kumar, V. From trash to treasure: Sourcing high-value, sustainable cellulosic materials from living bioreactor waste streams. Int. J. Biol. Macromol. 2023, 233, 123511. [Google Scholar] [CrossRef]
- Manyi-Loh, C.E.; Mamphweli, S.N.; Meyer, E.L.; Makaka, G.; Simon, M.; Okoh, A.I. An overview of the control of bacterial pathogens in cattle manure. Int. J. Environ. Res. Public Health 2016, 13, 843. [Google Scholar] [CrossRef]
- Soobhany, N.; Mohee, R.; Garg, V.K. Inactivation of bacterial pathogenic load in compost against vermicompost of organic solid waste aiming to achieve sanitation goals: A review. J. Waste Manag. 2017, 64, 51–62. [Google Scholar] [CrossRef]
- Okoroigwe, E.C.; Ibeto, C.N.; Ezema, C.G. Experimental study of anaerobic digestion of dog waste. Sci. Res. Essays 2014, 9, 121–127. [Google Scholar] [CrossRef]
- Sossou, S.K.; Sou/Dakoure, M.; Hijikata, N.; Quenum, A.; Maiga, A.H.; Funamizu, N. Removal and Deactivation of Intestinal Parasites in Aerobic Mesophilic Composting Reactor for Urine Diverting Composting Toilet. Compost Sci. Util. 2014, 22, 242–252. [Google Scholar] [CrossRef]
- Rizwan, H.M.; Naveed, M.; Sajid, M.S.; Nazish, N.; Younus, M.; Raza, M.; Maqbool, M.; Khalil, M.H.; Fouad, D.; Ataya, F.S. Enhancing agricultural sustainability through optimization of the slaughterhouse sludge compost for elimination of parasites and coliforms. Sci. Rep. 2024, 14, 23953. [Google Scholar] [CrossRef]
- Khadra, A.; Ezzariai, A.; Kouisni, L.; Hafidi, M. Helminth eggs inactivation efficiency by sludge co-composting under arid climates. Int. J. Environ. Health Res. 2021, 31, 530–537. [Google Scholar] [CrossRef]
- Maleki, B.; Ahmadi, N.; Olfatifar, M.; Gorgipour, M.; Taghipour, A.; Abdoli, A.; Khorshidi, A.; Foroutan, M.; Mirzapour, A. Toxoplasma oocysts in the soil of public places worldwide: A systematic review and meta-analysis. Trans. R. Soc. Trop. Med. Hyg. 2021, 115, 471–481. [Google Scholar] [CrossRef] [PubMed]
- Kakakhel, M.A.; Wu, F.; Anwar, Z.; Saif, I.; Akbar, N.U.; Gul, N.; Ali, I.; Feng, H.; Wang, W. The presence of Toxoplasma gondii in soil, their transmission, and their influence on the small ruminants and human population: A review. Microb. Pathog. 2021, 158, 104850. [Google Scholar] [CrossRef] [PubMed]
- Rattan, D.; Datta, P.; Sharma, D.; Sharma, S.; Sehgal, R. Molecular detection of potentially zoonotic protozoa in the Chandigarh region, India. Vet. Parasitol. Reg. Stud. Rep. 2024, 56, 101143. [Google Scholar] [CrossRef] [PubMed]
- Mirza Alizadeh, A.; Jazaeri, S.; Shemshadi, B.; Hashempour-Baltork, F.; Sarlak, Z.; Pilevar, Z.; Hosseini, H. A review on inactivation methods of Toxoplasma gondii in foods. Pathog. Glob. Health 2018, 112, 306–319. [Google Scholar] [CrossRef]
- Figura, A.; Cencek, T.; Żbikowska, E. Parasitic threat in commercial organic fertilizers. Parasitol. Res. 2022, 121, 945–949. [Google Scholar] [CrossRef]
- Fungwithaya, P.; Boonchuay, K.; Narinthorn, R.; Sontigun, N.; Sansamur, C.; Petcharat, Y.; Thomrongsuwannakij, T.; Wongtawan, T. First study on diversity and antimicrobial-resistant profile of staphylococci in sports animals of Southern Thailand. Vet. World 2022, 15, 765–774. [Google Scholar] [CrossRef]
- Wongtawan, T.; Narinthorn, R.; Sontigun, N.; Sansamur, C.; Petcharat, Y.; Fungwithaya, P.; Saengsawang, P.; Blackall, P.J.; Thomrongsuwannakij, T. Characterizing the antimicrobial resistance profile of Escherichia coli found in sport animals (fighting cocks, fighting bulls, and sport horses) and soils from their environment. Vet. World 2022, 15, 2673–2680. [Google Scholar] [CrossRef]
- Boripun, R.; Saengsawang, P.; Intongead, S.; Narinthorn, R.; Wongtawan, T.; Nissapatorn, V.; Pereira, M.L.; Mitsuwan, W. Molecular characterization and nucleotide substitution of antibiotic resistance genes in multidrug-resistant Escherichia coli isolated from environmental swine farms. Emerg. Contam. 2023, 9, 100249. [Google Scholar] [CrossRef]
- Wongsaroj, L.; Chanabun, R.; Tunsakul, N.; Prombutara, P.; Panha, S.; Somboonna, N. First reported quantitative microbiota in different livestock manures used as organic fertilizers in the Northeast of Thailand. Sci. Rep. 2021, 11, 102. [Google Scholar] [CrossRef]
- Wang, Y.; Gong, J.; Li, J.; Xin, Y.; Hao, Z.; Chen, C.; Li, H.; Wang, B.; Ding, M.; Li, W.; et al. Insights into bacterial diversity in compost: Core microbiome and prevalence of potential pathogenic bacteria. Sci. Total Environ. 2020, 718, 137304. [Google Scholar] [CrossRef]
- Papale, M.; Romano, I.; Finore, I.; Giudice, A.L.; Piccolo, A.; Cangemi, S.; Di Meo, V.; Nicolaus, B.; Poli, A. Prokaryotic diversity of the composting thermophilic phase: The case of ground coffee compost. Microorganisms 2021, 9, 218. [Google Scholar] [CrossRef] [PubMed]
- Azim, K.; Soudi, B.; Boukhari, S.; Perissol, C.; Roussos, S.; Alami, I.T. Composting parameters and compost quality: A literature review. Org. Agric. 2018, 8, 141–158. [Google Scholar] [CrossRef]
- Celma, A.R.; López-Rodríguez, F.; Blázquez, F.C. Experimental modelling of infrared drying of industrial grape by-products. Food Bioprod. Process 2009, 87, 247–253. [Google Scholar] [CrossRef]
- Inbar, Y.; Hadar, Y.; Chen, Y. Recycling of cattle manure: The composting process and characterization of maturity. J. Environ. Qual. 1993, 22, 857–863. [Google Scholar] [CrossRef]
- Anderson, J.M.; Ingram, J.S.I. Tropical Soil Biology and Fertility: A Handbook of Methods, 2nd ed.; CAB International: Oxfordshire, UK, 1993. [Google Scholar]
- Zendelovska, D.; Pavlovska, G.; Cundeva, K.; Stafilov, T. Electrothermal atomic absorption spectrometric determination of cobalt, copper, lead and nickel traces in aragonite following flotation and extraction separation. Talanta 2001, 54, 139–146. [Google Scholar] [CrossRef]
- The Jamovi Project. Jamovi (Version 2.5) [Computer Software]. Available online: https://www.jamovi.org (accessed on 15 September 2024).
Source of Manure | MC (%) | OM (%) | pH | P (%) | N (%) | K (%) | Ca (%) | Mg (%) | S (%) | EC (mS/m) |
---|---|---|---|---|---|---|---|---|---|---|
Cat | 40.91 ± 0.27 b | 71.20 ± 0.42 c | 7.33 ± 0.02 c | 2.73 ± 0.00 f | 2.23 ± 0.01 e | 0.49 ± 0.00 b | 1.57 ± 0.00 g | 0.49 ± 0.00 f | 0.27 ± 0.02 f | 1.87 ± 0.00 f |
Dog | 42.80 ± 0.24 b | 64.33 ± 0.30 b | 8.64 ± 0.02 f | 2.53 ± 0.01 e | 3.06 ± 0.06 g | 0.72 ± 0.00 e | 0.89 ± 0.00 e | 0.46 ± 0.00 e | 0.25 ± 0.01 e | 1.20 ± 0.00 c |
Hen | 84.40 ± 0.96 d | 60.93 ± 0.68 a | 8.08 ± 0.02 d | 1.51 ± 0.01 c | 2.61 ± 0.04 f | 1.04 ± 0.00 g | 0.91 ± 0.00 f | 0.32 ± 0.00 d | 0.25 ± 0.00 e | 1.68 ± 0.00 e |
Pig | 73.11 ± 0.32 c | 75.36 ± 1.02 d | 8.29 ± 0.04 e | 2.09 ± 1.32 d | 1.92 ± 0.04 d | 0.86 ± 0.01 f | 0.65 ± 0.06 c | 0.66 ± 0.00 g | 0.24 ± 0.00 d | 1.44 ± 0.00 d |
Cattle | 80.61 ± 1.56 d | 64.59 ± 0.34 b | 7.16 ± 0.03 b | 1.26 ± 0.01 b | 1.80 ± 0.03 c | 0.67 ± 0.01 d | 0.25 ± 0.00 b | 0.29 ± 0.00 c | 0.16 ± 0.00 c | 1.20 ± 0.00 c |
Rice husk | 9.60 ± 0.06 a | 89.74 ± 0.16 f | 6.99 ± 0.03 b | 1.21 ± 0.08 b | 0.46 ± 0.01 a | 0.57± 0.00 c | 0.13 ± 0.00 a | 0.25 ± 0.00 a | 0.12± 0.00 b | 0.09 ± 0.00 a |
Rice bran | 9.81 ± 0.08 a | 85.47 ± 0.76 e | 6.36 ± 0.12 a | 0.44 ± 0.01 a | 1.25 ± 0.01 b | 0.44 ± 0.02 a | 0.68 ± 0.14 d | 0.28 ± 0.00 b | 0.06 ± 0.00 a | 0.11 ± 0.00 b |
Source of Compost Manure | MC (%) | OM (%) | pH | P (%) | N (%) | K (%) | Ca (%) | Mg (%) | S (%) | EC (mS/m) |
---|---|---|---|---|---|---|---|---|---|---|
Cat | 35.05 ± 0.03 c | 30.61 ± 0.58 c | 6.31 ± 0.11 c | 1.95 ± 0.02 f | 0.96 ± 0.01 c | 0.20 ± 0.02 b | 1.49 ± 0.04 g | 0.18 ± 0.00 d | 0.06 ± 0.00 d | 0.02 ± 0.00 b |
Dog | 34.39 ± 0.23 c | 20.94 ± 0.75 b | 6.99 ± 0.16 d | 0.54 ± 0.00 c | 1.56 ± 0.03 d | 0.20 ± 0.08 b | 0.59 ± 0.00 e | 0.15 ± 0.00 c | 0.06 ± 0.00 d | 0.02 ± 0.00 b |
Hen | 54.15 ± 0.06 e | 29.71 ± 1.76 c | 6.54 ± 0.03 c | 0.44 ± 0.00 b | 0.97 ± 0.06 c | 0.26 ± 0.04 b | 0.90 ± 0.02 f | 0.11 ± 0.00 b | 0.05 ± 0.00 c | 0.04 ± 0.00 c |
Pig | 52.28 ± 0.52 d | 28.40 ± 2.86 c | 7.12 ± 0.10 e | 0.72 ± 0.03 d | 0.98 ± 0.01 c | 0.22 ± 0.04 b | 0.37 ± 0.00 d | 0.23 ± 0.01 e | 0.04 ± 0.00 b | 0.02 ± 0.00 b |
Cattle | 59.94 ± 0.34 f | 27.32 ± 4.73 c | 7.51 ± 0.20 f | 0.10 ± 0.00 a | 0.87 ± 0.01 b | 0.08 ± 0.01 a | 0.14 ± 0.00 c | 0.05 ± 0.00 a | 0.05 ± 0.00 c | 0.01 ± 0.00 a |
Rice bran/husk | 4.14 ± 0.46 a | 19.11 ± 1.77 b | 5.87 ± 0.01 b | 0.14 ± 0.00 a | 0.83± 0.00 b | 0.28 ± 0.00 b | 0.03 ± 0.00 a | 0.04 ± 0.01 a | 0.00 ± 0.00 a | 0.09 ± 0.00 d |
Soil | 29.29 ± 0.12 b | 4.89 ± 0.03 a | 5.67 ± 0.01 a | 1.13 ± 0.04 e | 0.16 ± 0.03 a | 0.44 ± 0.01 c | 0.08 ± 0.01 b | 0.23 ± 0.01 e | 0.00 ± 0.00 a | 0.14 ± 0.00 e |
Source of Manure | Fresh Animal Manure | Composted Animal Manure | ||
---|---|---|---|---|
Odor | Temperature (°C) | Odor | Temperature (°C) | |
Cat | ++ | 31.70 ± 1.15 | + | 40.30 ± 1.53 * |
Dog | +++ | 31.30 ± 0.58 | + | 40.70 ± 1.15 |
Hen | ++++ | 30.70 ± 0.58 | + | 37.70 ± 1.15 * |
Pig | ++ | 30.30 ± 1.53 | + | 39.30 ± 0.58 |
Cattle | ++ | 28.30 ± 1.15 * | + | 36.70 ± 1.53 * |
Rice brand/husk | + | 27.28 ± 0.58 * | + | 34.30 ± 1.53 * |
Treatments | Height of Sweet Corn (cm) | Number of Leaves (per Plant) | Leaf Length (cm) | Root Length (cm) |
---|---|---|---|---|
Cat compost + soil | 13.60 ± 2.77 cd | 8.00 ± 1.00 bc | 18.57 ± 1.29 d | 24.7 ± 0.40 d |
Dog compost + soil | 14.20 ± 1.10 d | 9.00 ± 1.00 c | 18.87 ± 1.88 d | 23.1 ± 0.35 c |
Hen compost + soil | 13.80 ± 2.27 cd | 5.00 ± 1.00 ab | 10.43 ± 2.27 bc | 23.1 ± 0.46 c |
Pig compost + soil | 12.00 ± 0.32 c | 6.67 ± 2.08 b | 16.90 ± 1.51 d | 24.7 ± 0.59 d |
Cattle compost + soil | 10.10 ± 0.61 b | 6.67 ± 1.53 b | 12.93 ± 1.79 c | 31.6 ± 1.07 e |
Rice bran/husk compost + soil (control 2) | 11.80 ± 1.72 bc | 4.67 ± 0.58 a | 9.83 ± 1.50 b | 16.1 ± 0.75 b |
No compost + soil (soil only) (control 1) | 8.40 ± 0.20 a | 3.85 ± 1.00 a | 5.32 ± 0.81 a | 11.2 ± 0.31 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wuthisuthimethavee, S.; Prempramote, J.; Boonhoh, W.; Promwee, A.; Hayakijkosol, O.; Wongtawan, T. Do Not Throw Pet Faeces Away: Composted Manures Obtained from Dog and Cat Faeces Contain High Nutrients and Effectively Cultivate Plants. Recycling 2024, 9, 123. https://doi.org/10.3390/recycling9060123
Wuthisuthimethavee S, Prempramote J, Boonhoh W, Promwee A, Hayakijkosol O, Wongtawan T. Do Not Throw Pet Faeces Away: Composted Manures Obtained from Dog and Cat Faeces Contain High Nutrients and Effectively Cultivate Plants. Recycling. 2024; 9(6):123. https://doi.org/10.3390/recycling9060123
Chicago/Turabian StyleWuthisuthimethavee, Suwit, Jindarha Prempramote, Worakan Boonhoh, Athakorn Promwee, Orachun Hayakijkosol, and Tuempong Wongtawan. 2024. "Do Not Throw Pet Faeces Away: Composted Manures Obtained from Dog and Cat Faeces Contain High Nutrients and Effectively Cultivate Plants" Recycling 9, no. 6: 123. https://doi.org/10.3390/recycling9060123
APA StyleWuthisuthimethavee, S., Prempramote, J., Boonhoh, W., Promwee, A., Hayakijkosol, O., & Wongtawan, T. (2024). Do Not Throw Pet Faeces Away: Composted Manures Obtained from Dog and Cat Faeces Contain High Nutrients and Effectively Cultivate Plants. Recycling, 9(6), 123. https://doi.org/10.3390/recycling9060123