Decision Analysis Approaches on the Collection Methods of Polyethylene Terephthalate Waste
<p>Euclidean distance for two points between two axes.</p> "> Figure 2
<p>The Euclidean ranking positions the three alternatives.</p> "> Figure 3
<p>Sensitivity analysis of decision-making matrices.</p> "> Figure 4
<p>The hierarchal framework of PET waste collection for maximum recycling.</p> "> Figure 5
<p>Criteria weights of AHP, and entropy weights methods.</p> ">
Abstract
:1. Introduction
2. Analytic Hierarchy Process (AHP)
- a.
- The problem and goal are defined by prioritizing the criteria (Table 1). Constructing a pair-wise comparison matrix.
- b.
- Normalizing the constructed pair-wise comparison matrix (Table 2). Normalize the pair-wise comparison matrix by dividing each element by the sum of its column as given in Equation (1).
- c.
- Sum the values in each row to obtain a set of values called weighted sum, as shown in Table 2.
- d.
- Calculate the mean of the values from the preceding stage; this value is known as :
- e.
- The consistency index (CI) is calculated as follows:
- f.
- Now we can calculate the consistency ratio, given as:
3. Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)
- Determining the objective, alternatives, and criteria.
- b.
- The decision matrix X is defined by Equation (4), with values given.
- c.
- The normalization of the decision matrix is conducted using Equation (5).
- d.
- Calculate the values of the objective weight coefficients with Equation (6).
- e.
- Determine the weighted decision-making matrix using Equation (7); this represents the multiplication of elements of a column of the normalized matrix with appropriate objective weight coefficients obtained from Equation (1).
- f.
- Identify the positive and negative ideal solution based on Equations (8) and (9).
- g.
- Calculate the Euclidean separation distance of each competitive alternative from the positive and negative solution using Equations (10) and (11).
- h.
- Calculate the distance between each location of the ideal solution. . To determine how close a potential location is to the ideal solution for each competitive alternative using Equation (12).
- i.
- The alternatives are arranged in order based on the value of found in Equation (12)
4. VlseKrierijumska Optimizacija I Kompromisno Resenje (VIKOR)
- Setting up the decision matrix according to Equation.
- b.
- Normalization of the decision matrix is conducted using Equation (16).
- c.
- Calculate utility measure and regression measure using Equations (15a), (15b) and (16a), (16b)
- d.
- Rank the alternatives by . The smaller the value of , the better the decision of the alternatives using Equation (17).
5. Results and Discussion
5.1. TOPSIS
5.2. VIKOR
6. Sensitivity Analysis
7. Materials and Methods
8. Conclusions
- Encourage the usage of deposit-refund systems in regions that have facilities for recycling: policymakers in areas with established recycling systems ought to support and grow the PET waste collection to increase participation and recycling rates by providing financial incentives to consumers.
- Engage stakeholders to improve the criteria used for making decisions: This study demonstrated how economic factors—specifically the cost of the initial investment—dominate over environmental factors. It is advised that decision-making involve stakeholders from other fields, such as economists, community leaders, and environmentalists, to rectify this imbalance.
- Encourage long-term policy reforms to meet environmental and economic concerns: policies should encourage technological advancements in recycling to lower the operating costs of eco-friendly collecting techniques and increase their competitiveness with cost-driven alternatives.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oladele, I.O.; Omotosho, T.F.; Adediran, A.A. Polymer-Based Composites: An Indispensable Material for Present and Future Applications. Int. J. Polym. Sci. 2020, 2020, 8834518. [Google Scholar] [CrossRef]
- Adekanmbi, A.O.; Ani, E.C.; Abatan, A.; Izuka, U.; Ninduwezuor-Ehiobu, N.; Obaigbena, A. Assessing the environmental and health impacts of plastic production and recycling. World J. Biol. Pharm. Heal. Sci. 2024, 17, 232–241. [Google Scholar] [CrossRef]
- Singh, N.; Hui, D.; Singh, R.; Ahuja, I.P.S.; Feo, L.; Fraternali, F. Recycling of plastic solid waste: A state of art review and future applications. Compos. Part B Eng. 2017, 115, 409–422. [Google Scholar] [CrossRef]
- Nasir, N.; Malek, H.A.; Januri, S.S.; Malek, I.A.; Jamidin, J.N. Plastic waste knowledge of households towards a sustainable environment. IOP Conf. Ser. Earth Environ. Sci. 2023, 1151, 012010. [Google Scholar] [CrossRef]
- Puluhulawa, F.; Puluhulawa, M.R. Plastic Waste: Environmental Legal Issues and Policy Law Enforcement for Environmental Sustainability. E3S Web Conf. 2021, 259, 03006. [Google Scholar] [CrossRef]
- Benyathiar, P.; Kumar, P.; Carpenter, G.; Brace, J.; Mishra, D.K. Polyethylene Terephthalate (PET) Bottle-to-Bottle Recycling for the Beverage Industry: A Review. Polymers 2022, 14, 2366. [Google Scholar] [CrossRef]
- Soong, Y.-H.V.; Sobkowicz, M.J.; Xie, D. Recent Advances in Biological Recycling of Polyethylene Terephthalate (PET) Plastic Wastes. Bioengineering 2022, 9, 98. [Google Scholar] [CrossRef]
- Ajaj, R.; Abu Jadayil, W.; Anver, H.; Aqil, E. A Revision for the Different Reuses of Polyethylene Terephthalate (PET) Water Bottles. Sustainability 2022, 14, 4583. [Google Scholar] [CrossRef]
- Al-Thani, N.A.; Al-Ansari, T.; Haouari, M. Integrated TOPSIS-COV approach for selecting a sustainable PET waste management technology: A case study in Qatar. Heliyon 2022, 8, e10274. [Google Scholar] [CrossRef]
- Pjanic, M. The role of polycarbonate monomer bisphenol-A in insulin resistance. PeerJ 2017, 2017, e3809. [Google Scholar] [CrossRef]
- Molonia, M.S.; Muscarà, C.; Speciale, A.; Salamone, F.L.; Toscano, G.; Saija, A.; Cimino, F. The p-Phthalates Terephthalic Acid and Dimethyl Terephthalate Used in the Manufacture of PET Induce In Vitro Adipocytes Dysfunction by Altering Adipogenesis and Thermogenesis Mechanisms. Molecules 2022, 27, 7645. [Google Scholar] [CrossRef] [PubMed]
- Rustagi, N.; Pradhan, S.; Singh, R. Public health impact of plastics: An overview. Indian J. Occup. Environ. Med. 2011, 15, 100–103. [Google Scholar] [CrossRef] [PubMed]
- D’Angelo, S.; Meccariello, R. Microplastics: A Threat for Male Fertility. Int. J. Environ. Res. Public Health 2021, 18, 2392. [Google Scholar] [CrossRef]
- Oyewale, J.A.; Tartibu, L.K.; Okokpujie, I.P. A Review and Bibliometric Analysis of Sorting and Recycling of Plastic Wastes. Int. J. Des. Nat. Ecodynamics 2023, 18, 63–74. [Google Scholar] [CrossRef]
- Xu, Y.; Ward, P.S. Environmental attitudes and consumer preference for environmentally-friendly beverage packaging : The role of information provision and identity labeling in influencing consumer behavior. Front. Agric. Sci. Eng. 2023, 10, 95–108. [Google Scholar]
- Hansen, P.; Devlin, N. Multi-Criteria Decision Analysis (MCDA) in Healthcare Decision-Healthcare Decision-Making and Multi-Criteria Decision Analysis; Oxford University Press: Oxford, UK, 2024; pp. 1–26. [Google Scholar]
- Chaube, S.A. An Overview of Multi-Criteria Decision Analysis and the Applications of AHP and TOPSIS Methods. Int. J. Math. Eng. Manag. Sci. 2024, 9, 581–615. [Google Scholar] [CrossRef]
- Mondragon, A.E.C.; Mastrocinque, E.; Tsai, J.-F.; Hogg, P.J. An AHP and Fuzzy AHP Multifactor Decision Making Approach for Technology and Supplier Selection in the High-Functionality Textile Industry. IEEE Trans. Eng. Manag. 2019, 68, 1112–1125. [Google Scholar] [CrossRef]
- Chakraborty, S. TOPSIS and Modified TOPSIS: A comparative analysis. Decis. Anal. J. 2021, 2, 100021. [Google Scholar] [CrossRef]
- Menon, R.R.; Ravi, V. Using AHP-TOPSIS methodologies in the selection of sustainable suppliers in an electronics supply chain. Clean. Mater. 2022, 5, 100130. [Google Scholar] [CrossRef]
- Journal, I.; Taherdoost, H.; Madanchian, M.; Taherdoost, H. Using PROMETHEE Method for Multi-Criteria Decision Making: Applications and Procedures. Iris J. Econ. Bus. Manag. 2023, 1, 1–7. [Google Scholar] [CrossRef]
- Ezbakhe, F.; Pérez-Foguet, A. Decision analysis for sustainable development: The case of renewable energy planning under uncertainty. Eur. J. Oper. Res. 2021, 291, 601–613. [Google Scholar] [CrossRef]
- Mu, E.; Making, P.D. Understanding the Analytic Hierarchy Process; Springer: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Okokpujie, I.; Okonkwo, U.; Bolu, C.; Ohunakin, O.; Agboola, M.; Atayero, A. Implementation of multi-criteria decision method for selection of suitable material for development of horizontal wind turbine blade for sustainable energy generation. Heliyon 2020, 6, e03142. [Google Scholar] [CrossRef]
- Agboola, O.O.; Akinnuli, B.O.; Kareem, B.; Akintunde, M.A. Decision on the selection of the best height-diameter ratio for the optimal design of 13,000 m3 oil storage tank. Cogent Eng. 2020, 7, 1770913. [Google Scholar] [CrossRef]
- Chang, C.-L. A modified VIKOR method for multiple criteria analysis. Environ. Monit. Assess. 2009, 168, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Sari, F. Comparison of topsis and vikor multi criteria decision analysis techniques. Konya J. Eng. Sci. 2018, 6, 825–831. [Google Scholar] [CrossRef]
- Więckowski, J.; Sałabun, W. Sensitivity analysis approaches in multi-criteria decision analysis: A systematic review. Appl. Soft Comput. 2023, 148, 110915. [Google Scholar] [CrossRef]
- Maliene, V.; Dixon-Gough, R.; Malys, N. Dispersion of relative importance values contributes to the ranking uncertainty: Sensitivity analysis of Multiple Criteria Decision-Making methods. Appl. Soft Comput. 2018, 67, 286–298. [Google Scholar] [CrossRef]
- Jiří, M. The robustness of TOPSIS results using sensitivity analysis based on weight tuning. IFMBE Proc. 2018, 68, 83–86. [Google Scholar] [CrossRef]
- Balwada, J.; Samaiya, S.; Mishra, R.P. Packaging Plastic Waste Management for a Circular Economy and Identifying a better Waste Collection System using Analytical Hierarchy Process (AHP). Procedia CIRP 2021, 98, 270–275. [Google Scholar] [CrossRef]
- Sindhwani, K.; Gupta, P.; Kumar, A.; Srivastava, R. Evaluation of Plastic Waste Management Methods Using Multi Criteria Decision Making Tool—AHP; IOS Press: Amsterdam, The Netherlands, 2022. [Google Scholar] [CrossRef]
Criteria/Alternatives | (Tpbw) (USD) | (Ppbw) (USD) | (Epbw) (USD) | |
---|---|---|---|---|
Cost criteria | Initial investment cost (IC) | 9352 | 37,407 | 18,703 |
Operational cost (OC) | 25 | 63 | 38 | |
Transportation cost (TC) | 11 | 28 | 17 | |
Benefit criteria | Environmental risk (ER) | 1 | 5 | 3 |
Employment potential (EP) | 1 | 5 | 3 |
Criteria | IC | OC | TC | ER | EP | Criteria Weights | Weighted SUM Value | Ratio |
---|---|---|---|---|---|---|---|---|
IC | 0.5696 | 0.7803 | 0.6593 | 0.3000 | 0.1667 | 0.4952 | 3.46 | 6.9857 |
OC | 0.0633 | 0.0867 | 0.1319 | 0.3000 | 0.4167 | 0.1997 | 0.98 | 4.9082 |
TC | 0.1139 | 0.0867 | 0.1319 | 0.2000 | 0.2500 | 0.1565 | 0.81 | 5.2015 |
ER | 0.1899 | 0.0289 | 0.0330 | 0.1000 | 0.0833 | 0.0870 | 0.42 | 4.8194 |
EP | 0.0633 | 0.0173 | 0.0440 | 0.1000 | 0.0833 | 0.0616 | 0.30 | 4.8020 |
N | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
RI | 0.00 | 0.00 | 0.58 | 0.90 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 | 1.49 |
The scale of Relative Importance | Definition |
---|---|
1 | Equal importance |
3 | Moderate importance |
5 | Strong importance |
7 | Very strong importance |
9 | Extreme importance |
2,4,6,8 | Intermediate values |
Criteria | IC | OC | TC | ER | EP |
---|---|---|---|---|---|
IC | 1 | 9 | 5 | 3 | 9 |
OC | 1/9 | 1 | 1 | 3 | 5 |
TC | 1/5 | 1 | 1 | 2 | 3 |
ER | 1/3 | 1/3 | 1/4 | 1 | 1 |
EP | 1/9 | 1/5 | 1/3 | 1 | 1 |
IC | OC | TC | ER | EP | |
---|---|---|---|---|---|
IC | 0.50 | 1.80 | 0.78 | 0.26 | 0.12 |
OC | 0.06 | 0.20 | 0.16 | 0.26 | 0.31 |
TC | 0.10 | 0.20 | 0.16 | 0.17 | 0.18 |
ER | 0.17 | 0.07 | 0.04 | 0.09 | 0.06 |
EP | 0.06 | 0.04 | 0.05 | 0.09 | 0.06 |
Weightage | 0.495 | 0.200 | 0.156 | 0.087 | 0.062 |
---|---|---|---|---|---|
Alternative/Criteria | IC (USD) | OC (USD) | TC (USD) | ER | EP |
(Tpbw) | 0.218 | 0.324 | 0.324 | 0.169 | 0.169 |
(Ppbwx) | 0.873 | 0.811 | 0.811 | 0.845 | 0.845 |
(Epbw) | 0.436 | 0.487 | 0.487 | 0.507 | 0.507 |
Weightage | 0.495 | 0.200 | 0.156 | 0.087 | 0.062 |
---|---|---|---|---|---|
IC (USD) | OC (USD) | TC (USD) | ER | EP | |
(Tpbw) | 0.108 | 0.065 | 0.051 | 0.015 | 0.010 |
(Ppbwx) | 0.432 | 0.162 | 0.127 | 0.074 | 0.052 |
(Epbw) | 0.216 | 0.097 | 0.076 | 0.044 | 0.031 |
Alternatives | Rank Position | ||||
---|---|---|---|---|---|
(Tpbw) | 0.072 | 0.347 | 0.419 | 0.8280 | 1 |
(Ppbwx) | 0.347 | 0.072 | 0.419 | 0.1720 | 3 |
(Epbw) | 0.121 | 0.234 | 0.355 | 0.6590 | 2 |
Weightage | 0.495 | 0.200 | 0.156 | 0.087 | 0.062 |
---|---|---|---|---|---|
Alternative/Criteria | IC (USD) | OC (USD) | TC (USD) | ER | EP |
(Tpbw) | 0.218 | 0.324 | 0.324 | 0.169 | 0.169 |
(Ppbwx) | 0.873 | 0.811 | 0.811 | 0.845 | 0.845 |
(Epbw) | 0.436 | 0.487 | 0.487 | 0.507 | 0.507 |
Weightage | 0.495 | 0.200 | 0.156 | 0.087 | 0.062 |
---|---|---|---|---|---|
IC (USD) | OC (USD) | TC (USD) | ER | EP | |
(Tpbw) | 0.108 | 0.065 | 0.051 | 0.015 | 0.010 |
(Ppbwx) | 0.432 | 0.162 | 0.127 | 0.074 | 0.052 |
(Epbw) | 0.216 | 0.097 | 0.076 | 0.044 | 0.031 |
0.5 | ||||
---|---|---|---|---|
(Tpbw) | 0.1486 | 0.0870 | 0.0000 | 1 |
(Ppbwx) | 0.8514 | 0.4952 | 1.0000 | 3 |
(Epbw) | 0.3581 | 0.1651 | 0.2447 | 2 |
0.1486 | 0.0870 | |||
0.8514 | 0.4952 |
Topsis | Vikor | Entropy Method with Topsis | Entropy Method with Vikor | Equal Weights with Topsis | Equal Weights with Vikor | |
---|---|---|---|---|---|---|
(Tpbw) | 0.828 | 0.000 | 0.489 | 1.000 | 0.498 | 1.002 |
(Ppbw) | 0.172 | 1.000 | 0.511 | 0.484 | 0.502 | 0.482 |
(Epbw) | 0.659 | 0.245 | 0.578 | 0.276 | 0.580 | 0.278 |
Criteria | Acronym | Description of Criteria |
---|---|---|
Initial investment cost | IC | The initial investment cost is the necessary financial amount to begin a project, business, or investment. |
Operational cost | OC | The operational cost is the continuous expenses needed for the daily operation of a business or project. |
Transportation cost | Transportation costs are the expenses of moving goods or people between locations. | |
Environmental risk | ER | Environmental risk is the possibility of environmental harm from human actions or natural occurrences. |
Employment potential | EP | Employment potential signifies generating and maintaining job opportunities within a business, industry, or region. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oyewale, J.A.; Tartibu, L.K.; Okokpujie, I.P. Decision Analysis Approaches on the Collection Methods of Polyethylene Terephthalate Waste. Recycling 2024, 9, 124. https://doi.org/10.3390/recycling9060124
Oyewale JA, Tartibu LK, Okokpujie IP. Decision Analysis Approaches on the Collection Methods of Polyethylene Terephthalate Waste. Recycling. 2024; 9(6):124. https://doi.org/10.3390/recycling9060124
Chicago/Turabian StyleOyewale, Johnson A., Lagouge K. Tartibu, and Imhade P. Okokpujie. 2024. "Decision Analysis Approaches on the Collection Methods of Polyethylene Terephthalate Waste" Recycling 9, no. 6: 124. https://doi.org/10.3390/recycling9060124
APA StyleOyewale, J. A., Tartibu, L. K., & Okokpujie, I. P. (2024). Decision Analysis Approaches on the Collection Methods of Polyethylene Terephthalate Waste. Recycling, 9(6), 124. https://doi.org/10.3390/recycling9060124