Melatonin Application Improves Salt Tolerance of Alfalfa (Medicago sativa L.) by Enhancing Antioxidant Capacity
<p>Germination status of alfalfa seeds under various concentrations of salt and melatonin (MT). (<b>A</b>), Alfalfa seeds germinated under salt stress with various concentrations of NaCl (0, 100, 150, 200 and 250 mM) for 7 days; (<b>B</b>), Seedlings after being germinated under different concentrations of NaCl (0, 100, 150, 200 and 250 mM) for 7 days; (<b>C</b>), Germination rates of alfalfa seeds germinated under various concentrations of NaCl (0, 100, 150, 200 and 250 mM) for 7 days; (<b>D</b>), Germination rate of alfalfa seeds pretreated with various concentrations of MT (0, 1, 10, 50, 100 and 500 µM) and germinated under normal conditions for 7 days; (<b>E</b>), Seedlings germinated under normal conditions for 7 days with different concentrations of MT (0, 100, 150, 200 and 250 mM) pretreatment; (<b>F</b>), Root length of alfalfa seedlings after being germinated under normal conditions for 7 days with several concentrations of MT (0, 10 and 50 µM) pretreated; (<b>G</b>), Alfalfa seeds germinated under salt stress (200 mM NaCl) and salt stress with MT pretreatment (50 µM MT + 200 mM NaCl) for 4 days; (<b>H</b>), Germination potential of alfalfa seeds with MT (0, 10 and 50 µM) pretreated and germinated under salt stress with 200 mM NaCl for 4 days; (<b>I</b>), Seedlings germinated under 200 mM NaCl condition for 7 days with MT (0, 1, 10, 50, 100 and 500 µM) pretreatment, scale bar, 1 cm. Data are represented as means ± SE (<span class="html-italic">n</span> = 3), and bars with different letters indicate the differences between these different treatment groups according to ANOVA analysis (<span class="html-italic">p</span> < 0.05).</p> "> Figure 2
<p>Germination rate (<b>A</b>), root length (<b>B</b>), fresh weight (<b>C</b>) and root/shoot ratio (<b>D</b>) of alfalfa seedlings pretreated with various concentrations of MT (0, 1, 10, 50, 100 and 500 µM) and germinated under 200 mM NaCl for 7 days. Data are represented as means ± SE (<span class="html-italic">n</span> = 3), and bars with different letters indicate the differences between these different treatment groups according to ANOVA analysis (<span class="html-italic">p</span> < 0.05).</p> "> Figure 3
<p>The mitigated effects of various concentrations of MT (0, 1, 10, 50, 100 and 500 µM) on electrolyte leakage (<b>A</b>), malondialdehyde (MDA) content (<b>B</b>), H<sub>2</sub>O<sub>2</sub> content (<b>C</b>) and the enzyme activities of peroxidase (POD) (<b>D</b>), catalase (CAT) (<b>E</b>), Cu/Zn superoxide dismutase (Cu/Zn-SOD) (<b>F</b>), and T-SOD (<b>G</b>) of alfalfa seedlings under 200 mM NaCl salinity condition. Data are represented as means ± SE (<span class="html-italic">n</span> = 3), and bars with different letters indicate the differences between these different treatment groups according to ANOVA analysis (<span class="html-italic">p</span> < 0.05).</p> "> Figure 4
<p>Effects of MT (50 µM) pretreatment on one-month-old alfalfa plants exposed to salt stress (200 mM NaCl) for 15 days. A, B, Plants sprayed with MT (50 µM) or water for 7 days (<b>A</b>) and subsequently subjected to salt stress with 200 mM NaCl or normal conditions for 15 days (<b>B</b>). Plants from left to right: plants grown under normal conditions, plants pretreated with MT and grown under normal conditions, plants subjected to salt stress, and plants pretreated with MT and then subjected to salt stress; C–E, Effects of MT pretreatment on the MDA content (<b>C</b>), electrolyte leakage (<b>D</b>) and H<sub>2</sub>O<sub>2</sub> content (<b>E</b>) of alfalfa plants before and after salinity treatment or under normal conditions. Data are represented as means ± SE (<span class="html-italic">n</span> = 3), and bars with different letters indicate the differences between these four different groups according to ANOVA analysis (<span class="html-italic">p</span> < 0.05).</p> "> Figure 5
<p>The activities of antioxidative enzymes and the Na<sup>+</sup>, K<sup>+</sup> contents of alfalfa plants under normal or salt stress (200 mM NaCl) conditions. A–D, the activities of CAT (<b>A</b>), POD (<b>B</b>), Cu/Zn-SOD (<b>C</b>) and glutathione peroxidase (GSH-PX) (<b>D</b>) in different groups of plants before and after salt stress treatment; E–G, Na<sup>+</sup> content (<b>E</b>), K<sup>+</sup> content (<b>F</b>), and the K<sup>+</sup>/Na<sup>+</sup> ratio (<b>G</b>) in the shoots and roots of one-month-old alfalfa plants pretreated with MT and exposed to salt stress with 200 mM NaCl for 15 days. Data are represented as means ± SE (<span class="html-italic">n</span> = 3), and bars with different letters indicate the differences between these four different groups according to ANOVA analysis (<span class="html-italic">p</span> < 0.05).</p> "> Figure 6
<p>Relative expression level of several selected genes in the melatonin biosynthesis pathway and genes encoding antioxidative enzymes involved in reactive oxygen species (ROS) metabolism A–C, relative expression level of tryptophan decarboxylase (<span class="html-italic">TDC</span>) (<b>A</b>), serotonin N-acetyltransferase (<span class="html-italic">SNAT</span>) (<b>B</b>), and N-acetylserotonin methyltransferase (<span class="html-italic">ASMT</span>) (<b>C</b>) in the melatonin biosynthesis pathway in different treated plants before and after 200 mM NaCl treatment for 15 days; D–F, relative expression level of <span class="html-italic">Cu/Zn-SOD</span> (<b>D</b>), <span class="html-italic">CAT</span> (<b>E</b>), and ascorbate peroxidase (<span class="html-italic">APX</span>) (<b>F</b>) in leaves of alfalfa plants before and after 200 mM NaCl treatment for 15 days. Data are represented as means ± SE (<span class="html-italic">n</span> = 3), and bars with different letters indicate the differences between these four different groups according to ANOVA analysis (<span class="html-italic">p</span> < 0.05).</p> ">
Abstract
:1. Introduction
2. Results
2.1. Melatonin Promotes Seed Germination and Seedling Growth under Salt Stress
2.2. Melatonin Reduces Salt Injury of Alfalfa Seedlings under Salt Stress
2.3. Melatonin Application Improves Salt Tolerance of Alfalfa Plants
2.4. Melatonin Application Induces the Expression of Genes Related to Melatonin and Antioxidants Biosynthesis
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Regents
4.2. Germination Tests
4.3. Melatonin Application and Salinity Treatment of Alfalfa Plants
4.4. Measurement of Electrolyte Leakage and Malondialdehyde (MDA) Content
4.5. Measurement of Activities of Antioxidant Enzymes
4.6. Measurement of Na+ and K+ Content
4.7. Extraction of Total RNA and Quantitative Real-Time PCR Analyses
4.8. Statistical Analysis
Author Contributions
Funding
Conflicts of Interest
References
- Shi, S.; Nan, L.; Smith, K. The current status, problems, and prospects of alfalfa (Medicago sativa L.) breeding in China. Agronomy 2017, 7, 1. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.C.; Kang, J.M.; Zhang, T.J.; Liu, F.Q.; Long, R.C.; Sun, Y. Distribution, breeding and utilization of alfalfa germplasm resources. Chin. Sci. Bull. 2016, 61, 261–270. (In Chinese) [Google Scholar]
- Li, X.; Wei, Y.; Moore, K.J. Association mapping of biomass yield and stem composition in a tetraploid alfalfa breeding population. Plant Genome 2011, 4, 24–35. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.K. Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 2002, 53, 247–273. [Google Scholar] [CrossRef] [Green Version]
- Litalien, A.; Zeeb, B. Curing the earth: A review of anthropogenic soil salinization and plant-based strategies for sustainable mitigation. Sci. Total Environ. 2020, 698, 134235. [Google Scholar] [CrossRef]
- Foyer, C.H.; Noctor, G. Oxidant and antioxidant signaling in plants: A re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ. 2005, 28, 1056–1071. [Google Scholar] [CrossRef]
- Roy, S.J.; Negrao, S.; Tester, M. Salt resistant crop plants. Curr. Opin. Biotechnol. 2014, 26, 115–124. [Google Scholar] [CrossRef]
- FAO. Saline Soils and Their Management. Food and Agricultural Organization of the United Nations. Available online: http://www.fao.org/3/x5871e/x5871e04.htm (accessed on 1 December 2019).
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.J.; Wang, T. Enhanced salt tolerance of alfalfa (Medicago sativa) by rstB gene transformation. Plant Sci. 2015, 234, 110–118. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, L.; Chen, J.; Tao, L.; An, Y.; Cai, H.; Guo, C. Overexpression of the alfalfa WRKY11 gene enhances salt tolerance in soybean. PLoS ONE 2018, 13, e0192382. [Google Scholar] [CrossRef] [Green Version]
- Gou, J.; Debnath, S.; Sun, L.; Flanagan, A.; Tang, Y.; Jiang, Q.; Wen, J.; Wang, Z. From model to crop: Functional characterization of SPL8 in M. truncatula led to genetic improvement of biomass yield and abiotic stress tolerance in alfalfa. Plant Biotechnol. J. 2018, 16, 951–962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.P.; Hawkins, C.; Peel, M.D.; Yu, L.X. Genetic loci associated with salt tolerance in advanced breeding populations of tetraploid alfalfa using genome-wide association studies. Plant Genome 2019, 12, 180026. [Google Scholar] [CrossRef] [PubMed]
- Sarwar, M.; Saleem, M.F.; Ullah, N.; Rizwan, M.; Ali, S.; Shahid, M.R.; Alamri, S.A.; Alyemeni, M.N.; Ahmad, P. Exogenously applied growth regulators protect the cotton crop from heat-induced injury by modulating plant defense mechanism. Sci. Rep. 2018, 8, 17086. [Google Scholar] [CrossRef] [PubMed]
- Verma, V.; Ravindran, P.; Kumar, P.P. Plant hormone-mediated regulation of stress responses. BMC Plant Biol. 2016, 16, 86. [Google Scholar] [CrossRef] [Green Version]
- Bielach, A.; Hrtyan, M.; Tognetti, V.B. Plants under stress: Involvement of auxin and cytokinin. Int. J. Mol. Sci. 2017, 18, 1427. [Google Scholar] [CrossRef] [Green Version]
- Arora, D.; Jain, P.; Singh, N.; Kaur, H.; Bhatla, S.C. Mechanisms of nitric oxide crosstalk with reactive oxygen species scavenging enzymes during abiotic stress tolerance in plants. Free Radic. Res. 2016, 50, 291–303. [Google Scholar] [CrossRef]
- Samea-Andabjadid, S.; Ghassemi-Golezani, K.; Nasrollahzadeh, S.; Najafi, N. Exogenous salicylic acid and cytokinin alter sugar accumulation, antioxidants and membrane stability of faba bean. Acta Biol. Hung. 2018, 69, 86–96. [Google Scholar] [CrossRef]
- Guo, Z.; Yang, N.; Zhu, C.; Gan, L. Exogenously applied poly-γ-glutamic acid alleviates salt stress in wheat seedlings by modulating ion balance and the antioxidant system. Environ. Sci. Pollut. Res. Int. 2017, 24, 6592–6598. [Google Scholar] [CrossRef]
- Shu, S.; Chen, L.; Lu, W.; Sun, J.; Guo, S.; Yuan, Y.; Li, J. Effects of exogenous spermidine on photosynthetic capacity and expression of Calvin cycle genes in salt-stressed cucumber seedlings. J. Plant Res. 2014, 127, 763–773. [Google Scholar] [CrossRef]
- Galano, A.; Tan, D.X.; Reiter, R.J. Melatonin as a natural ally against oxidative stress: A physicochemical examination. J. Pineal Res. 2011, 51, 1–16. [Google Scholar] [CrossRef]
- Calvo, J.R.; Gonzalez-Yanes, C.; Maldonado, M.D. The role of melatnonin in the cells of the innate immunity: A review. J. Pineal Res. 2013, 55, 103–120. [Google Scholar] [CrossRef] [PubMed]
- Hattori, A.; Migitaka, H.; Iigo, M.; Itoh, M.; Yamamoto, K.; Ohtani-Kaneko, R.; Hara, M.; Suzuki, T.; Reiter, R.J. Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochem. Mol. Biol. Int. 1995, 35, 627–634. [Google Scholar] [PubMed]
- Reiter, R.J.; Tan, D.X.; Manchester, L.C.; Simopoulos, A.P.; Maldonado, M.D.; Flores, L.J.; Terron, M.P. Melatonin in edible plants (phytomelatonin): Identification, concentrations, bioavailability and proposed functions. World Rev. Nutr. Diet. 2007, 97, 211–230. [Google Scholar] [PubMed]
- Chen, G.; Huo, Y.; Tan, D.X.; Liang, Z.; Zhang, W.; Zhang, Y. Melatonin in Chinese medicinal herbs. Life Sci. 2003, 73, 19–26. [Google Scholar] [CrossRef]
- Arnao, M.B.; Hernández-Ruiz, J. Functions of melatonin in plants: A review. J. Pineal Res. 2015, 59, 133–150. [Google Scholar] [CrossRef] [Green Version]
- Cao, Q.; Li, G.; Cui, Z.; Yang, F.; Jiang, X.; Diallo, L.; Kong, F. Seed priming with melatonin improves the seed germination of waxy maize under chilling stress via promoting the antioxidant system and starch metabolism. Sci. Rep. 2019, 9, 15044. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Hu, Q.; Liu, Y.; Cheng, P.; Cheng, H.; Liu, W.; Xing, X.; Guan, Z.; Fang, W.; Chen, S.; et al. Strigolactone represses the synthesis of melatonin, thereby inducing floral transition in Arabidopsis thaliana in an FLC-dependent manner. J. Pineal Res. 2019, 67, e12582. [Google Scholar] [CrossRef]
- Tan, X.L.; Fan, Z.Q.; Kuang, J.F.; Lu, W.J.; Reiter, R.J.; Lakshmanan, P.; Su, X.G.; Zhou, J.; Chen, J.Y.; Shan, W. Melatonin delays leaf senescence of Chinese flowering cabbage by suppressing ABFs-mediated abscisic acid biosynthesis and chlorophyll degradation. J. Pineal Res. 2019, 67, e12570. [Google Scholar] [CrossRef]
- Huang, Y.H.; Liu, S.J.; Yuan, S.; Guan, C.; Tian, D.Y.; Cui, X.; Zhang, Y.W.; Yang, F.Y. Overexpression of ovine AANAT and HIOMT genes in switchgrass leads to improved growth performance and salt-tolerance. Sci. Rep. 2017, 7, 12212. [Google Scholar] [CrossRef]
- Tan, D.X.; Hardeland, R.; Back, K.; Manchester, L.C.; Alatorre-Jimenez, M.A.; Reiter, R.J. On the significance of an alternate pathway of melatonin synthesis via 5-methoxyltryptamine: Comparisons across species. J. Pineal Res. 2016, 61, 426–437. [Google Scholar] [CrossRef] [Green Version]
- Reiter, R.J.; Tan, D.X. Melatonin: An antioxidant in edible plants. Ann. N. Y. Acad. Sci. 2002, 957, 341–344. [Google Scholar] [CrossRef] [PubMed]
- Arnao, M.B.; Hernández-Ruiz, J. Melatonin: A new plant hormone and/or a plant master regulator? Trends Plant Sci. 2019, 24, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, J.; Zhu, T.; Zhao, C.; Li, L.; Chen, M. The role of melatonin in salt stress responses. Int. J. Mol. Sci. 2019, 20, 1735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, D.X.; Manchester, L.C.; Esteban-Zubero, E.; Zhou, Z.; Reiter, R.J. Melatonin as a potent and inducible endogenous antioxidant: Synthesis and metabolism. Molecules 2015, 20, 18886–18906. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Reiter, R.J.; Chan, Z. Phytomelatonin: A universal abiotic stress regulator. J. Exp. Bot. 2018, 69, 963–974. [Google Scholar] [CrossRef]
- Han, Q.H.; Huang, B.; Ding, C.B.; Zhang, Z.W.; Chen, Y.E.; Hu, C.; Zhou, L.J.; Huang, Y.; Liao, J.Q.; Yuan, S.; et al. Effects of melatonin on anti-oxidative systems and photosystem II in cold-stressed rice seedlings. Front. Plant Sci. 2017, 8, 785. [Google Scholar] [CrossRef]
- Ke, Q.; Ye, J.; Wang, B.; Ren, J.; Yin, L.; Deng, X.; Wang, S. Melatonin mitigates salt stress in wheat seedlings by modulating polyamine metabolism. Front. Plant Sci. 2018, 9, 914. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Tan, D.X.; Jiang, D.; Liu, F. Melatonin enhances cold tolerance in drought-primed wild-type and abscisic acid-deficient mutant barley. J. Pineal Res. 2016, 61, 328–339. [Google Scholar] [CrossRef]
- Zhang, R.; Sun, Y.; Liu, Z.; Jin, W.; Sun, Y. Effects of melatonin on seedling growth, mineral nutrition, and nitrogen metabolism in cucumber under nitrate stress. J. Pineal Res. 2017, 62, e12403. [Google Scholar] [CrossRef]
- Wei, W.; Li, Q.T.; Chu, Y.N.; Reiter, R.J.; Yu, X.M.; Zhu, D.H.; Zhang, W.K.; Ma, B.; Lin, Q.; Zhang, J.S.; et al. Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. J. Exp. Bot. 2015, 66, 695–707. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Li, H.; Xu, B.; Li, J.; Huang, B. Exogenous melatonin suppresses dark-induced leaf senescence by activating the superoxide dismutase-catalase antioxidant pathway and down-regulating chlorophyll degradation in excised leaves of perennial ryegrass (L.). Front. Plant Sci. 2016, 7, 1500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antoniou, C.; Chatzimichail, G.; Xenofontos, R.; Pavlou, J.J.; Panagiotou, E.; Christou, A.; Fotopoulos, V. Melatonin systemically ameliorates drought stress-induced damage in Medicago sativa plants by modulating nitro-oxidative homeostasis and proline metabolism. J. Pineal Res. 2017, 62, e12401. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Xiang, G.; Sun, Q.; Ni, Y.; Jin, Z.; Gao, S.; Yao, Y. Melatonin enhances salt tolerance by promoting MYB108A-mediated ethylene biosynthesis in grapevines. Hortic. Res. 2019, 6, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arora, D.; Bhatla, S.C. Melatonin and nitric oxide regulate sunflower seedling growth under salt stress accompanying differential expression of Cu/Zn SOD and Mn SOD. Free Radic. Biol. Med. 2017, 106, 315–328. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.J.; Zhang, N.; Yang, R.C.; Wang, L.; Sun, Q.Q.; Li, D.B.; Cao, Y.Y.; Weeda, S.; Zhao, B.; Ren, S.; et al. Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA4 interaction in cucumber (Cucumis sativus L.). J. Pineal Res. 2014, 57, 269–279. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wang, P.; Wei, Z.; Liang, D.; Liu, C.; Yin, L.; Jia, D.; Fu, M.; Ma, F. The mitigation effects of exogenous melatonin on salinity-induced stress in Malus hupehensis. J. Pineal Res. 2012, 53, 298–306. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, X.; Zhang, Z.; Liu, N.; Li, D.; Hu, L. Melatonin improved waterlogging tolerance in alfalfa (Medicago sativa) by reprogramming polyamine and ethylene metabolism. Front. Plant Sci. 2019, 10, 44. [Google Scholar] [CrossRef]
- He, Q.; Wang, X.; He, L.; Yang, L.; Wang, S.; Bi, Y. Alternative respiration pathway is involved in the response of highland barley to salt stress. Plant Cell Rep. 2019, 38, 295–309. [Google Scholar] [CrossRef]
- Zhan, H.; Nie, X.; Zhang, T.; Li, S.; Wang, X.; Du, X.; Tong, W.; Song, W. Melatonin: A small molecule but important for salt stress tolerance in plants. Int. J. Mol. Sci. 2019, 20, 709. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Chang, J.; Chen, H.; Wang, Z.; Gu, X.; Wei, C.; Zhang, Y.; Ma, J.; Yang, J.; Zhang, X. Exogenous melatonin confers salt stress tolerance to watermelon by improving photosynthesis and redox homeostasis. Front. Plant Sci. 2017, 8, 295. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Wang, L.; Shi, K.; Shan, D.; Zhu, Y.; Wang, C.; Bai, Y.; Yan, T.; Zheng, X.; Kong, J. Apple tree flowering is mediated by low level of melatonin under the regulation of seasonal light signal. J. Pineal Res. 2019, 66, e12551. [Google Scholar] [CrossRef] [PubMed]
- Abogadallah, G.M. Antioxidative defense under salt stress. Plant Signal Behav. 2010, 5, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Bowler, C.; Montagu, M.V.; Inze, D. Superoxide dismutases and stress tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1992, 43, 83–116. [Google Scholar] [CrossRef]
- Yu, G.B.; Zhang, Y.; Ahammed, G.J.; Xia, X.J.; Mao, W.H.; Shi, K.; Zhou, Y.H.; Yu, J.Q. Glutathione biosynthesis and regeneration play an important role in the metabolism of chlorothalonil in tomato. Chemosphere 2013, 90, 2563–2570. [Google Scholar] [CrossRef]
- Yan, Y.; Sun, S.; Zhao, N.; Yang, W.; Shi, Q.; Gong, B. COMT1 overexpression resulting in increased melatonin biosynthesis contributes to the alleviation of carbendazim phytotoxicity and residues in tomato plants. Environ. Pollut. 2019, 252, 51–61. [Google Scholar] [CrossRef]
- Siddiqui, M.H.; Alamri, S.; Al-Khaishany, M.Y.; Khan, M.N.; Al-Amri, A.; Ali, H.M.; Alaraidh, I.A.; Alsahli, A.A. Exogenous melatonin counteracts NaCl-induced damage by regulating the antioxidant system. Proline and carbohydrates metabolism in tomato seedlings. Int. J. Mol. Sci. 2019, 20, 353. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.E.; Mao, J.J.; Sun, L.Q.; Huang, B.; Ding, C.B.; Gu, Y.; Liao, J.Q.; Hu, C.; Zhang, Z.W.; Yuan, S.; et al. Exogenous melatonin enhances salt stress tolerance in maize seedlings by improving antioxidant and photosynthetic capacity. Physiol. Plant 2018, 164, 349–363. [Google Scholar] [CrossRef]
- Back, K.; Tan, D.X.; Reiter, R.J. Melatonin biosynthesis in plants: Multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts. J. Pineal Res. 2016, 61, 426–437. [Google Scholar] [CrossRef]
- Wei, J.; Li, D.X.; Zhang, J.R.; Shan, C.; Rengel, Z.; Song, Z.B.; Chen, Q. Phytomelatonin receptor PMTR1-mediated signaling regulates stomatal closure in Arabidopsis thaliana. J. Pineal Res. 2018, 65, e12500. [Google Scholar] [CrossRef]
- Cen, H.; Ye, W.; Liu, Y.; Li, D.; Wang, K.; Zhang, W. Overexpression of a chimeric gene, OsDST-SRDX, improved salt tolerance of perennial ryegrass. Sci. Rep. 2016, 6, 27320. [Google Scholar] [CrossRef]
- Castonguay, Y.; Michaud, J.; Dubé, M.P. Reference genes for RT-qPCR analysis of environmentally and developmentally regulated gene expression in alfalfa. Am. J. Plant Sci. 2015, 6, 132–143. [Google Scholar] [CrossRef] [Green Version]
Primer Name | Primer Sequences (5′-3′) |
---|---|
TDC-F | CTCGCAGGATCTTGTCACGG |
TDC-R | AGGCACTCCTTCTGCCTCAT |
SNAT-F | GTCAGAGGGGAATGAACAAAA |
SNAT-R | TTCCACGACTTTACTATCTGCG |
ASMT-F | ATTTCTTCACTACCAATCCACCC |
ASMT-R | CCACACTCATTGGATTGTTCTAAA |
Cu/Zn-SOD-F | TCCACTGGTCCTCACTTCAATC |
Cu/Zn-SOD-R | GACAGCCCTTCCGAGTATGG |
CAT-F | TGAAGACCCCTCCCTACGAA |
CAT-R | GAACTCAGGTGAAGGATTGCC |
APX-F | AACGAAACAAAATGGCAGACC |
APX-R | AATTGAGCGAGGAAACGGA |
Actin-F | CAAAAGATGGCAGATGCTGAGGAT |
Actin-R | CATGACACCAGTATGACGAGGTCG |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cen, H.; Wang, T.; Liu, H.; Tian, D.; Zhang, Y. Melatonin Application Improves Salt Tolerance of Alfalfa (Medicago sativa L.) by Enhancing Antioxidant Capacity. Plants 2020, 9, 220. https://doi.org/10.3390/plants9020220
Cen H, Wang T, Liu H, Tian D, Zhang Y. Melatonin Application Improves Salt Tolerance of Alfalfa (Medicago sativa L.) by Enhancing Antioxidant Capacity. Plants. 2020; 9(2):220. https://doi.org/10.3390/plants9020220
Chicago/Turabian StyleCen, Huifang, Tingting Wang, Huayue Liu, Danyang Tian, and Yunwei Zhang. 2020. "Melatonin Application Improves Salt Tolerance of Alfalfa (Medicago sativa L.) by Enhancing Antioxidant Capacity" Plants 9, no. 2: 220. https://doi.org/10.3390/plants9020220
APA StyleCen, H., Wang, T., Liu, H., Tian, D., & Zhang, Y. (2020). Melatonin Application Improves Salt Tolerance of Alfalfa (Medicago sativa L.) by Enhancing Antioxidant Capacity. Plants, 9(2), 220. https://doi.org/10.3390/plants9020220