[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Alternative respiration pathway is involved in the response of highland barley to salt stress

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Alternative respiration pathway is involved in the response of highland barley to salt stress.

Abstract

The response of two barley seedlings to salt stress was investigated. Results showed that the growth of highland barley (Kunlun 14) and barley (Ganpi 6) had no obvious difference under low concentrations (50, 100 and 200 mM) of NaCl treatment. However, high concentrations of NaCl treatment (300 and 400 mM) severely affected the growth of two barley cultivars. Under 300 mM NaCl treatment, the fresh weight, relative water content (RWC), pigments and K+ content reduced more in Ganpi 6 than in Kunlun 14. In contrast, the electrolyte leakage and the content of MDA, Na+, H2O2 and O2ˉ increased more in Ganpi 6 than in Kunlun 14. The gene expression of AOX1a, HvNHX1, HvNHX3, HvHVP1, HvHVA, H+-ATPase, the alternative respiration capacity (Valt) and the enzymatic activity of SOD, POD, CAT, APX and H+-ATPase increased more in Kunlun14 than in Ganpi6 under 300 mM NaCl treatment, whereas the cytochrome respiration capacity (Vcyt) decreased similarly in both barley cultivars. Western blot analysis showed that the protein level of the alternative oxidase (AOX) increased more in Kunlun 14 than in Ganpi 6 under 300 mM NaCl treatment. Inhibition of the alternative respiration by salicylhydroxamic acid (SHAM) decreased the fresh weight, K+ content, Valt, H+-ATPase activity and the gene expression of AOX1a, HvNHX1, HvNHX3, HvHVP1, HvHVA, H+-ATPase, but increased the electrolyte leakage, MDA and Na+ content in both cultivars under 300 mM NaCl treatment. In short, alternative respiration is involved in the tolerance of highland barley to salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AOX:

Alternative oxidase

APX:

Ascorbate peroxidase

CAT:

Catalase

MDA:

Malondialdehyde

O2 :

Superoxide anion

PM H+-ATPase:

Plasma membrane H+-ATPase

POD:

Peroxidase

ROS:

Reactive oxygen species

RWC:

Relative water content

SHAM:

Salicylhydroxamic acid

SOD:

Superoxide dismutase

V alt :

Alternative respiration rate

V cyt :

Cytochrome respiration rate

V t :

Total respiration rate

References

  • Ahmed IM, Dai HX, Zheng WT, Cao FB, Zhang GP, Sun DF, Wu FB (2013) Genotypic differences in physiological characteristics in the tolerance to drought and salinity combined stress between Tibetan wild and cultivated barley. Plant Physiol Biochem 63:49–60

    Article  CAS  PubMed  Google Scholar 

  • Akpinar BA, Lucas SJ, Vrana J, Dolezel J, Budak H (2015) Sequencing chromosome 5D of Aegilops tauschii and comparison with its allopolyploid descendant bread wheat (Triticum aestivum). Plant Biotechnol J 13:740–752

    Article  CAS  PubMed  Google Scholar 

  • Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24:1337–1344

    Article  CAS  Google Scholar 

  • Alian A, Altman A, Heuer B (2000) Genotypic difference in salinity and water stress tolerance of fresh market tomato cultivars. Plant Sci 152:59–65

    Article  CAS  Google Scholar 

  • Assaha DVM, Ueda A, Saneoka H, Al-Yahyai R, Yaish MW (2017) The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Front Physiol 8:509

    Article  PubMed  PubMed Central  Google Scholar 

  • Badr A, Muller K, Schafer-Pregl R, El Rabey H, Effgen S, Ibrahim HH, Pozzi C, Rohde W, Salamini F (2000) On the origin and domestication history of barley (Hordeum vulgare). Mol Biol Evol 17:499–510

    Article  CAS  PubMed  Google Scholar 

  • Cheng L, Zhang N, Huang BR (2016) Effects of 1-aminocyclopropane-1-carboxylate-deaminase-producing bacteria on perennial ryegrass growth and physiological responses to salinity stress. J Am Soc Hortic Sci 141:233–241

    Article  CAS  Google Scholar 

  • Cui DZ, Wu DD, Liu J, Li DT, Xu CY, Li S, Li P, Zhang H, Liu X, Jiang C, Wang LW, Chen TT, Chen HB, Zhao L (2015) Proteomic analysis of seedling roots of two maize inbred lines that differ significantly in the salt stress response. PLoS One 10:e0116697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dinakar C, Abhaypratap V, Yearla SR, Raghavendra AS, Padmasree K (2010) Importance of ROS and antioxidant system during the beneficial interactions of mitochondrial metabolism with photosynthetic carbon assimilation. Planta 231:461–474

    Article  CAS  PubMed  Google Scholar 

  • Du JB, Yuan S, Chen YE, Sun X, Zhang ZW, Xu F, Yuan M, Shang J, Lin HH (2011) Comparative expression analysis of dehydrins between two barley varieties, wild barley and Tibetan hulless barley associated with different stress resistance. Acta Physiol Plant 33:567–574

    Article  Google Scholar 

  • Elsawy HIA, Mekawy AMM, Elhity MA, Abdel-dayem SM, Abdelaziz MN, Assaha DVM, Ueda A, Saneoka H (2018) Differential responses of two Egyptian barley (Hordeum vulgare L.) cultivars to salt stress. Plant Physiol Biochem 127:425–435

    Article  CAS  PubMed  Google Scholar 

  • Elstner EF, Heupel A (1976) Inhibition of nitrite formation from hydroxylammoniumchloride: a simple assay for superoxide dismutase. Ann Biochem 70:616–620

    Article  CAS  Google Scholar 

  • Flowers TJ, Hajibagheri MA (2001) Salinity tolerance in Hordeum vulgare: ion concentrations in root cells of cultivars differing in salt tolerance. Plant Soil 231:1–9

    Article  CAS  Google Scholar 

  • Gunes A, Inal A, Bagci EG, Pilbeam DJ (2007) Silicon-mediated changes of some physiological and enzymatic parameters symptomatic for oxidative stress in spinach and tomato grown in sodic-B toxic soil. Plant Soil 290:103–114

    Article  CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  PubMed  Google Scholar 

  • Himabindu Y, Chakradhar T, Reddy MC, Kanygin A, Redding KE, Chandrasekhar T (2016) Salt-tolerant genes from halophytes are potential key players of salt tolerance in glycophytes. Environ Exp Bot 124:39–63

    Article  CAS  Google Scholar 

  • Hutsch BW, Jung S, Schubert S (2015) Comparison of salt and drought-stress effects on maize growth and yield formation with regard to acid invertase activity in the kernels. J Agron Crop Sci 201:353–367

    Article  CAS  Google Scholar 

  • Imadi SR, Kazi AG, Ahanger MA, Gucel S, Ahmad P (2015) Plant transcriptomics and responses to environmental stress: an overview. J Genet 94:525–537

    Article  CAS  PubMed  Google Scholar 

  • Izydorczyk MS, Storsley J, Labossiere D, MacGregor AW, Rossnagel BG (2000) Variation in total and soluble beta-glucan content in hulless barley: effects of thermal, physical, and enzymic treatments. J Agric Food Chem 48:982–989

    Article  CAS  PubMed  Google Scholar 

  • Janicka-Russak M, Kabala K, Burzynski M, Klobus G (2008) Response of plasma membrane H+-ATPase to heavy metal stress in Cucumis sativus roots. J Exp Bot 59:3721–3728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jian W, Zhang DW, Zhu F, Wang SX, Pu XJ, Deng XG, Luo SS, Lin HH (2016) Alternative oxidase pathway is involved in the exogenous SNP-elevated tolerance of Medicago truncatula to salt stress. J Plant Physiol 193:79–87

    Article  CAS  PubMed  Google Scholar 

  • Latef AAA, Tran LSP (2016) Impacts of priming with silicon on the growth and tolerance of maize plants to alkaline stress. Front Plant Sci 7:243

    PubMed  PubMed Central  Google Scholar 

  • Li YC, Meng FR, Zhang CY, Zhang N, Sun MS, Ren JP, Niu HB, Wang X, Yin J (2012) Comparative analysis of water stress-responsive transcriptomes in drought-susceptible and -tolerant wheat (Triticum aestivum L.). J Plant Biol 55:349–360

    Article  CAS  Google Scholar 

  • Li Z, Peng Y, Huang BR (2016) Physiological effects of gamma-aminobutyric acid application on improving heat and drought tolerance in creeping bentgrass. J Am Soc Hortic Sci 141:76–84

    Article  CAS  Google Scholar 

  • Lichtenthaler HK, Ac A, Marek MV, Kalina J, Urban O (2007) Differences in pigment composition, photosynthetic rates and chlorophyll fluorescence images of sun and shade leaves of four tree species. Plant Physiol Biochem 45:577–588

    Article  CAS  PubMed  Google Scholar 

  • Ma XL, Xin ZY, Wang ZQ, Yang QH, Guo SL, Guo XY, Cao LR, Lin TB (2015) Identification and comparative analysis of differentially expressed miRNAs in leaves of two wheat (Triticum aestivum L.) genotypes during dehydration stress. BMC Plant Biol 15:21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masood S, Saleh L, Witzel K, Plieth C, Muhling KH (2012) Determination of oxidative stress in wheat leaves as influenced by boron toxicity and NaCl stress. Plant Physiol Biochem 56:56–61

    Article  CAS  PubMed  Google Scholar 

  • Maxwell DP, Wang Y, McIntosh L (1999) The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proc Natl Acad Sci USA 96:8271–8276

    Article  CAS  PubMed  Google Scholar 

  • Millenaar FF, Lambers H (2003) The alternative oxidase: in vivo regulation and function. Plant Biol 5:2–15

    Article  CAS  Google Scholar 

  • Mittova V, Guy M, Tal M, Volokita M (2004) Salinity up-regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii. J Exp Bot 55:1105–1113

    Article  CAS  PubMed  Google Scholar 

  • Mostek A, Borner A, Weidner S (2016) Comparative proteomic analysis of beta-aminobutyric acid-mediated alleviation of salt stress in barley. Plant Physiol Biochem 99:150–161

    Article  CAS  PubMed  Google Scholar 

  • Mott IW, Wang RRC (2007) Comparative transcriptome analysis of salt-tolerant wheat germplasm lines using wheat genome arrays. Plant Sci 173:327–339

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  Google Scholar 

  • Niu XM, Bressan RA, Hasegawa PM, Pardo JM (1995) Ion homeostasis in NaCl stress environments. Plant Physiol 109:735–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pottosin I, Dobrovinskaya O (2014) Non-selective cation channels in plasma and vacuolar membranes and their contribution to K+ transport. J Plant Physiol 171:732–742

    Article  CAS  PubMed  Google Scholar 

  • Prochazkova D, Sairam RK, Srivastava GC, Singh DV (2001) Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. Plant Sci 161:765–771

    Article  CAS  Google Scholar 

  • Rausch T, Kirsch M, Low R, Lehr A, Viereck R, An ZG (1996) Salt stress responses of higher plants: the role of proton pumps and Na+/H+-antiporters. J Plant Physiol 148:425–433

    Article  CAS  Google Scholar 

  • Sahu BB, Shaw BP (2009) Salt-inducible isoform of plasma membrane (H+)ATPase gene in rice remains constitutively expressed in natural halophyte, Suaeda maritima. J Plant Physiol 166:1077–1089

    Article  CAS  PubMed  Google Scholar 

  • Salama KHA, Mansour MMF, Al-Malawi HA (2015) Glycinebetaine priming improves salt tolerance of wheat. Biologia 70:1334–1339

    Article  CAS  Google Scholar 

  • Sengupta S, Majumder AL (2009) Insight into the salt tolerance factors of a wild halophytic rice, Porteresia coarctata: a physiological and proteomic approach. Planta 229:911–929

    Article  CAS  PubMed  Google Scholar 

  • Sergio L, De Paola A, Cantore V, Pieralice M, Cascarano NA, Bianco VV, Di Venere D (2012) Effect of salt stress on growth parameters, enzymatic antioxidant system, and lipid peroxidation in wild chicory (Cichorium intybus L.). Acta Physiol Plant 34:2349–2358

    Article  CAS  Google Scholar 

  • Sibole JV, Cabot C, Michalke W, Poschenrieder C, Barcelo J (2005) Relationship between expression of the PM H+-ATPase, growth and ion partitioning in the leaves of salt-treated Medicago species. Planta 221:557–566

    Article  CAS  PubMed  Google Scholar 

  • Siddique Z, Akhtar KP, Hameed A, Ul-Haq I, Ashraf MY, Sarwar N, Khan MKR (2015) Physiological response of cotton leaf curl Burewala virus-infected plants of tolerant and susceptible genotypes of different Gossypium species. J Plant Pathol 97:483–490

    Google Scholar 

  • Smith CA, Melino VJ, Sweetman C, Soole KL (2009) Manipulation of alternative oxidase can influence salt tolerance in Arabidopsis thaliana. Physiol Plant 137:459–472

    Article  CAS  PubMed  Google Scholar 

  • Teakle NL, Tyerman SD (2010) Mechanisms of Cl transport contributing to salt tolerance. Plant Cell Environ 33:566–589

    Article  CAS  PubMed  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ullah N, Yuce M, Gokce ZNO, Budak H (2017) Comparative metabolite profiling of drought stress in roots and leaves of seven Triticeae species. BMC Genom 18:969

    Article  CAS  Google Scholar 

  • Vanlerberghe GC, Mcintosh L (1992) Lower growth temperature increases alternative pathway capacity and alternative oxidase protein in tobacco. Plant Physiol 100:115–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vassileva V, Simova-Stoilova L, Demirevska K, Feller U (2009) Variety-specific response of wheat (Triticum aestivum L.) leaf mitochondria to drought stress. J Plant Res 122:445–454

    Article  CAS  PubMed  Google Scholar 

  • Vishwakarma A, Tetali SD, Selinski J, Scheibe R, Padmasree K (2015) Importance of the alternative oxidase (AOX) pathway in regulating cellular redox and ROS homeostasis to optimize photosynthesis during restriction of the cytochrome oxidase pathway in Arabidopsis thaliana. Ann Bot 116:555–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Li QT, Lei Q, Feng C, Gao Y, Zheng XD, Zhao Y, Wang Z, Kong J (2015) MzPIP2;1: an aquaporin involved in radial water movement in both water uptake and transportation, altered the drought and salt tolerance of transgenic Arabidopsis. PLoS One 10:e0142446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F, Wang XM, Zhao CZ, Wang JF, Li P, Dou YQ, Bi YR (2016) Alternative pathway is involved in the tolerance of highland barley to the low-nitrogen stress by maintaining the cellular redox homeostasis. Plant Cell Rep 35:317–328

    Article  CAS  PubMed  Google Scholar 

  • Webb T, Armstrong W (1983) Effects of KCN and salicylhydroxamic acid on the root respiration of pea seedlings. Plant Physiol 72:280–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu JL, Seliskar DM (1998) Salinity adaptation of plasma membrane H+-ATPase in the salt marsh plant Spartina patens: ATP hydrolysis and enzyme kinetics. J Exp Bot 49:1005–1013

    Article  CAS  Google Scholar 

  • Wu YX, Ding N, Zhao X, Zhao MG, Chang ZQ, Liu JQ, Zhang LX (2007) Molecular characterization of PeSOS1: the putative Na+/H+ antiporter of Populus euphratica. Plant Mol Biol 65:1–11

    Article  CAS  PubMed  Google Scholar 

  • Zeng Y, Lan LQ, Luo H, Bai J, Yang MY, Miao C, Cai YF, Qiang XL, Chen F (2002) RAPD markers in diversity detection and variety identification of Tibetan hullless barley. Plant Mol Biol Rep 20:369–377

    Article  CAS  Google Scholar 

  • Zhang Z, Nakano K, Maezawa S (2009) Comparison of the antioxidant enzymes of broccoli after cold or heat shock treatment at different storage temperatures. Postharvest Biol Technol 54:101–105

    Article  CAS  Google Scholar 

  • Zhang F, Li XL, Lai P, Li PF, Zhao YW (2015) Comparison of salt tolerance between Cichorium intybus L. transformed with AtNHX1 or HvBADH1. Acta Physiol Plant 37:UNSP8

    Article  CAS  Google Scholar 

  • Zhang DW, Yuan S, Xu F, Zhu F, Yuan M, Ye HX, Guo HQ, Lv X, Yin YH, Lin HH (2016) Light intensity affects chlorophyll synthesis during greening process by metabolite signal from mitochondrial alternative oxidase in Arabidopsis. Plant Cell Environ 39:12–25

    Article  CAS  PubMed  Google Scholar 

  • Zhao CZ, Li P, Wang XM, Li P, Wang XY, Wang F, Wang JF, Chang N, Bi YR (2016) Nitrogen deprivation induces cross-tolerance of Poa annua callus to salt stress. Biol Plant 60:543–554

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (31671595).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yurong Bi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Kang Chong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Q., Wang, X., He, L. et al. Alternative respiration pathway is involved in the response of highland barley to salt stress. Plant Cell Rep 38, 295–309 (2019). https://doi.org/10.1007/s00299-018-2366-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-018-2366-6

Keywords

Navigation