Interaction of Straw Mulching and Nitrogen Fertilization on Ammonia Volatilization from Oilseed Rape–Maize Rotation System in Sloping Farmland in Southwestern China
<p>The dynamics of NH<sub>3</sub> fluxes under different straw mulch and N fertilizer treatments during the oilseed rape- and maize-growing seasons between 2021 and 2023; error bars indicate the standard deviations of the means (<span class="html-italic">n</span> = 3).</p> "> Figure 2
<p>Daily mean air temperature and precipitation in the oilseed rape–maize rotation system at the experimental site from September 2021 to September 2022 (<b>a</b>), October 2022 to December 2023 (<b>b</b>); red arrows indicate the basal- and top-dressing fertilizers in the oilseed rape and maize growing seasons.</p> "> Figure 2 Cont.
<p>Daily mean air temperature and precipitation in the oilseed rape–maize rotation system at the experimental site from September 2021 to September 2022 (<b>a</b>), October 2022 to December 2023 (<b>b</b>); red arrows indicate the basal- and top-dressing fertilizers in the oilseed rape and maize growing seasons.</p> "> Figure 3
<p>Changes in NH<sub>4</sub><sup>+</sup>-N concentrations in the topsoil layer (0–20 cm) under different straw mulch and N fertilizer treatments in the oilseed rape and maize growing seasons during the 2021–2023 period; error bars represent standard deviations of the means (<span class="html-italic">n</span> = 3).</p> "> Figure 4
<p>Study area and field plot layout showing the experimental design.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Ammonia Volatilization Rates and Cumulative Ammonia Volatilization Losses During the Oilseed Rape and Maize Growing Seasons
2.2. Environmental and Soil Conditions
2.3. Grain Production, NUE, and Yield-Scaled NH3Volatilization
3. Discussion
3.1. Roles of Straw Mulching in Driving NH3Volatilization in the Oilseed Rape–Maize System
3.2. Roles of Different N Fertilizer Types in Driving NH3Volatilization in the Oilseed Rape–Maize System
3.3. Interannual Variations of NH3Volatilization Fluxes
3.4. The Optimal Combination of Straw Mulching and Fertilization Under the Oilseed Rape–Maize Rotation System
4. Materials and Methods
4.1. Site Description
4.2. Experimental Design
4.3. The Determination of NH3Volatilization
4.4. Soil and Plant Sampling
4.5. Statistical Data Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lichiheb, N.; Myles, L.; Personne, E.; Heuer, M.; Buban, M.; Nelson, A.J.; Koloutsou-Vakakis, S.; Rood, M.J.; Joo, E.; Miller, J.; et al. Implementation of the effect of urease inhibitor on ammonia emissions following urea-based fertilizer application at a Zea mays field in central Illinois: A study with SURFATM-NH3 model. Agr. Forest. Meteorol. 2019, 269–270, 78–87. [Google Scholar] [CrossRef]
- Min, J.; Sun, H.; Wang, Y.; Pan, Y.; Kronzucker, H.J.; Zhao, D.; Shi, W. Mechanical side-deep fertilization mitigates ammonia volatilization and nitrogen runoff and increases profitability in rice production independent of fertilizer type and split ratio. J. Clean. Prod. 2021, 316, 128370. [Google Scholar] [CrossRef]
- Bai, M.; Suter, H.; Macdonald, B.; Schwenke, G. Ammonia, methane and nitrous oxide emissions from furrow irrigated cotton crops from two nitrogen fertilisers and application methods. Agr. Forest. Meteorol. 2021, 303, 108375. [Google Scholar] [CrossRef]
- Mariano, E.; de Sant Ana Filho, C.R.; Bortoletto-Santos, R.; Bendassolli, J.A.; Trivelin, P.C.O. Ammonia losses following surface application of enhanced-efficiency nitrogen fertilizers and urea. Atmos. Environ. 2019, 203, 242–251. [Google Scholar] [CrossRef]
- Zhao, J.C.; Su, W.H.; Fan, S.H.; Cai, C.J.; Su, H.R.; Zeng, X.L. Ammonia volatilization and nitrogen runoff losses from moso bamboo forests after different fertilization practices. Can. J. Forest Res. 2019, 49, 213–220. [Google Scholar] [CrossRef]
- Li, N.; Shi, B.; Kang, R. Information Disclosure, Coal Withdrawal and Carbon Emissions Reductions: A Policy Test Based on China’s Environmental Information Disclosure. Sustainability 2021, 13, 9758. [Google Scholar] [CrossRef]
- Li, H.; Wang, L.; Peng, Y.; Zhang, S.; Lv, S.; Li, J.; Abdo, A.I.; Zhou, C.; Wang, L. Film mulching, residue retention and N fertilization affect ammonia volatilization through soil labile N and C pools. Agric. Ecosyst. Environ. 2021, 308, 107272. [Google Scholar] [CrossRef]
- Li, T.; Wang, Z.; Wang, C.; Huang, J.; Feng, Y.; Shen, W.; Zhou, M.; Yang, L. Ammonia volatilization mitigation in crop farming: A review of fertilizer amendment technologies and mechanisms. Chemosphere 2022, 303, 134944. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wu, T.Y.; Li, Y.S.; Xu, H.; Wang, Z.X.; Liu, J.F.; Qin, W.; Ashraf, U. Deep fertilization improves rice productivity and reduces ammonia emissions from rice fields in China; a meta-analysis. Field Crops Res. 2022, 289, 108704. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Z.; Tian, H.; Umair, A.; Yousef, A.H.; Tang, X.R.; Duan, M.Y.; Wang, Z.M.; Pan, S.G. Nitrogen deep placement combined with straw mulch cultivation enhances physiological traits, grain yield and nitrogen use efficiency in mechanical pot-seedling transplanting rice. Rice Sci. 2022, 29, 89–100. [Google Scholar]
- Cantarella, H.; Otto, R.; Soares, J.R.; Silva, A.G.d.B. Agronomic efficiency of NBPT as a urease inhibitor: A review. J. Adv. Res. 2018, 13, 19–27. [Google Scholar] [CrossRef]
- Yang, Q.L.; Liu, P.; Dong, S.T.; Zhang, J.W.; Zhao, B. Effects of fertilizer type and rate on summer maize grain yield and ammonia volatilization loss in northern China. J. Soils Sediments 2019, 19, 2200–2211. [Google Scholar] [CrossRef]
- Guo, C.; Ren, T.; Li, P.; Wang, B.; Zou, J.; Hussain, S.; Cong, R.; Wu, L.; Lu, J.; Li, X. Producing more grain yield of rice with less ammonia volatilization and greenhouse gases emission using slow/controlled-release urea. Environ. Sci. Pollut. Res. 2019, 26, 2569–2579. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Liang, Z.; He, X.; Wang, X.; Shi, X.; Zou, C.; Chen, X. The effects of controlled release urea on maize productivity and reactive nitrogen losses: A meta-analysis. Environ. Pollut. 2019, 246, 559–565. [Google Scholar] [CrossRef]
- Krol, D.J.; Forrestal, P.J.; Wall, D.; Lanigan, G.J.; Sanz-Gomez, J.; Richards, K.G. Nitrogen fertilisers with urease inhibitors reduce nitrous oxide and ammonia losses, while retaining yield in temperate grassland. Sci. Total Environ. 2020, 725, 138329. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Tian, Y.; Zhang, Q.; Zhao, Z.; Wang, R.; Cai, H. A combination of straw incorporation and polymer-coated urea offsets soil ammonia and nitrous oxide emissions in winter wheat fields. J. Integr. Agr. 2024, 23, 1718–1736. [Google Scholar] [CrossRef]
- Wang, H.; Hu, K.; Yao, L.; Zhang, Q.; Lin, C.; Liu, H.; Luo, F.; Chen, H. Effects of the combining straw return with urease inhibitor on ammonia volatilization, nitrogen use efficiency, and rice yield in purple soil areas. Plants 2023, 12, 2071. [Google Scholar] [CrossRef]
- Liao, P.; Liu, L.; Bell, S.M.; Liu, J.; Sun, Y.; Zeng, Y.; Zhang, H.; Huang, S. Interaction of lime application and straw retention on ammonia emissions from a double-cropped rice field. Agric. Ecosyst. Environ. 2023, 344, 108309. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, J.; Huang, W.; Chen, J.; Wu, F.; Jia, Y.; Han, Y.; Wang, G.; Feng, L.; Li, X.; et al. Cover crops and N fertilization affect soil ammonia volatilization and N2O emission by regulating the soil labile carbon and nitrogen fractions. Agric. Ecosyst. Environ. 2022, 340, 108188. [Google Scholar] [CrossRef]
- Sun, X.; Zhong, T.; Zhang, L.; Zhang, K.S.; Wu, W.X. Reducing ammonia volatilization from paddy field with rice straw derived biochar. Sci. Total Environ. 2019, 660, 512–518. [Google Scholar] [CrossRef]
- Chen, H.; Rosinger, C.; Blagodatsky, S.; Reichel, R.; Li, B.; Kumar, A.; Rothardt, S.; Luo, J.; Brüggemann, N.; Kage, H.; et al. Straw amendment and nitrification inhibitor controlling N losses and immobilization in a soil cooling-warming experiment. Sci. Total Environ. 2023, 870, 162007. [Google Scholar] [CrossRef]
- Mutegi, J.K.; Munkholm, L.J.; Petersen, B.M.; Hansen, E.M.; Petersen, S.O. Nitrous oxide emissions and controls as influenced by tillage and crop residue management strategy. Soil Biol. Biochem. 2010, 42, 1701–1711. [Google Scholar] [CrossRef]
- Wang, S.; Feng, X.; Wang, Y.; Zheng, Z.; Li, T.; He, S.; Zhang, X.; Yu, H.; Huang, H.; Liu, T.; et al. Characteristics of nitrogen loss in sloping farmland with purple soil in southwestern China during maize (Zea mays L.) growth stages. Catena 2019, 182, 104169. [Google Scholar] [CrossRef]
- Zheng, J.; Wang, H.; Fan, J.; Zhang, F.; Guo, J.; Liao, Z.; Zhuang, Q. Wheat straw mulching with nitrification inhibitor application improves grain yield and economic benefit while mitigating gaseous emissions from a dryland maize field in northwest China. Field Crops Res. 2021, 265, 108125. [Google Scholar] [CrossRef]
- Awale, R.; Chatterjee, A. Enhanced efficiency nitrogen products influence ammonia volatilization and nitrous oxide emission from two contrasting soils. Agron. J. 2017, 109, 47–57. [Google Scholar] [CrossRef]
- Li, Z.; Shen, Y.; Zhang, W.; Zhang, H.; Liu, L.; Wang, Z.; Gu, J.; Yang, J. Effects of long-term straw returning on rice yield and soil properties and bacterial community in a rice-wheat rotation system. Field Crops Res. 2023, 291, 108800. [Google Scholar] [CrossRef]
- Cheng, Z.; Li, A.; Wang, R.; Hu, Q.; Zhou, J.; Li, M.; Wang, T.; He, D.; Zhu, L. Long-term straw return promotes accumulation of stable soil dissolved organic matter by driving molecular-level activity and diversity. Agric. Ecosyst. Environ. 2024, 374, 109155. [Google Scholar] [CrossRef]
- Pan, B.; Lam, S.K.; Mosier, A.; Luo, Y.; Chen, D. Ammonia volatilization from synthetic fertilizers and its mitigation strategies: A global synthesis. Agric. Ecosyst. Environ. 2016, 232, 283–289. [Google Scholar] [CrossRef]
- Cheng, M.; Zhan, W.; Liu, Z.; Cao, Y.; Wei, W.; Lv, Y.; Wang, L.; Wang, Y. Short-term effects of maize straw return with nitrogen fertilization on ammonia and nitrous oxide emissions in Northeast China. Crop Environ. 2023, 2, 209–220. [Google Scholar] [CrossRef]
- Sun, L.; Wu, Z.; Ma, Y.; Liu, Y.; Xiong, Z. Ammonia volatilization and atmospheric N deposition following straw and urea application from a rice-wheat rotation in southeastern China. Atmos. Environ. 2018, 181, 97–105. [Google Scholar] [CrossRef]
- Hu, Y.; Ma, P.; Zhang, B.; Hill, R.L.; Wu, S.; Dong, Q.g.; Chen, G. Exploring optimal soil mulching for the wheat-maize cropping system in sub-humid drought-prone regions in China. Agr. Water Manag. 2019, 219, 59–71. [Google Scholar] [CrossRef]
- Zhang, S.; Ren, T.; Yang, X.; Zhou, X.; Li, X.; Cong, R.; Lu, J. Biochar return in the rice season and straw mulching in the oilseed rape season achieve high nitrogen fertilizer use efficiency and low greenhouse gas emissions in paddy-upland rotations. Eur. J. Agron. 2023, 148, 126869. [Google Scholar] [CrossRef]
- Abdo, A.I.; Shi, D.; Li, J.; Yang, T.; Wang, X.; Li, H.; Abdel-Hamed, E.M.W.; Merwad, A.-R.M.A.; Wang, L. Ammonia emission from staple crops in China as response to mitigation strategies and agronomic conditions: Meta-analytic study. J. Clean. Prod. 2021, 279, 123835. [Google Scholar] [CrossRef]
- Tian, Z.; Wang, J.J.; Liu, S.; Zhang, Z.; Dodla, S.K.; Myers, G. Application effects of coated urea and urease and nitrification inhibitors on ammonia and greenhouse gas emissions from a subtropical cotton field of the Mississippi delta region. Sci. Total Environ. 2015, 533, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Köbke, S.; Dittert, K. Use of urease and nitrification inhibitors to reduce gaseous nitrogen emissions from fertilizers containing ammonium nitrate and urea. Glob. Ecol. Conserv. 2020, 22, e00933. [Google Scholar] [CrossRef]
- Singh, J.; Kunhikrishnan, A.; Bolan, N.S.; Saggar, S. Impact of urease inhibitor on ammonia and nitrous oxide emissions from temperate pasture soil cores receiving urea fertilizer and cattle urine. Sci. Total Environ. 2013, 465, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Ji, H.; Sheng, J.; Zhang, Y.; Feng, Y.; Guo, Z.; Chen, L. Combining Azolla and urease inhibitor to reduce ammonia volatilization and increase nitrogen use efficiency and grain yield of rice. Sci. Total Environ. 2020, 743, 140799. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Wu, Z.; Zhang, X.; Feng, L.; Xiong, Z. Dynamic responses of ammonia volatilization to different rates of fresh and field-aged biochar in a rice-wheat rotation system. Field Crops Res. 2019, 241, 107568. [Google Scholar] [CrossRef]
- Lam, S.K.; Suter, H.; Bai, M.; Walker, C.; Mosier, A.R.; van Grinsven, H.; Chen, D. Decreasing ammonia loss from an Australian pasture with the use of enhanced efficiency fertilizers. Agric. Ecosyst. Environ. 2019, 283, 106553. [Google Scholar] [CrossRef]
- Di, H.J.; Cameron, K.C. Inhibition of nitrification to mitigate nitrate leaching and nitrous oxide emissions in grazed grassland: A review. J. Soils Sediments 2016, 16, 1401–1420. [Google Scholar] [CrossRef]
- Kaneko, F.H.; Ferreira, J.P.; Leal, A.J.F.; Buzetti, S.; dos Reis, A.R.; Arf, O. Ammonia volatilization in response to coated and conventional urea in maize crop field. Biosci. J. 2019, 35, 713–722. [Google Scholar] [CrossRef]
- Ni, K.; Pacholski, A.; Kage, H. Ammonia volatilization after application of urea to winter wheat over 3 years affected by novel urease and nitrification inhibitors. Agric. Ecosyst. Environ. 2014, 197, 184–194. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Zhang, H.; Wang, K.; Tan, Y.; Xiao, G.; Meng, F. Various quantification methods for estimating ammonia volatilization from wheat-maize cropping system. J. Environ. Manag. 2022, 311, 114818. [Google Scholar] [CrossRef] [PubMed]
- Lam, S.K.; Suter, H.; Bai, M.; Walker, C.; Davies, R.; Mosier, A.R.; Chen, D. Using urease and nitrification inhibitors to decrease ammonia and nitrous oxide emissions and improve productivity in a subtropical pasture. Sci. Total Environ. 2018, 644, 1531–1535. [Google Scholar] [CrossRef]
- Zhang, F.S.; Chen, X.P.; Chen, Q. Fertiliser Recommendations for Major Crops in China; China Agricultural University Press: Beijing, China, 2009. [Google Scholar]
- He, T.; Liu, D.; Yuan, J.; Ni, K.; Zaman, M.; Luo, J.; Lindsey, S.; Ding, W. A two years study on the combined effects of biochar and inhibitors on ammonia volatilization in an intensively managed rice field. Agric. Ecosyst. Environ. 2018, 264, 44–53. [Google Scholar] [CrossRef]
Year | Crop Season | Treatment | Basal Dressing | Top Dressing | Cumulative Losses (kg ha−1) | Total Loss Rate (%) | NH3 Emission Factor (%) | ||
---|---|---|---|---|---|---|---|---|---|
Nitrogen Loss (kg ha−1) | Loss Rate (%) | Nitrogen Loss (kg ha−1) | Loss Rate (%) | ||||||
2021–2022 | Oilseed rape | T0 | 1.05 d | - | 1.02 e | - | 2.07 e | - | - |
T1 | 5.11 b | 4.73 b | 1.79 cde | 2.49 cd | 6.90 c | 3.83 c | 2.68 c | ||
T2 | 1.03 d | 0.95 d | 1.40 de | 1.94 d | 2.43 e | 1.35 e | 0.20 e | ||
T3 | 2.96 c | 2.74 c | 2.25 cd | 3.12 cd | 5.21 d | 2.89 d | 1.74 d | ||
T4 | 3.43 c | 3.18 c | 2.36 c | 3.28 c | 5.79 d | 3.22 d | 2.07 d | ||
T5 | 6.67 a | 6.17 a | 3.49 b | 4.84 b | 10.16 a | 5.64 a | 4.49 a | ||
T6 | 1.32 d | 1.23 d | 1.60 cde | 2.22 cd | 2.92 e | 1.62 e | 0.47 e | ||
T7 | 2.93 c | 2.71 c | 5.01 a | 6.96 a | 7.93 b | 4.41 b | 3.26 b | ||
T8 | 5.00 b | 4.63 b | 4.38 a | 6.08 a | 9.38 a | 5.21 a | 4.06 a | ||
2021–2022 | Maize | T0 | 1.05 d | - | 0.68 d | - | 1.74 c | - | - |
T1 | 26.98 ab | 17.99 ab | 16.96 ab | 16.96 ab | 43.94 a | 17.58 a | 16.88 a | ||
T2 | 10.10 cd | 6.73 c | 4.46 c | 4.46 c | 14.55 bc | 5.82 b | 5.13 b | ||
T3 | 23.84 abc | 15.89 abc | 15.62 ab | 15.62 ab | 39.46 a | 15.78 a | 15.09 a | ||
T4 | 20.06 abc | 13.37 abc | 18.27 a | 18.27 a | 38.33 a | 15.33 a | 14.64 a | ||
T5 | 31.64 a | 21.09 a | 16.94 ab | 16.94 ab | 48.58 a | 19.43 a | 18.74 a | ||
T6 | 14.70 bcd | 9.80 bc | 4.48 c | 4.48 c | 19.19 b | 7.67 b | 6.98 b | ||
T7 | 26.77 ab | 17.85 ab | 16.47 ab | 16.47 ab | 43.24 a | 17.30 a | 16.60 a | ||
T8 | 25.68 ab | 17.12 abc | 14.90 b | 14.90 b | 40.58 a | 16.23 a | 15.53 a | ||
2022–2023 | Oilseed rape | T0 | 1.25 d | - | 1.27 b | - | 2.51 d | - | - |
T1 | 6.35 bc | 5.88 bc | 7.12 a | 9.89 a | 13.47 ab | 7.48 ab | 6.09 ab | ||
T2 | 2.55 d | 2.36 d | 2.38 b | 3.31 b | 4.93 cd | 2.74 c | 1.34 c | ||
T3 | 7.30 bc | 6.76 bc | 4.78 a | 6.64 ab | 12.09 b | 6.72 b | 5.32 b | ||
T4 | 6.32 b | 5.85 bc | 5.24 a | 7.28 a | 11.56 b | 6.42 b | 5.03 b | ||
T5 | 10.73 a | 9.93 a | 5.99 a | 8.32 a | 16.72 a | 9.29 a | 7.89 a | ||
T6 | 4.19 cd | 3.88 cd | 2.44 b | 3.38 b | 6.62 c | 3.68 c | 2.29 c | ||
T7 | 7.95 ab | 7.37 ab | 5.74 a | 7.97 a | 13.69 ab | 7.61 ab | 6.21 ab | ||
T8 | 7.12 bc | 6.59 bc | 6.76 a | 9.38 a | 13.87 ab | 7.71 ab | 6.31 ab | ||
2022–2023 | Maize | T0 | 1.43 f | - | 0.83 f | - | 2.26 f | - | - |
T1 | 32.39 ab | 21.59 ab | 15.97 b | 15.97 b | 48.36 b | 19.35 a | 18.44 a | ||
T2 | 11.73 e | 7.82 e | 7.06 d | 7.06 d | 18.79 e | 7.52 d | 6.61 d | ||
T3 | 25.71 c | 17.14 c | 16.30 b | 16.30 b | 42.01 c | 16.80 b | 15.90 b | ||
T4 | 28.13 bc | 18.75 bc | 16.62 b | 16.62 b | 44.75 bc | 17.90 ab | 17.00 ab | ||
T5 | 36.65 a | 24.43 a | 16.95 ab | 16.95 ab | 53.60 a | 21.44 a | 20.54 a | ||
T6 | 17.60 d | 11.73 d | 12.22 c | 12.22 c | 29.82 d | 11.93 c | 11.02 c | ||
T7 | 29.93 bc | 19.95 bc | 18.20 a | 18.20 a | 48.13 b | 19.25 a | 18.35 a | ||
T8 | 27.38 c | 18.25 bc | 17.42 ab | 17.42 ab | 44.81 bc | 17.92 ab | 17.02 ab |
Cycle | Crop | Treatment | Yield (t ha−1) | N Uptake (kg N ha−1) | NUE (%) | NPFP (kg kg−1) | Yield-Scaled NH3 Emission (kg N t−1 Grain) |
---|---|---|---|---|---|---|---|
2021–2022 | Oilseed rape | T0 | 1.07 b | 69.82 d | - | - | 1.93 b |
NM + U | 2.61 a | 133.43 abc | 35.34 abc | 14.50 a | 2.64 ab | ||
NM + U + NBPT | 2.68 a | 134.37 abc | 35.86 abc | 14.87 a | 0.91 c | ||
NM + U + CRU | 2.69 a | 131.24 bc | 34.12 bc | 14.97 a | 1.93 b | ||
NM + U + OF | 2.76 a | 130.00 c | 33.42 c | 15.32 a | 2.10 b | ||
SM + U | 2.69 a | 129.57 c | 33.19 c | 14.97 a | 3.77 a | ||
SM + U + NBPT | 2.79 a | 146.29 a | 42.48 a | 15.51 a | 1.05 c | ||
SM + U + CRU | 2.81 a | 137.48 abc | 37.59 abc | 15.60 a | 2.83 ab | ||
SM + U + OF | 2.85 a | 145.15 ab | 41.85 ab | 15.83 a | 3.29 a | ||
Maize | T0 | 2.40 b | 41.13 d | - | - | 0.72 d | |
NM + U | 5.92 a | 114.65 c | 29.41 bc | 23.67 a | 7.43 a | ||
NM + U + NBPT | 5.99 a | 124.17 ab | 33.22 a | 23.94 a | 2.43 c | ||
NM + U + CRU | 6.05 a | 114.33 c | 29.28 bc | 24.21 a | 6.52 ab | ||
NM + U + OF | 6.07 a | 117.50 bc | 30.55 b | 24.29 a | 6.31 ab | ||
SM + U | 6.05 a | 111.90 c | 28.31 c | 24.21 a | 8.03 a | ||
SM + U + NBPT | 6.07 a | 127.17 a | 34.42 a | 24.30 a | 3.16 c | ||
SM + U + CRU | 6.06 a | 115.03 c | 29.56 bc | 24.26 a | 7.13 a | ||
SM + U + OF | 6.17 a | 127.70 a | 34.63 a | 24.70 a | 6.57 ab | ||
2022–2023 | Oilseed rape | T0 | 1.13 b | 73.16 d | - | - | 2.23 c |
NM + U | 2.74 a | 137.48 abc | 35.73 bcd | 15.22 a | 4.92 a | ||
NM + U + NBPT | 2.81 a | 134.58 bc | 34.12 cd | 15.61 a | 1.75 c | ||
NM + U + CRU | 2.83 a | 129.42 c | 31.26 d | 15.72 a | 4.27 ab | ||
NM + U + OF | 2.90 a | 136.53 abc | 35.21 cd | 16.09 a | 3.99 b | ||
SM + U | 2.83 a | 139.88 abc | 37.07 abcd | 15.72 a | 5.91 a | ||
SM + U + NBPT | 2.94 a | 150.43 ab | 42.93 ab | 16.31 a | 2.26 bc | ||
SM + U + CRU | 2.95 a | 144.58 abc | 39.68 abc | 16.38 a | 4.64 a | ||
SM + U + OF | 2.99 a | 151.19 a | 43.35 a | 16.62 a | 4.64 a | ||
Maize | T0 | 2.53 b | 43.76 e | - | - | 0.89 d | |
NM + U | 6.05 a | 117.51 c | 29.50 bc | 24.21 a | 7.99 a | ||
NM + U + NBPT | 6.16 a | 129.35 a | 34.23 a | 24.65 a | 3.05 c | ||
NM + U + CRU | 6.12 a | 127.73 a | 33.59 a | 24.47 a | 6.87 b | ||
NM + U + OF | 6.25 a | 116.29 cd | 29.01 c | 24.99 a | 7.16 ab | ||
SM + U | 6.18 a | 110.30 d | 26.61 d | 24.71 a | 8.68 a | ||
SM + U + NBPT | 6.29 a | 122.23 bc | 31.39 b | 25.15 a | 4.74 c | ||
SM + U + CRU | 6.22 a | 121.94 bc | 31.27 b | 24.88 a | 7.74 a | ||
SM + U + OF | 6.35 a | 129.82 a | 34.42 a | 25.40 a | 7.06 ab |
Factors | Df | SS | F | p |
---|---|---|---|---|
Y | 1 | 1221.1 | 31.87 | <0.001 |
N | 4 | 18,823.0 | 122.80 | <0.001 |
S | 1 | 602.6 | 15.72 | <0.001 |
Y × N | 4 | 125.5 | 0.8185 | 0.5219 |
Y × S | 1 | 6.6 | 0.1727 | 0.6802 |
N × S | 3 | 40.5 | 0.3524 | 0.7877 |
Y × N × S | 3 | 47.1 | 0.4095 | 0.7471 |
Residuals | 36 | 1379.5 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, L.; Wang, H.; Liu, H.; Wang, X.; Wu, Y.; Wang, L.; Chen, H.; Lin, C. Interaction of Straw Mulching and Nitrogen Fertilization on Ammonia Volatilization from Oilseed Rape–Maize Rotation System in Sloping Farmland in Southwestern China. Plants 2025, 14, 14. https://doi.org/10.3390/plants14010014
Yao L, Wang H, Liu H, Wang X, Wu Y, Wang L, Chen H, Lin C. Interaction of Straw Mulching and Nitrogen Fertilization on Ammonia Volatilization from Oilseed Rape–Maize Rotation System in Sloping Farmland in Southwestern China. Plants. 2025; 14(1):14. https://doi.org/10.3390/plants14010014
Chicago/Turabian StyleYao, Li, Hong Wang, Haitao Liu, Xie Wang, Yueying Wu, Lin Wang, Honglin Chen, and Chaowen Lin. 2025. "Interaction of Straw Mulching and Nitrogen Fertilization on Ammonia Volatilization from Oilseed Rape–Maize Rotation System in Sloping Farmland in Southwestern China" Plants 14, no. 1: 14. https://doi.org/10.3390/plants14010014
APA StyleYao, L., Wang, H., Liu, H., Wang, X., Wu, Y., Wang, L., Chen, H., & Lin, C. (2025). Interaction of Straw Mulching and Nitrogen Fertilization on Ammonia Volatilization from Oilseed Rape–Maize Rotation System in Sloping Farmland in Southwestern China. Plants, 14(1), 14. https://doi.org/10.3390/plants14010014