Effects of the Combining Straw Return with Urease Inhibitor on Ammonia Volatilization, Nitrogen Use Efficiency, and Rice Yield in Purple Soil Areas
<p>Dynamics of NH<sub>3</sub> fluxes in the different treatments at the stages of basal (1), tillering (2), and panicle (3) after fertilization in 2018 (<b>a1</b>–<b>a3</b>) and 2019 (<b>b1</b>–<b>b3</b>) in rice season ((<b>a1</b>,<b>b1</b>), BF; (<b>a2</b>,<b>b2</b>), TF; (<b>a3</b>,<b>b3</b>), PF).</p> "> Figure 1 Cont.
<p>Dynamics of NH<sub>3</sub> fluxes in the different treatments at the stages of basal (1), tillering (2), and panicle (3) after fertilization in 2018 (<b>a1</b>–<b>a3</b>) and 2019 (<b>b1</b>–<b>b3</b>) in rice season ((<b>a1</b>,<b>b1</b>), BF; (<b>a2</b>,<b>b2</b>), TF; (<b>a3</b>,<b>b3</b>), PF).</p> "> Figure 2
<p>Dynamics of floodwater NH<sub>4</sub><sup>+</sup>−N and NO<sub>3</sub><sup>−</sup>-N concentrations and pH in the different treatments ((<b>a1</b>,<b>b1</b>), floodwater NH<sub>4</sub><sup>+</sup> concentration; (<b>a2</b>,<b>b2</b>) floodwater NO<sub>3</sub><sup>−</sup> concentration; (<b>a3</b>,<b>b3</b>), pH).</p> "> Figure 3
<p>Effects of oilseed rape straw and 1% NBPT on yield-scaled NH<sub>3</sub> volatilization from the treatments in 2018 and 2019. Bars are standard errors (<span class="html-italic">n</span> = 3). Different letters indicate significant differences between treatments within the same year (<span class="html-italic">p</span> < 0.05).</p> "> Figure 4
<p>Variations of air temperature and precipitation during rice growth.</p> ">
Abstract
:1. Introduction
2. Results
2.1. NH3 Volatilization
2.2. Dynamic of Inorganic N Concentration and pH in Floodwater
2.3. Rice Yields, FNUE, and Yield-Scaled NH3 Volatilization
3. Discussion
3.1. The Effect of Straw Incorporation on NH3 Volatilization
3.2. The Effect of Urease Inhibitor on NH3 Volatilization
3.3. The Effect of Other Factors on NH3 Volatilization
4. Materials and Methods
4.1. Experimental Site
4.2. Treatments and Experiments
4.3. Determination of NH3 Volatilization
4.4. Floodwater Sample Collection and Analyses
4.5. Statistics Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Papangkorn, J.; Isaraphan, C.; Phinhongthong, S.; Opaprakasit, M.; Opaprakasit, P. Controlled-release material for urea fertilizer from polylactic acid. Adv. Mater. Res. 2008, 55–57, 897–900. [Google Scholar] [CrossRef]
- Cantarella, H.; Trivelin, P.C.O.; Contin, T.L.M.; Dias, F.L.F.; Rossetto, R.; Marcelino, R. Ammonia volatilization from urease inhibitor-treated urea applied to sugarcane trash blankets. Sci. Agric. 2008, 65, 397–401. [Google Scholar] [CrossRef]
- Wang, L.; Huang, D.; He, C.; Liu, C.; Li, Q.; Huang, Y.; Wang, F. Impacts of the Chinese milk vetch (Astragalus sinicus L.) residue incorporation on soil physiochemical, microbial properties and rice yields in yellow-mud paddy field. Acta Ecol. Sin. 2023, 43, 1–16. [Google Scholar]
- Peng, S.; Buresh, R.J.; Huang, J.; Zhong, X.; Zou, Y.B.; Yang, J.; Wang, G.; Liu, Y.; Hu, R.; Tang, Q.; et al. Improving nitrogen fertilization in rice by site-specific N management. A review. Agron. Sustain. Dev. 2011, 30, 649–656. [Google Scholar] [CrossRef]
- Behra, S.N.; Sharma, M.; Aneja, V.P.; Balasubramanian, R. Ammonia in the atmosphere: A review on emission sources, atmospheric chemistry and deposition on terrestrial bodies. Environ. Sci. Pollut. Res. 2013, 20, 8092–8131. [Google Scholar] [CrossRef]
- Gu, B.; Sutton, M.A.; Chang, S.X.; Ge, Y.; Chang, J. Agricultural ammonia emissions contribute to China’s urban air pollution. Front. Ecol. Environ. 2014, 12, 265–266. [Google Scholar] [CrossRef]
- Hellsten, S.; Dragosits, U.; Place, C.J.; Vieno, M.; Dore, A.J.; Misselbrook, T.H.; Tang, Y.S.; Sutton, M.A. Modelling the spatial distribution of ammonia emissions in the UK. Environ. Pollut. 2008, 154, 370–379. [Google Scholar] [CrossRef]
- Guo, J.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F.; Christie, P.; Goulding, K.W.T.; Vitousek, P.M.; Zhang, F.S. Significant acidification in major Chinese croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef]
- Huang, J.; Zhu, B.; Lin, C.; Pang, L.; Zhang, J.; Luo, F.; Zhu, Y.; Yi, L. Effects of nitrogen rates and field water nitrogen content on ammonia volatilization from paddy field in a purple soil hilly district. Soil 2014, 46, 623–629, (In Chinese with English abstract). [Google Scholar]
- Huang, C.; He, Y.; Wen, A. Classification and regionalization of purple soil degradation in Sichuan Province. Mt. Res. 1993, 11, 201–208, (In Chinese with English abstract). [Google Scholar]
- Li, H.; Liang, X.; Chen, Y.; Tian, G.; Zhang, J. Ammonia volatilization from urea in rice fields with zero-drainage water management. Agric. Water Manag. 2008, 95, 887–894. [Google Scholar] [CrossRef]
- Cao, Y.; Tian, Y.; Yin, B.; Zhu, Z. Assessment of ammonia volatilization from paddy fields under crop management practices aimed to increase grain yield and N efficiency. Field Crop Res. 2013, 147, 23–31. [Google Scholar] [CrossRef]
- Zhong, X.; Zhou, X.; Fei, J.; Huang, Y.; Wang, G.; Kang, X.; Hu, W.; Zhang, H.; Rong, X.; Peng, J. Reducing ammonia volatilization and increasing nitrogen use efficiency in machine-transplanted rice with side-deep fertilization in a double-cropping rice system in Southern China. Agric. Ecosyst. Environ. 2021, 306, 107183. [Google Scholar] [CrossRef]
- Zheng, J.; Wang, H.; Fan, J.; Zhang, F.; Guo, J.; Liao, Z. Wheat straw mulching with nitrification inhibitor application improves grain yield and economic benefit while mitigating gaseous emissions from a dryland maize field in northwest China. Field Crop Res. 2021, 265, 108125–108140. [Google Scholar] [CrossRef]
- Wang, Y.; Li, M.; Yan, H. Ammonia volatilization from urea in alfalfa field with different nitrogen application rates, methods and timing. Agric. Ecosyst. Environ. 2021, 312, 107344–107359. [Google Scholar] [CrossRef]
- Daniel, S.; Cucu, M.A.; Sodano, M.; Birk, J.J.; Glaser, B.; Celi, L. Nitrogen immobilization in paddy soils as affected by redox conditions and rice straw incorporation. Geoderma 2014, 228–229, 44–53. [Google Scholar]
- Wang, X.; Samo, N.; Zhao, C.; Wang, H.; Yang, G.; Hu, Y.; Peng, Y.; Rasul, F. Negative and positive impacts of rape straw returning on the roots growth of hybrid rice in the Sichuan Basin area. Agronomy 2019, 9, 690. [Google Scholar] [CrossRef]
- Xu, M.; Lou, Y.; Sun, X.; Wang, W.; Baniyamuddin, M.; Zhao, K. Soil organic carbon active fractions as early indicators for total carbon change under straw incorporation. Bio. Fert. Soils 2011, 47, 745–752. [Google Scholar] [CrossRef]
- Hartmann, T.E.; Guzman-Bustamante, I.; Ruser, R.; Müller, T. Turnover of urea in a soil from the north China plain as affected by the urease inhibitor NBPT and wheat straw. Agronomy 2020, 10, 857. [Google Scholar] [CrossRef]
- Sun, R.; Zhang, X.; Guo, X.; Wang, D.; Chu, H. Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw. Soil Biol. Biochem. 2015, 88, 9–18. [Google Scholar] [CrossRef]
- Ng Cheong, L.R.; Teeluck, M. The practice of green cane trash blanketing in the irrigated zone of Mauritius: Effects on soil moisture and water use efficiency of sugarcane. Sugar Tech 2016, 18, 124–133. [Google Scholar] [CrossRef]
- Valim, W.C.; Panachuki, E.; Pavei, D.S.; Sobrinh, T.A.; Almeida, W.S. Effect of sugarcane waste in the control of interrill erosion. Semin. Cienc. Agrar. 2016, 37, 1155–1164. [Google Scholar] [CrossRef]
- Bu, R.; Ren, T.; Lei, M.; Liu, B.; Li, X.; Cong, R.; Zhang, Y.; Lu, J. Tillage and straw-returning practices effect on soil dissolved organic matter, aggregate fraction and bacteria community under rice-rice-rapeseed rotation system. Agric. Ecosyst. Environ. 2020, 287, 106681–106689. [Google Scholar] [CrossRef]
- Wang, J.; Wang, D.; Zhang, G.; Wang, C. Effect of wheat straw application on ammonia volatilization from urea applied to a paddy field. Nutr. Cycl. Agroecosyst. 2012, 94, 73–84. [Google Scholar] [CrossRef]
- Xu, Y.; Fan, J.; Ding, W.; Bol, R.; Gunina, A.; Chen, Z.M.; Luo, J.F.; Bolan, N. Stage-specific response of litter decomposition to N and S amendments in a subtropical forest soil. Biol. Fertil. Soils 2016, 52, 711–724. [Google Scholar] [CrossRef]
- Sun, X.; Zhong, T.; Zhang, L.; Zhang, K.; Wu, W. Reducing ammonia volatilization from paddy field with rice straw derived biochar. Sci. Total Environ. 2019, 69, 512–518. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, P.; Dong, S.; Zhang, J.; Zhao, B. Effects of fertilizer type and rate on summer maize grain yield and ammonia volatilization loss in northern China. J. Soil Sediment. 2019, 19, 2200–2211. [Google Scholar] [CrossRef]
- Li, H.; Wang, L.; Peng, Y.; Zhang, S.; Lv, S.; Li, J.; Abdo, A.I.; Zhou, C.; Wang, L. Film mulching, residue retention and N fertilization affect ammonia volatilization through soil labile N and C pools. Agric. Ecosyst. Environ. 2021, 308, 107272–107282. [Google Scholar] [CrossRef]
- Tian, G.; Cai, Z.; Cao, J.; Li, X. Factors affecting ammonia volatilization from a rice-wheat rotation system. Chemosphere 2001, 42, 123–129. [Google Scholar] [CrossRef]
- Li, H.; Dai, M.; Dai, S.; Dong, X. Current status and environment impact of direct straw return in China’s cropland—A review. Ecotoxicol. Environ. Saf. 2018, 159, 293–300. [Google Scholar] [CrossRef]
- Manunza, B.; Deiana, S.; Pintore, M.; Gessa, C. The binding mechanism of urea, hydroxamic acid and N-(n-butyl)-phosphoric triamide to the urease active site. A comparative molecular dynamics study. Soil Biol. Biochem. 1999, 31, 789–796. [Google Scholar] [CrossRef]
- Li, X.; Zhang, G.; Xu, H.; Cai, Z.; Yagi, K. Effect of timing of joint application of hydroquinone and dicyandiamide on nitrous oxide emission from irrigated low land rice paddy field. Chemosphere 2009, 75, 1417–1422. [Google Scholar] [CrossRef]
- Zaman, M.; Saggar, S.; Blennerhassett, J.D.; Singh, J. Effect of urease and nitrification inhibitors on N transformation gaseous emissions of ammonia and nitrousoxide, pasture yield and N uptake in grazed pasture system. Soil Biol. Biochem. 2009, 41, 1270–1280. [Google Scholar] [CrossRef]
- Engel, R.; Jones, C.; Wallander, R. Ammonia volatilization from urea and mitigation by NBPT following surface application to cold soils. Soil Sci. Am. J. 2011, 75, 2348–2357. [Google Scholar] [CrossRef]
- Muhammad, M.; Jaafar, N.; Sakimin, S.; Yusop, M. N-(n-Butyl) Thiophosphorictriamide (NBPT)-coated urea (NCU) improved maize growth and nitrogen use efficiency (NUE) in highly weathered tropical soil. Sustainability 2020, 12, 8780. [Google Scholar]
- Meng, X.; Li, Y.; Yao, H.; Wang, J.; Dai, F.; Wu, Y.; Chapman, S. Nitrification and urease inhibitors improve rice nitrogen uptake and prevent denitrification in alkaline paddy soil. Appl. Soil Ecol. 2020, 154, 103665–103677. [Google Scholar] [CrossRef]
- Watson, C.J.; Akhonzada, N.A.; Hamilton, J.T.G.; Matthews, D.I. Rate and mode of application of the urease inhibitor N-(n-butyl) thiophosphorictriamide on ammonia volatilization from surface-applied urea. Soil Use Manag. 2008, 24, 246–253. [Google Scholar] [CrossRef]
- Philippe, R.; Denis, A.A.; Martin, H.C.; MacDonald, J.D.; Nicole, B.; Normand, B. Ammonia volatilization following surface application of urea to tilled and no till soils: A laboratory comparison. Soil Tillage Res. 2009, 103, 310–315. [Google Scholar]
- Liu, Y.; Wang, K.; Liao, S.; Ren, T.; Li, X.; Cong, R.; Lu, J. Differences in responses of ammonia volatilization and greenhouse gas emissions to straw return and paddy-upland rotations. Environ. Sci. Pollut. Res. 2021, 29, 25296–25307. [Google Scholar] [CrossRef]
- Hayashi, K.; Nishimura, S.; Yagi, K. Ammonia volatilization from a paddy field following application of urea: Rice plants are both an absorber and an emitter for atmospheric ammonia. Sci. Total Environ. 2008, 390, 485–494. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, X.; Guo, B.; Yu, J.; Carswell, A.; Misselbrook, T.; Zhang, J.; Müller, C.; Chen, D.; Ding, H. Mechanisms behind the inhibition of autotrophic nitrification following rice straw incorporation in a subtropical acid soil. Soil Tillage Res. 2020, 196, 104436–104444. [Google Scholar] [CrossRef]
- Dawar, K.; Zamanb, M.; Rowarthc, J.S.; Blennerhassettb, J.; Turnbulla, M.H. Urease inhibitor reduces N losses and improves plant-bioavailability of urea applied in fine particle and granular forms under field conditions. Agric. Ecosyst. Environ. 2011, 144, 41–50. [Google Scholar] [CrossRef]
- Soares, J.R.; Cantarella, H.; Menegale, M. Ammonia volatilization losses from surface-applied urea with urease and nitrification inhibitors. Soil Biol. Biochem. 2012, 52, 82–89. [Google Scholar] [CrossRef]
- Singh, J.; Kunhikrishnan, A.; Bolan, N.S.; Saggar, S. Impact of urease inhibitor on ammonia and nitrous oxide emissions from temperate pasture soil cores receiving urea fertilizer and cattle urine. Sci. Total Environ. 2013, 465, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.G.B.; Sequeira, C.H.; Sermarini, R.A.; Otto, R. Urease inhibitor NBPT on ammonia volatilization and crop productivity: A meta-analysis. Agron. J. 2017, 109, 1–13. [Google Scholar] [CrossRef]
- Regina, M.; Lana, Q.; Pereira, V.J.; Leite, C.N.; Teixeira, G.M.; da Silva Gomes, J.; de Camargo, R. NBPT (urease inhibitor) in the dynamics of ammonia volatilization. Agronomia 2018, 13, 1–8. [Google Scholar]
- Affendi, M.N.; Mansor, N.; Samiri, S.S. Addition of chemical and natural urease inhibitors in reducing ammonia and nitrous Oxide Losses. J. Soil Sci. Plant Nut. 2019, 20, 253–258. [Google Scholar] [CrossRef]
- Zeng, M.X.; Wang, R.F.; Shi-Qi, P.; Zhang, Y.J.; Cui, Y.; Shan, X.Z.; Liao, C.Z.; Tian, Y.G. Summary of returning straw into field of main agricultural areas in China. Chin. J. Soil Sci. 2002, 33, 336–339, (In Chinese with English abstract). [Google Scholar]
- Su, W.; Lu, J.; Wang, W.; Li, X.; Ren, T.; Cong, R. Influence of rice straw mulching on seed yield and nitrogen use efficiency of winter oilseed rape (Brassica napus L.) in intensive rice-oilseed rape cropping system. Field Crop Res. 2014, 159, 53–61. [Google Scholar] [CrossRef]
- Liu, T.; Fan, D.; Zhang, X.; Chen, J.; Li, C.; Cao, C. Deep placement of nitrogen fertilizers reduces ammonia volatilization and increases nitrogen utilization efficiency in no-tillage paddy fields in central China. Field Crop Res. 2015, 184, 80–90. [Google Scholar] [CrossRef]
- Francisco, S.S.; Urrutia, O.; Martin, V.; Peristeropoulos, A.; Garcia-Mina, J.M. Efficiency of urease and nitrification inhibitors in reducing ammonia volatilization from diverse nitrogen fertilizers applied to different soil types and wheat straw mulching. J. Sci. Food Agric. 2011, 91, 1569–1575. [Google Scholar] [CrossRef]
- Vander, S.B.; Temminghoff, E.J.M.; van Vliet, P.C.J.; van Riemsdijk, W.H. Volatilization of ammonia from manure as affected by manure additives, temperature and mixing. Bioresour. Technol. 2007, 98, 3449–3455. [Google Scholar]
- Ren, T.; Bu, R.; Liao, S.; Zhang, M.; Li, X.; Cong, R. Differences in soil nitrogen transformation and the related seed yield of winter oilseed rape (Brassica napus L.) under paddy-upland and continuous upland rotations. Soil Tillage Res. 2019, 192, 206–214. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, J.; Han, L.; Zheng, Y.; He, J. Influence of rice straw amendment on mercury methylation and nitrification in paddy soils. Environ. Pollut. 2016, 209, 53–59. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, S.; Xing, G. Nitrification, acidification, and nitrogen leaching from subtropical cropland soils as affected by rice straw-based biochar: Laboratory incubation and column leaching studies. J. Soil Sediment. 2014, 14, 471–482. [Google Scholar] [CrossRef]
- He, T.; Liu, D.; Yuan, J.; Ni, K.; Zaman, M.; Lio, J.; Linsey, S.; Ding, W. A two years study on the combined effects of biochar and inhibitors on ammonia volatilization in an intensively managed rice field. Agric. Ecosyst. Environ. 2018, 264, 44–53. [Google Scholar] [CrossRef]
- Leschine, S.B. Cellulose degradation in anaerobic environments. Annu. Rev. Microbiol. 1995, 49, 399–426. [Google Scholar] [CrossRef] [PubMed]
- Kato, S.; Haruta, S.; Cui, Z.J.; Ishii, M.; Igarashi, Y. Stable coexistence of five bacterial strains as a cellulose-degrading community. Appl. Environ. Microb. 2005, 71, 7099–7106. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.; Ye, X.; Ran, H.; Zhang, P.; Wang, G. Contrasting effects of straw and biochar on microscale heterogeneity of soil O2 and pH: Implication for N2O emissions. Soil Biol. Biochem. 2022, 166, 108564. [Google Scholar] [CrossRef]
- Xiang, J.; Haden, V.R.; Peng, S.B.; Bouman, B.A.M.; Huang, J.L.; Cui, K.H. Effect of deep placement of nitrogen fertilizer on growth, yield, and nitrogen uptake of aerobic rice. Aust. J. Crop Sci. 2013, 7, 870–877. [Google Scholar]
- Pacholski, A.; Cai, G.; Nieder, R.; Ritcher, J.; Fan, X.; Roelcke, Z.Z. Calibration of a simple method for determining ammonia volatilization in the field-comparative measurements in Henan Province. Nutr. Cycl. Agroecosyst. 2006, 74, 259–273. [Google Scholar] [CrossRef]
Year | Treatment | NH3 Emission (kg N ha−1) | NH3 Emission Factor (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
BF | TF | PF | Total | BF | TF | PF | Total | ||
2018 | CK | 3.0 c | 1.6 d | 1.3 d | 5.8 c | ||||
UR | 23.0 b | 2.9 c | 2.8 bc | 28.7 b | 33.3 ab | 4.3 c | 2.6 bc | 15.2 ab | |
UR + 2S | 21.2 b | 5.9 a | 3.2 bc | 30.3 ab | 30.3 ab | 14.3 a | 2.4 bc | 16.0 ab | |
UR + 5S | 27.2 a | 5.0 b | 5.2 a | 37.4 a | 40.3 a | 11.2 b | 2.4 c | 19.3 a | |
UR + 8S | 21.1 b | 4.3 b | 4.2 ab | 29.6 ab | 30.2 ab | 8.9 b | 5.0 a | 15.8 ab | |
UR + 2S + UI | 22.6 ab | 2.6 c | 3.9 ab | 29.1 ab | 32.7 ab | 2.9 c | 4.4 ab | 15.4 ab | |
UR + 5S + UI | 21.1 b | 2.6 c | 2.3 cd | 26.1 b | 30.3 ab | 3.4 c | 1.7 c | 13.5 b | |
UR + 8S + UI | 20.7 b | 2.7 c | 3.8 abc | 27.2 b | 29.4 b | 3.8 c | 5.7 a | 14.8 b | |
2019 | CK | 3.6 c | 1.5 c | 4.7 b | 9.8 c | ||||
UR | 12.0 ab | 4.1 a | 31.7 a | 47.7 a | 14.0 ab | 8.5 a | 45.0 bc | 25.3 ab | |
UR + 2S | 16.2 ab | 3.2 ab | 33.4 a | 49.8 a | 16.0 ab | 5.7 ab | 47.8 abc | 26.7 ab | |
UR + 5S | 11.5 ab | 2.2 bc | 40.5 a | 54.2 a | 13.2 ab | 2.4 c | 59.6 a | 29.6 a | |
UR + 8S | 19.9 a | 1.9 c | 38.5 a | 56.1 a | 20.2 a | 1.4 c | 56.3 ab | 30.9 a | |
UR + 2S + UI | 9.1 b | 2.7 bc | 28.1 ab | 39.9 a | 9.2 b | 4.0 bc | 39.0 cd | 20.1 bc | |
UR + 5S + UI | 8.7 b | 1.9 c | 22.2 ab | 32.8 b | 8.5 b | 1.3 c | 29.2 d | 15.3 d | |
UR + 8S + UI | 11.3 ab | 1.7 c | 34.1 a | 47.2 a | 12.9 ab | 0.8 c | 38.9 cd | 24.9 c | |
Two-year average | CK | 3.3 b | 1.6 d | 3.0 b | 7.8 c | ||||
UR | 17.5 a | 3.5 ab | 17.3 a | 38.2 ab | 23.6 a | 6.4 ab | 23.8 bc | 20.3 bc | |
UR + 2S | 17.2 a | 4.5 a | 18.3 a | 40.0 ab | 23.1 a | 10.0 a | 25.1 bc | 21.3 ab | |
UR + 5S | 19.3 a | 3.6 ab | 22.9 a | 45.8 a | 26.7 a | 6.8 ab | 31.0 a | 24.5 a | |
UR + 8S | 18.4 a | 3.1 abc | 21.4 a | 42.9 a | 25.2 a | 5.2 abc | 30.6 ab | 23.4 ab | |
UR + 2S + UI | 15.9 a | 2.7 bcd | 16.0 a | 34.5 ab | 20.93 a | 3.4 bc | 21.7 c | 17.7 bc | |
UR + 5S + UI | 14.9 a | 2.3 cd | 12.3 ab | 29.4 b | 19.4 a | 2.4 c | 15.5 d | 14.4 c | |
UR + 8S + UI | 16.0 a | 2.2 cd | 19.0 a | 37.2 ab | 21.2 a | 2.3 c | 22.3 c | 19.9 bc |
Year | Treatment | Yield (t ha−1) | Crop N Uptake (kg N ha−1) | FNUE (kg kg−1) |
---|---|---|---|---|
2018 | CK | 3.97 ± 0.01 b | 67.3 ± 0.1 b | 26.5 ± 0.0 b |
UR | 5.24 ± 0.38 a | 99.1 ± 0.5 a | 34.9 ± 2.6 a | |
UR + 2S | 5.55 ± 0.49 a | 105.4 ± 5.8 a | 37.0 ± 3.3 a | |
UR + 5S | 5.91±0.77 a | 107.1 ± 11.7 a | 39.4 ± 5.1 a | |
UR + 8S | 5.28 ± 1.53 a | 100.6 ± 29.6 a | 35.2 ± 10.2 a | |
UR + 2S + UI | 5.65 ± 0.41 a | 104.5 ± 22.4 a | 37.7 ± 2.7 a | |
UR + 5S + UI | 6.22 ± 0.34 a | 116.0 ± 3.0 a | 41.5 ± 2.2 a | |
UR + 8S + UI | 6.07 ± 1.00 a | 112.2 ± 11.5 a | 40.5 ± 6.7 a | |
2019 | CK | 5.03 ± 0.34 b | 70.7 ± 4.2 d | 33.5 ± 2.3 b |
UR | 6.19 ± 0.08 a | 106.3 ± 9.7 a | 41.3 ± 0.5 a | |
UR + 2S | 6.41 ± 0.44 a | 108.4 ± 9.6 bc | 42.7 ± 2.9 a | |
UR + 5S | 6.27 ± 0.20 a | 108.9 ± 3.1 bc | 41.8 ± 1.4 a | |
UR + 8S | 6.81 ± 0.37 a | 119.5 ± 7.2 a | 45.4 ± 2.5 a | |
UR + 2S + UI | 6.24 ± 0.33 a | 114.6 ± 1.1 abc | 41.6 ± 2.2 a | |
UR + 5S + UI | 6.77 ± 0.32 a | 111.1 ± 2.0 abc | 45.1 ± 2.1 a | |
UR + 8S + UI | 6.55 ± 0.64 a | 118.1 ± 10.0 ab | 43.7 ± 4.3 a |
Factors | DF | NH3 Emissions (kg N ha−1) | Yield (t ha−1) | ||||
---|---|---|---|---|---|---|---|
SS | F | P | SS | F | P | ||
Y | 1 | 2489.17 | 63.20 | <0.001 | 3.37 | 26.95 | <0.001 |
UR | 1 | 1200.84 | 30.49 | <0.001 | 2.42 | 19.32 | <0.001 |
UR + 2S | 1 | 30.06 | 0.76 | 0.389 | 0.02 | 0.17 | 0.688 |
UR + 5S | 1 | 265.74 | 6.75 | 0.015 | 0.69 | 5.48 | 0.026 |
UR + 8S | 1 | 268.65 | 6.82 | 0.014 | 2.02 | 16.13 | <0.001 |
UR + 2S + UI | 1 | 5.52 | 0.14 | 0.711 | 0.17 | 1.35 | 0.255 |
UR + 5S + UI | 1 | 19.66 | 0.50 | 0.486 | 1.66 | 13.27 | 0.001 |
UR + 8S + UI | 1 | 333.61 | 8.47 | 0.007 | 1.40 | 11.16 | 0.002 |
Error | 29 | 39.38 | - | - | 0.13 | - | - |
Treatment | CK | UR | UR + 2S | UR + 5S | UR + 8S | UR + 2S + UI | UR + 5S + UI | UR + 8S + UI |
---|---|---|---|---|---|---|---|---|
Fertilizer (kg N ha−1) | 0 | 150 | 150 | 150 | 150 | 150 | 150 | 150 |
Straw(ton ha−1) | 0 | 0 | 2 | 5 | 8 | 2 | 5 | 8 |
NBPT | 0 | 0 | 0 | 0 | 0 | 1% | 1% | 1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Hu, K.; Yao, L.; Zhang, Q.; Lin, C.; Liu, H.; Luo, F.; Chen, H. Effects of the Combining Straw Return with Urease Inhibitor on Ammonia Volatilization, Nitrogen Use Efficiency, and Rice Yield in Purple Soil Areas. Plants 2023, 12, 2071. https://doi.org/10.3390/plants12112071
Wang H, Hu K, Yao L, Zhang Q, Lin C, Liu H, Luo F, Chen H. Effects of the Combining Straw Return with Urease Inhibitor on Ammonia Volatilization, Nitrogen Use Efficiency, and Rice Yield in Purple Soil Areas. Plants. 2023; 12(11):2071. https://doi.org/10.3390/plants12112071
Chicago/Turabian StyleWang, Hong, Kelin Hu, Li Yao, Qi Zhang, Chaowen Lin, Haitao Liu, Fuxiang Luo, and Honglin Chen. 2023. "Effects of the Combining Straw Return with Urease Inhibitor on Ammonia Volatilization, Nitrogen Use Efficiency, and Rice Yield in Purple Soil Areas" Plants 12, no. 11: 2071. https://doi.org/10.3390/plants12112071
APA StyleWang, H., Hu, K., Yao, L., Zhang, Q., Lin, C., Liu, H., Luo, F., & Chen, H. (2023). Effects of the Combining Straw Return with Urease Inhibitor on Ammonia Volatilization, Nitrogen Use Efficiency, and Rice Yield in Purple Soil Areas. Plants, 12(11), 2071. https://doi.org/10.3390/plants12112071