Adaptive Strategy of the Perennial Halophyte Grass Puccinellia tenuiflora to Long-Term Salinity Stress
<p>Effects of long-term salinity stress on photosynthesis of <span class="html-italic">Puccinellia tenuiflora</span>. (<b>a</b>) <span class="html-italic">E</span>, transpiration rate; (<b>b</b>) <span class="html-italic">P</span><sub>N</sub>, net photosynthetic rate; (<b>c</b>) <span class="html-italic">gs</span>, stomatal conductance; (<b>d</b>) Fv/Fm, maximum quantum efficiency of photosystem II (PSII); (<b>e</b>) ETR, electron transport rate; (<b>f</b>) PhiPS2, real quantum efficiency of PSII; (<b>g</b>) Fv′/Fm′, effective quantum efficiency of PSII; (<b>h</b>) qN, non-photochemical quenching; (<b>i</b>) qP, photochemical quenching. <span class="html-italic">P. tenuiflora</span> was treated with a nutrient solution with 300 mM NaCl (stress treatment group, SG) or without NaCl (control group, CG) for two years. Each treatment has three biological replicates. The values are expressed as means of three biological replicates (±S.D.). The asterisk indicates a significant difference between control and stress treatments (<span class="html-italic">t</span>-test, <span class="html-italic">p</span> < 0.05).</p> "> Figure 2
<p>Effects of long-term salinity stress on membrane damage of <span class="html-italic">Puccinellia tenuiflora</span>. (<b>a</b>) superoxide (O<sub>2</sub><sup>•−</sup>) production rate; (<b>b</b>) malondialdehyde (MDA) concentration; (<b>c</b>) leaf electrolyte leakage rate. <span class="html-italic">P. tenuiflora</span> was supplied with a nutrient solution with 300 mM NaCl (stress treatment group, SG) or without NaCl (control group, CG) for two years. Each treatment has three biological replicates. The values are expressed as means of three biological replicates (±S.D.). The asterisk indicates a significant difference between control and stress treatments (<span class="html-italic">t</span>-test, <span class="html-italic">p</span> < 0.05).</p> "> Figure 3
<p>The principal component analysis of the metabolic profiles (<b>a</b>) and the Venn diagram of differentially accumulated metabolites (<b>b</b>) in <span class="html-italic">Puccinellia tenuiflora. P. tenuiflora</span> was supplied with a nutrient solution containing (stress treatment) or not (control) 300 mM NaCl for two years. Each treatment has three biological replicates.</p> "> Figure 4
<p>Metabolic response of <span class="html-italic">Puccinellia tenuiflora</span> to long-term salinity stress. <span class="html-italic">P. tenuiflora</span> was supplied with a nutrient solution with 300 mM NaCl (stress treatment) or without NaCl (control) for two years. Each treatment has three biological replicates. The red color indicates a significant difference between control and stress treatments. TCA, tricarboxylic acid; PEP, phosphoenolpyruvate; E<sub>4</sub>P, erythritose-4-phosphate; AR, apigenin-7-O-rutinoside; ACG, apigenin-7-O-(6″-p-coumaryl)glucoside; L3G, limocitrin-3-O-glucoside; L7G, limocitrin-7-O-glucoside; TN, tricin-7-O-neohesperidoside; TSEG, tricin-<span class="html-italic">4</span>′<span class="html-italic">-O</span>-(syringyl alcohol)ether-<span class="html-italic">5-O</span>-glucoside; TGG, Tricin-4′-O-glucoside-7-O-glucoside; TGEG, tricin-<span class="html-italic">4</span>′<span class="html-italic">-O</span>-(guaiacylglycerol)ether-<span class="html-italic">7-O</span>-glucoside; 13-KODE, (<span class="html-italic">9Z</span>,<span class="html-italic">11E</span>)-13-Oxooctadeca-9,11-dienoic acid; 12,13-DHOME, (<span class="html-italic">9Z</span>)-12,13-dhydroxyoctadec-9-enoic acid; 5S,8R-DiHODE, (<span class="html-italic">5S</span>,<span class="html-italic">8R</span>,<span class="html-italic">9Z</span>,<span class="html-italic">12Z</span>)-5,8-dihydroxyoctadeca-9,12-dienoate; 9S-HOTrE, 9-hydroxy-10,12,15-octadecatrienoic acid; 12-OxoETE, 12-oxo-5,8,10,14-eicosatetraenoic acid; 5-HETE, 5-hydroxy-6,8,11,14-eicosatetraenoic acid; DHA, cis-4,7,10,13,16,19-docosahexaenoic acid.</p> "> Figure 5
<p>Effects of long-term salinity stress on the relative concentrations of amino acids and amino acid derivatives in <span class="html-italic">Puccinellia tenuiflora. P. tenuiflora</span> was irrigated with a nutrient solution containing (stress treatment) or not (control) 300 mM NaCl for two years. Each treatment has three biological replicates. The red color indicates a significant difference between control and stress treatments. L-Dopa, 3,4-dihydroxy-L-phenylalanine.</p> "> Figure 6
<p>Effects of long-term salinity stress on the relative concentrations of organic acids, phenolamides, free fatty acids, carbohydrates, and vitamins in <span class="html-italic">Puccinellia tenuiflora. P. tenuiflora</span> was irrigated with a nutrient solution containing (stress treatment) or not (control) 300 mM NaCl for two years. The red color indicates a significant difference between control and stress treatments. 13-KODE, (<span class="html-italic">9Z</span>,<span class="html-italic">11E</span>)-13-Oxooctadeca-9,11-dienoic acid; 12,13-DHOME, (<span class="html-italic">9Z</span>)-12,13-dihydroxyoctadec-9-enoic acid; 5S,8R-DiHODE, (5S,8R,9Z,12Z)-5,8-dihydroxyoctadeca-9,12-dienoate; 9S-HOTrE, 9-hydroxy-10,12,15-octadecatrienoic acid; 12-OxoETE, 12-oxo-5,8,10,14-eicosatetraenoic acid; 5S-HETE, 5-hydroxy-6,8,11,14-eicosatetraenoic acid; DHA, cis-4,7,10,13,16,19-docosahexaenoic acid.</p> "> Figure 7
<p>Effects of long-term salinity stress on the relative concentrations of flavonoids in <span class="html-italic">Puccinellia tenuiflora. P. tenuiflora</span> was irrigated with a nutrient solution containing (stress treatment) or not (control) 300 mM NaCl for two years. Each treatment has three biological replicates. The red color indicates a significant difference between control and stress treatments. TGAGE, tricin-4′-<span class="html-italic">O</span>-[β-guaiacyl-(9″-<span class="html-italic">O</span>-acetyl)glycerol]ether; TSEG, tricin-4′-<span class="html-italic">O</span>-(syringyl alcohol)ether-5-<span class="html-italic">O</span>-glucoside; TGCGE, tricin-4′-<span class="html-italic">O</span>-[β-guaiacyl-(9″-<span class="html-italic">O</span>-p-coumaroyl)glycerol]ether; TGEG, tricin-4′-<span class="html-italic">O</span>-(guaiacylglycerol)ether-7-<span class="html-italic">O</span>-glucoside; AFGG, apigenin-7-<span class="html-italic">O</span>-(2″-feruloyl)glucuronide-4′-<span class="html-italic">O</span>-glucuronide; KAGG, kaempferol-3-<span class="html-italic">O</span>-(6″-acetyl)glucosyl-(1→3)-galactoside; TDGR, 5,7,4′-trihydroxy-6,8-dimethoxyisoflavone-7-<span class="html-italic">O</span>-galactoside-rhamnose.</p> "> Figure 8
<p>Effects of long-term salinity stress on the concentrations of plant hormones in <span class="html-italic">Puccinellia tenuiflora. P. tenuiflora</span> was irrigated with a nutrient solution containing (stress treatment) or not (control) 300 mM NaCl for two years. Each treatment has three biological replicates. The asterisk indicates a significant difference between control and stress treatments (<span class="html-italic">t</span>-test, <span class="html-italic">p</span> < 0.05).</p> "> Figure 9
<p>Models of response to long-term salinity stress in <span class="html-italic">Puccinellia tenuiflora. P. tenuiflora</span> was irrigated with a nutrient solution containing (stress treatment) or not (control) 300 mM NaCl for two years. The response under long-term salinity stress in the roots was represented by the orange line, whereas the response in the leaves was represented by the green line. The response in both the roots and leaves is represented by the black line. The asterisk indicates a significant difference between and stress treatments (<span class="html-italic">t</span>-test, <span class="html-italic">p</span> < 0.05). “?” indicates a conjectural role.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Photosynthesis
2.2. Membrane Damage
2.3. Metabolic Response
2.3.1. Metabolic Profile
2.3.2. Organic Osmotic Solutes
2.3.3. Non-Enzymatic Antioxidants
2.4. Plant Hormones
3. Discussion
4. Materials and Methods
4.1. Plant Growth and Stress Treatment
4.2. Physiological Measurements
4.3. Widely Targeted Metabolomic Profiling
4.4. Quantification of Plant Hormones
4.5. Statistical Analysis of Data
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
LSS | long-term salinity stress |
SSS | short-term salinity stress |
ACC | 1-aminocyclopropane-1-carboxylic acid |
PG | phosphatidylglycerol |
tZ | trans-zeatin |
cZ | cis-zeatin |
iPR | isopentenyladenosine |
iP | isopentenyladenine |
tZR | trans-zeatin riboside |
cZR | cis-zeatin riboside |
References
- Liu, C.; Mao, B.; Yuan, D.; Chu, C.; Duan, M. Salt tolerance in rice: Physiological responses and molecular mechanisms. Crop J. 2022, 10, 13–25. [Google Scholar] [CrossRef]
- Moir-Barnetson, L.; Veneklaas, E.J.; Colmer, T.D. Salinity tolerances of three succulent halophytes (Tecticornia spp.) differentially distributed along a salinity gradient. Funct. Plant Biol. 2016, 43, 739–750. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Zhao, L.; Zhang, K.J.; Lu, H.Y.; Bhanbhro, N.; Yang, C.W. Comparative Genomics and Transcriptomics of the Extreme Halophyte Puccinellia tenuiflora Provides Insights Into Salinity Tolerance Differentiation Between Halophytes and Glycophytes. Front. Plant Sci. 2021, 12, 649001. [Google Scholar] [CrossRef] [PubMed]
- Flowers, T.J.; Colmer, T.D. Salinity tolerance in halophytes. New Phytol. 2008, 179, 945–963. [Google Scholar] [CrossRef] [PubMed]
- Barros, N.L.F.; Marques, D.N.; Tadaiesky, L.B.A.; de Souza, C.R.B. Halophytes and other molecular strategies for the generation of salt-tolerant crops. Plant Physiol. Biochem. 2021, 162, 581–591. [Google Scholar] [CrossRef]
- Yeo, A.R. Salinity resistance: Physiologies and prices. Physiol. Plant 1983, 58, 214–222. [Google Scholar] [CrossRef]
- Glenn, E.P.; Brown, J.J.; Blumwald, E. Salt tolerance and crop potential of halophytes. Crit. Rev. Plant Sci. 1999, 18, 227–255. [Google Scholar] [CrossRef]
- Lokhande, V.H.; Suprasanna, P. Prospects of halophytes in understanding and managing abiotic stress tolerance. In Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate Change; Springer: Berlin/Heidelberg, Germany, 2012; pp. 29–56. [Google Scholar] [CrossRef]
- Kumari, A.; Das, P.; Parida, A.K.; Agarwal, P.K. Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. Front. Plant Sci. 2015, 6, 537. [Google Scholar] [CrossRef]
- Gong, Q.; Li, P.; Ma, S.; Indu Rupassara, S.; Bohnert, H.J. Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. Plant J. 2005, 44, 826–839. [Google Scholar] [CrossRef]
- Chawla, S.; Jain, S.; Jain, V. Salinity induced oxidative stress and antioxidant system in salt-tolerant and salt-sensitive cultivars of rice (Oryza sativa L.). J. Plant Biochem. Biot. 2013, 22, 27–34. [Google Scholar] [CrossRef]
- Uzilday, B.; Ozgur, R.; Sekmen, A.H.; Yildiztugay, E.; Turkan, I. Changes in the alternative electron sinks and antioxidant defence in chloroplasts of the extreme halophyte Eutrema parvulum (Thellungiella parvula) under salinity. Ann. Bot. 2015, 115, 449–463. [Google Scholar] [CrossRef] [PubMed]
- Munir, N.; Hasnain, M.; Roessner, U.; Abideen, Z. Strategies in improving plant salinity resistance and use of salinity resistant plants for economic sustainability. Crit. Rev. Environ. Sci. Technol. 2021, 52, 2150–2196. [Google Scholar] [CrossRef]
- Niu, M.; Xie, J.; Chen, C.; Cao, H.; Sun, J.; Kong, Q.; Shabala, S.; Shabala, L.; Huang, Y.; Bie, Z. An early ABA-induced stomatal closure, Na+ sequestration in leaf vein and K+ retention in mesophyll confer salt tissue tolerance in Cucurbita species. J. Exp. Bot. 2018, 69, 4945–4960. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Liu, Q.; Liu, Z.; Yang, H.; Wang, J.; Li, X.; Yang, Y. Arabidopsis C3HC4-RING finger E3 ubiquitin ligase AtAIRP4 positively regulates stress-responsive abscisic acid signaling. J. Integr. Plant Biol. 2016, 58, 67–80. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Li, G.J.; Bressan, R.A.; Song, C.P.; Zhu, J.K.; Zhao, Y. Abscisic acid dynamics, signaling, and functions in plants. J. Integr. Plant Biol. 2020, 62, 25–54. [Google Scholar] [CrossRef]
- Riyazuddin, R.; Verma, R.; Singh, K.; Nisha, N.; Keisham, M.; Bhati, K.K.; Kim, S.T.; Gupta, R. Ethylene: A master regulator of salinity stress tolerance in plants. Biomolecules 2020, 10, 959. [Google Scholar] [CrossRef]
- Golan, Y.; Shirron, N.; Avni, A.; Shmoish, M.; Gepstein, S. Cytokinins induce transcriptional reprograming and improve Arabidopsis plant performance under drought and salt stress conditions. Front. Environ. Sci. 2016, 4, 63. [Google Scholar] [CrossRef]
- Munns, R. Genes and salt tolerance: Bringing them together. New Phytol. 2005, 167, 645–663. [Google Scholar] [CrossRef]
- Yan, X.; Sun, G. Physiological Ecology Research of Puccinellia tenuiflora; Science Press: Beijing, China, 2000. [Google Scholar]
- Guan, Q.; Wang, Z.; Wang, X.; Takano, T.; Liu, S. A peroxisomal APX from Puccinellia tenuiflora improves the abiotic stress tolerance of transgenic Arabidopsis thaliana through decreasing of H2O2 accumulation. J. Plant Physiol. 2015, 175, 183–191. [Google Scholar] [CrossRef]
- Ardie, S.W.; Nishiuchi, S.; Liu, S.; Takano, T. Ectopic expression of the K+ channel β subunits from Puccinellia tenuiflora (KPutB1) and rice (KOB1) alters K+ homeostasis of yeast and Arabidopsis. Mol. Biotechnol. 2011, 48, 76–86. [Google Scholar] [CrossRef]
- Ardie, S.W.; Xie, L.; Takahashi, R.; Liu, S.; Takano, T. Cloning of a high-affinity K+ transporter gene PutHKT2; 1 from Puccinellia tenuiflora and its functional comparison with OsHKT2; 1 from rice in yeast and Arabidopsis. J. Exp. Bot. 2009, 60, 3491–3502. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.H.; Zhu, Y.F.; Mao, Y.Q.; Wang, S.M.; Su, W.A.; Tang, Z.C. Alkali grass resists salt stress through high [K+] and an endodermis barrier to Na+. J. Exp. Bot. 2004, 55, 939–949. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhao, G.; Gao, Y.; Tang, Z.; Zhang, C. Puccinellia tenuiflora exhibits stronger selectivity for K+ over Na+ than wheat. J. Plant Nutr. 2005, 27, 1841–1857. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, G.; Suo, B.; Chen, G.; Wang, J.; Yan, Y. Effects of Na2CO3 and NaCl stresses on the antioxidant enzymes of chloroplasts and chlorophyll fluorescence parameters of leaves of Puccinellia tenuiflora (Turcz.) scribn.et Merr. Acta Physiol. Plant 2008, 30, 143–150. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, C.; Liu, G.; Jiang, J. Development of a cDNA microarray to identify gene expression of Puccinellia tenuiflora under saline–alkali stress. Plant Physiol. Biochem. 2007, 45, 567–576. [Google Scholar] [CrossRef]
- Ye, X.; Wang, H.; Cao, X.; Jin, X.; Cui, F.; Bu, Y.; Liu, H.; Wu, W.; Takano, T.; Liu, S. Transcriptome profiling of Puccinellia tenuiflora during seed germination under a long-term saline-alkali stress. BMC Genom. 2019, 20, 1–17. [Google Scholar] [CrossRef]
- Yu, J.; Chen, S.; Wang, T.; Sun, G.; Dai, S. Comparative proteomic analysis of Puccinellia tenuiflora leaves under Na2CO3 stress. Int. J. Mol. Sci. 2013, 14, 1740–1762. [Google Scholar] [CrossRef]
- Chen, Q.; Jin, Y.; Zhang, Z.; Cao, M.; Wei, G.; Guo, X.; Zhang, J.; Lu, X.; Tang, Z. Ionomic and Metabolomic Analyses Reveal Different Response Mechanisms to Saline–Alkali Stress Between Suaeda salsa Community and Puccinellia tenuiflora Community. Front. Plant Sci. 2021, 12, 774284. [Google Scholar] [CrossRef]
- Lu, X.; Chen, Q.; Cui, X.; Abozeid, A.; Liu, Y.; Liu, J.; Tang, Z. Comparative metabolomics of two saline-alkali tolerant plants Suaeda glauca and Puccinellia tenuiflora based on GC-MS platform. Nat. Prod. Res. 2021, 35, 499–502. [Google Scholar] [CrossRef]
- Wang, C.M.; Zhang, J.L.; Liu, X.S.; Li, Z.; Wu, G.Q.; Cai, J.Y.; Flowers, T.J.; Wang, S.M. Puccinellia tenuiflora maintains a low Na+ level under salinity by limiting unidirectional Na+ influx resulting in a high selectivity for K+ over Na+. Plant Cell Environ. 2009, 32, 486–496. [Google Scholar] [CrossRef]
- Han, Q.Q.; Wang, Y.P.; Li, J.; Li, J.; Yin, X.C.; Jiang, X.Y.; Yu, M.; Wang, S.M.; Shabala, S.; Zhang, J.L. The mechanistic basis of sodium exclusion in Puccinellia tenuiflora under conditions of salinity and potassium deprivation. Plant J. 2022, 112, 322–338. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Xie, H.; Wei, G.; Guo, X.; Zhang, J.; Lu, X.; Tang, Z. Metabolic differences of two constructive species in saline-alkali grassland in China. BMC Plant Biol. 2022, 22, 53. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Xu, C.; Han, L.; Li, C.; Xiao, B.; Wang, H.; Yang, C. Extensive secretion of phenolic acids and fatty acids facilitates rhizosphere pH regulation in halophyte Puccinellia tenuiflora under alkali stress. Physiol. Plant 2022, 174, e13678. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, P.; Takano, T.; Liu, S. A Chloroplast-Localized Rubredoxin Family Protein Gene from Puccinellia tenuiflora (PutRUB) Increases NaCl and NaHCO3 Tolerance by Decreasing H2O2 Accumulation. Int. J. Mol. Sci. 2016, 17, 804. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yang, R.; Wang, B.; Liu, G.; Yang, C.; Cheng, Y. Functional characterization of a plasma membrane Na+/H+ antiporter from alkali grass (Puccinellia tenuiflora). Mol. Biol. Rep. 2011, 38, 4813–4822. [Google Scholar] [CrossRef]
- Bu, Y.; Takano, T.; Liu, S. The role of ammonium transporter (AMT) against salt stress in plants. Plant Signal Behav. 2019, 14, 1625696. [Google Scholar] [CrossRef]
- Jia, X.M.; Wang, H.; Svetla, S.; Zhu, Y.F.; Hu, Y.; Cheng, L.; Zhao, T.; Wang, Y.X. Comparative physiological responses and adaptive strategies of apple Malus halliana to salt, alkali and saline-alkali stress. Sci. Hortic. 2019, 245, 154–162. [Google Scholar] [CrossRef]
- Athar, H.U.; Zulfiqar, F.; Moosa, A.; Ashraf, M.; Zafar, Z.U.; Zhang, L.; Ahmed, N.; Kalaji, H.M.; Nafees, M.; Hossain, M.A.; et al. Salt stress proteins in plants: An overview. Front. Plant Sci. 2022, 13, 999058. [Google Scholar] [CrossRef]
- Li, L.; Lu, H.; Wang, H.; Bhanbhro, N.; Yang, C. Genome-wide DNA methylation analysis and biochemical responses provide insights into the initial domestication of halophyte Puccinellia tenuiflora. Plant Cell Rep. 2021, 40, 1181–1197. [Google Scholar] [CrossRef]
- Agati, G.; Azzarello, E.; Pollastri, S.; Tattini, M. Flavonoids as antioxidants in plants: Location and functional significance. Plant Sci. 2012, 196, 67–76. [Google Scholar] [CrossRef]
- Kiani, R.; Arzani, A.; Maibody, S.A.M.M. Polyphenols, flavonoids, and antioxidant activity involved in salt tolerance in wheat, Aegilops cylindrica and their Amphidiploids. Front. Plant Sci. 2021, 12, 646221. [Google Scholar] [CrossRef] [PubMed]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef] [PubMed]
- Ververidis, F.; Trantas, E.; Douglas, C.; Vollmer, G.; Kretzschmar, G.; Panopoulos, N. Biotechnology of flavonoids and other phenylpropanoid-derived natural products. Part I: Chemical diversity, impacts on plant biology and human health. Biotechnol. J. 2007, 2, 1214–1234. [Google Scholar] [CrossRef] [PubMed]
- Roumani, M.; Besseau, S.; Gagneul, D.; Robin, C.; Larbat, R. Phenolamides in plants: An update on their function, regulation, and origin of their biosynthetic enzymes. J. Exp. Bot. 2021, 72, 2334–2355. [Google Scholar] [CrossRef]
- López-Gresa, M.P.; Maltese, F.; Bellés, J.M.; Conejero, V.; Kim, H.K.; Choi, Y.H.; Verpoorte, R. Metabolic response of tomato leaves upon different plant–pathogen interactions. Phytochem. Anal. 2010, 21, 89–94. [Google Scholar] [CrossRef]
- Zacarés, L.; López-Gresa, M.P.; Fayos, J.; Primo, J.; Bellés, J.M.; Conejero, V. Induction of p-coumaroyldopamine and feruloyldopamine, two novel metabolites, in tomato by the bacterial pathogen Pseudomonas syringae. Mol. Plant-Microbe Interact. 2007, 20, 1439–1448. [Google Scholar] [CrossRef]
- Yu, Z.; Duan, X.; Luo, L.; Dai, S.; Ding, Z.; Xia, G. How plant hormones mediate salt stress responses. Trends Plant Sci. 2020, 25, 1117–1130. [Google Scholar] [CrossRef]
- Gai, Z.; Wang, Y.; Ding, Y.; Qian, W.; Qiu, C.; Xie, H.; Sun, L.; Jiang, Z.; Ma, Q.; Wang, L.; et al. Exogenous abscisic acid induces the lipid and flavonoid metabolism of tea plants under drought stress. Sci. Rep. 2020, 10, 12275. [Google Scholar] [CrossRef]
- Cao, W.H.; Liu, J.; He, X.J.; Mu, R.L.; Zhou, H.L.; Chen, S.Y.; Zhang, J.S. Modulation of ethylene responses affects plant salt-stress responses. Plant Physiol. 2007, 143, 707–719. [Google Scholar] [CrossRef]
- Nishiyama, R.; Watanabe, Y.; Fujita, Y.; Le, D.T.; Kojima, M.; Werner, T.; Vankova, R.; Yamaguchi-Shinozaki, K.; Shinozaki, K.; Kakimoto, T.; et al. Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. Plant Cell 2011, 23, 2169–2183. [Google Scholar] [CrossRef]
- Campos, M.L.; Kang, J.-H.; Howe, G.A. Jasmonate-triggered plant immunity. J. Chem. Ecol. 2014, 40, 657–675. [Google Scholar] [CrossRef] [PubMed]
- Nishiyama, R.; Watanabe, Y.; Leyva-Gonzalez, M.A.; Van Ha, C.; Fujita, Y.; Tanaka, M.; Seki, M.; Yamaguchi-Shinozaki, K.; Shinozaki, K.; Herrera-Estrella, L.; et al. Arabidopsis AHP2, AHP3, and AHP5 histidine phosphotransfer proteins function as redundant negative regulators of drought stress response. Proc. Natl. Acad. Sci. USA 2013, 110, 4840–4845. [Google Scholar] [CrossRef] [PubMed]
- Xiao, B.; Lu, H.; Li, C.; Bhanbhro, N.; Cui, X.; Yang, C. Carbohydrate and plant hormone regulate the alkali stress response of hexaploid wheat (Triticum aestivum L.). Environ. Exp. Bot. 2020, 175, 104053. [Google Scholar] [CrossRef]
- Tang, Z.C. Experimental Guide of Modern Plant Physiology; Science Press: Beijing, China, 1999; pp. 302–308. [Google Scholar]
- Chen, W.; Gong, L.; Guo, Z.; Wang, W.; Zhang, H.; Liu, X.; Yu, S.; Xiong, L.; Luo, J. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: Application in the study of rice metabolomics. Mol. Plant 2013, 6, 1769–1780. [Google Scholar] [CrossRef]
- Chen, J.; Hu, X.; Shi, T.; Yin, H.; Sun, D.; Hao, Y.; Xia, X.; Luo, J.; Fernie, A.R.; He, Z.; et al. Metabolite-based genome-wide association study enables dissection of the flavonoid decoration pathway of wheat kernels. Plant Biotechnol. J. 2020, 18, 1722–1735. [Google Scholar] [CrossRef]
- Zhu, G.; Wang, S.; Huang, Z.; Zhang, S.; Liao, Q.; Zhang, C.; Lin, T.; Qin, M.; Peng, M.; Yang, C.; et al. Rewiring of the fruit metabolome in tomato breeding. Cell 2018, 172, 249–261.e12. [Google Scholar] [CrossRef]
- Shao, Y.; Zhou, H.-Z.; Wu, Y.; Zhang, H.; Lin, J.; Jiang, X.; He, Q.; Zhu, J.; Li, Y.; Yu, H.; et al. OsSPL3, an SBP-Domain protein, regulates crown root development in rice. Plant Cell 2019, 31, 1257–1275. [Google Scholar] [CrossRef]
- Lu, H.; Wang, Z.; Xu, C.; Li, L.; Yang, C. Multiomics analysis provides insights into alkali stress tolerance of sunflower (Helianthus annuus L.). Plant Physiol. Biochem. 2021, 166, 66–77. [Google Scholar] [CrossRef]
Group | Treatment Solutions | Duration of Treatment | Treatment Methods |
---|---|---|---|
CG | Half-strength Hoagland′s nutrient solution without NaCl | 2 years | Each pot was treated daily with 800 mL of the appropriate treatment solution. To avoid accumulation of NaCl and achieve the desired salt concentration, each pot was thoroughly rinsed once a week with distilled H2O. |
SG | 300 mM NaCl with half-strength Hoagland′s nutrient solution |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, L.; Gao, Z.; Li, L.; Li, C.; Yan, H.; Xiao, B.; Ma, Y.; Wang, H.; Yang, C.; Xun, H. Adaptive Strategy of the Perennial Halophyte Grass Puccinellia tenuiflora to Long-Term Salinity Stress. Plants 2024, 13, 3445. https://doi.org/10.3390/plants13233445
Han L, Gao Z, Li L, Li C, Yan H, Xiao B, Ma Y, Wang H, Yang C, Xun H. Adaptive Strategy of the Perennial Halophyte Grass Puccinellia tenuiflora to Long-Term Salinity Stress. Plants. 2024; 13(23):3445. https://doi.org/10.3390/plants13233445
Chicago/Turabian StyleHan, Lei, Zhanwu Gao, Luhao Li, Changyou Li, Houxing Yan, Binbin Xiao, Yimeng Ma, Huan Wang, Chunwu Yang, and Hongwei Xun. 2024. "Adaptive Strategy of the Perennial Halophyte Grass Puccinellia tenuiflora to Long-Term Salinity Stress" Plants 13, no. 23: 3445. https://doi.org/10.3390/plants13233445
APA StyleHan, L., Gao, Z., Li, L., Li, C., Yan, H., Xiao, B., Ma, Y., Wang, H., Yang, C., & Xun, H. (2024). Adaptive Strategy of the Perennial Halophyte Grass Puccinellia tenuiflora to Long-Term Salinity Stress. Plants, 13(23), 3445. https://doi.org/10.3390/plants13233445