Zinc Enhances Cadmium Accumulation in Shoots of Hyperaccumulator Solanum nigrum by Improving ATP-Dependent Transport and Alleviating Toxicity
"> Figure 1
<p>Zn (<b>a</b>,<b>b</b>) and Cd (<b>c</b>,<b>d</b>) content in stems, leaves, xylem, and phloem saps of <span class="html-italic">S. nigrum</span>. Plants were exposed to a complete Hoagland solution (CK) or with 100 μmol·L<sup>−1</sup> Zn (Zn100), 100 μmol·L<sup>−1</sup> Cd (Cd100) and 100 μmol·L<sup>−1</sup> Zn+100 μmol·L<sup>−1</sup> Cd (Zn100+Cd100) for 10 days. Values are means ± SE (<span class="html-italic">n</span> = 3) of three different experiments. Means denoted by different letters refer to the significant differences (<span class="html-italic">p</span> < 0.05, Duncan’s test).</p> "> Figure 2
<p>Production of O<sub>2</sub><sup>−</sup> (<b>a</b>,<b>b</b>) and H<sub>2</sub>O<sub>2</sub> (<b>c</b>,<b>d</b>) in leaves of <span class="html-italic">S. nigrum</span> under Zn and Cd treatment. Histochemical location of O<sub>2</sub><sup>−</sup> by NBT staining (<b>a</b>) and H<sub>2</sub>O<sub>2</sub> by DAB staining (<b>c</b>), with bar = 1 cm; O<sub>2</sub><sup>−</sup> producing rate (<b>b</b>) and H<sub>2</sub>O<sub>2</sub> content (<b>d</b>) in leaves of <span class="html-italic">S. nigrum</span>. Samples from the second youngest leaf of plants, which were exposed to a complete Hoagland solution (CK) or with 100 μmol·L<sup>−1</sup> Zn (Zn100), 100 μmol·L<sup>−1</sup> Cd (Cd100), and 100 μmol·L<sup>−1</sup> Zn+100 μmol·L<sup>−1</sup> Cd (Zn100+Cd100) for 10 days. Staining experiments were repeated at least three times, with similar results. Values are means ± SE (<span class="html-italic">n</span> = 3) of three different experiments. Means denoted by different letters refer to the significant differences (<span class="html-italic">p</span> < 0.05, Duncan’s test).</p> "> Figure 3
<p>The numbers of differentially expressed genes (<b>a</b>,<b>b</b>) and differentially expressed proteins (<b>c</b>,<b>d</b>) in leaves of <span class="html-italic">S. nigrum</span> by transcriptome and proteome. Plants were exposed to a complete Hoagland solution (CK) or with 100 μmol·L<sup>−1</sup> Zn (Zn), 100 μmol·L<sup>−1</sup> Cd (Cd), and 100 μmol·L<sup>−1</sup> Zn +100 μmol·L<sup>−1</sup> Cd (ZnCd) for 10 days. Rising green arrow shows increase, and falling red arrow shows decrease in significant differential expression between sample set (Zn vs. CK, Cd vs. CK, and ZnCd vs. CK).</p> "> Figure 4
<p>Identification and gene expression levels of significantly differentially expressed transporters in leaves of <span class="html-italic">S. nigrum</span> by transcriptome. Proportions of the identified transporters (<b>a</b>). Gene expression level of metal transporters (<b>b</b>); ABC transporters (<b>c</b>); peptide transporters (<b>d</b>); nitrate, phosphate, and boron transporters (<b>e</b>); and sulfate and amino acid transporters (<b>f</b>). The boxed transporter genes were then verified by qRT-PCR. Plant was exposed to a complete Hoagland solution (CK) or with 100 μmol·L<sup>−1</sup> Zn (Zn), 100 μmol·L<sup>−1</sup> Cd (Cd), and 100 μmol·L<sup>−1</sup> Zn+100 μmol·L<sup>−1</sup> Cd (ZnCd) for 10 days. Expression levels of transporters shown use Log<sub>2</sub> (fold change) between sample sets (Zn vs. CK, Cd vs. CK, and ZnCd vs. CK). <span class="html-italic">ABC</span> (<span class="html-italic">A</span>, <span class="html-italic">B</span>, <span class="html-italic">C</span>, <span class="html-italic">F</span>, <span class="html-italic">G</span>, <span class="html-italic">I</span>): ATP-biding cassette transporter six subfamilies; <span class="html-italic">Sultr</span>, sulfate transporter; <span class="html-italic">AAT</span>, amino acid transporter; <span class="html-italic">ZIP</span>, zinc transporter; <span class="html-italic">COP</span>, copper transporter; <span class="html-italic">Nramp</span>, natural resistance associated macrophage protein; <span class="html-italic">YSL</span>, metal–nicotianamine transporter; <span class="html-italic">VIT</span>, vacuolar iron transporter; <span class="html-italic">MGT</span>, magnesium transporter; <span class="html-italic">PTR</span>, peptide transporter; <span class="html-italic">OPT</span>, oligopeptide transporter; <span class="html-italic">NRT</span>, nitrate transporter; <span class="html-italic">PNT</span>, peptide/nitrate transporter; <span class="html-italic">BOR</span>, boron transporter; <span class="html-italic">KT</span>, potassium transporter; <span class="html-italic">PHT</span>, phosphate transporter; <span class="html-italic">SWEET</span>, bidirectional sugar transporter.</p> "> Figure 5
<p>Relative gene expression level of transporters in leaves of <span class="html-italic">S. nigrum</span> by qRT-PCR. Plant was exposed to a complete Hoagland solution (CK) or with 100 μmol·L<sup>−1</sup> Zn (Zn100), 100 μmol·L<sup>−1</sup> Cd (Cd100), and 100 μmol·L<sup>−1</sup> Zn+100 μmol·L<sup>−1</sup> Cd (Zn100+Cd100) for 10 days. Relative expression level of genes denoted by different letters refer to the significant differences (<span class="html-italic">p</span> < 0.05, Duncan’s test).</p> "> Figure 6
<p>Expression levels of DEGs and DEPs involved in glutathione (<b>a</b>,<b>b</b>) and malate (<b>c</b>,<b>d</b>) metabolism in leaves of <span class="html-italic">S. nigrum</span> by transcriptome and proteome. The boxes with the same color are the same genes. Plant was exposed to a complete Hoagland solution (CK) or with 100 μmol·L<sup>−1</sup> Zn (Zn), 100 μmol·L<sup>−1</sup> Cd (Cd), and 100 μmol·L<sup>−1</sup> Zn+100 μmol·L<sup>−1</sup> Cd (ZnCd) for 10 days. Expression level of gene by transcriptome was shown using Log<sub>2</sub> (fold change) between sample sets (Zn vs. CK, Cd vs. CK, and ZnCd vs. CK). Expression level of protein by proteome was shown using a fold change (<span class="html-italic">p</span> < 0.05, Student’s <span class="html-italic">t</span>-test) between sample sets (Zn/CK, Cd/CK, and ZnCd/CK). GRK, cysteine-rich receptor-like protein kinase; CysS, cysteine synthase; GPX, glutathione peroxidase; GR, glutathione reductase; GST, glutathione S-transferase; CysP, cysteine proteinase precursor; Lgl, lactoylglutathione lyase; MDH, malate dehydrogenase; DTC, dicarboxylate/tricarboxylate transporter; CS, ATP-citrate synthase.</p> "> Figure 7
<p>Expression levels of DEPs involved in chlorophyll (<b>a</b>) and ATP metabolism (<b>b</b>), chlorophyll content (<b>c</b>), and cytochemical characteristics (<b>d</b>) in leaves of <span class="html-italic">S. nigrum</span>. Plant was exposed to a complete Hoagland solution (CK) or with 100 μmol·L<sup>−1</sup> Zn (Zn), 100 μmol·L<sup>−1</sup> Cd (Cd), and 100 μmol·L<sup>−1</sup> Zn+100 μmol·L<sup>−1</sup> Cd (ZnCd) for 10 days. Expression level of protein was shown using a fold change (<span class="html-italic">p</span> < 0.05, Student’s <span class="html-italic">t</span>-test) between sample sets (Zn/CK, Cd/CK, and ZnCd/CK). Chlorophyll (Chl) contents denoted by different letters refer to the significant differences (<span class="html-italic">p</span> < 0.05, Duncan’s test). Paraffin-section experiments were repeated at least three times with similar results; bar, 20 μm. psbA, photosystem I P700 chlorophyll apoprotein; psbC, photosystem II CP43 chlorophyll apoprotein; RCCR, red chlorophyll catabolite reductase; POR, protochlorophyllide reductase; CAB, chlorophyll <span class="html-italic">a</span>/<span class="html-italic">b</span> binding protein; H<sup>+</sup>-ATPase, plasma membrane H<sup>+</sup>-ATPase; Zmp, ATP-dependent zinc metalloprotease; PFK, ATP-dependent 6-phosphofructokinase; ANT, ADP/ATP translocator; V-ATPase, vacuolar-type ATPase; ClpP, ATP-dependent Clp protease; ASP, ATP sulfurylase; ADRH, ATP-dependent RNA helicase.</p> "> Figure 8
<p>Molecular mechanism involved in transport and accumulation of Cd in leaves of <span class="html-italic">S. nigrum</span> exposed to Zn and Cd. Magenta and green pellets indicate Cd and Zn, respectively; and the genes or proteins in red font represent those upregulated by Cd or Zn in leaves of <span class="html-italic">S. nigrum</span>. Cd or Zn enters into leaf cells by plasma membrane transporters of <span class="html-italic">Nramp1</span>, <span class="html-italic">YSLs</span>, <span class="html-italic">ZIPs</span>, etc.; <span class="html-italic">MTs</span> and <span class="html-italic">GSTs</span> in cells are induced for antioxidant protection or chelation with excess metal ions; and then Cd-GSH complexes are transported to vacuoles for sequestration, or to cell walls for xylem transport by ABCs and OPTs. In addition, Zn promoted electron transport chain (ETC) activities and ATP biosynthesis via increased expression levels of MDHs and ATPases.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Zn and Cd Transport and Accumulation in Shoots of S. nigrum
2.2. Effects of Zn and Cd on ROS Production in Leaves of S. nigrum
2.3. Transcriptomic and Proteomic Analysis Overview
2.4. Expression Characteristic of Transporter Genes in Leaves of S. nigrum under Zn and Cd
2.5. Differentially Expressed Genes Involved in Antioxidative Defense
2.6. Differentially Expressed Genes and Proteins Involved in GSH and Malate Metabolic Pathways
2.7. Differentially Expressed Proteins Involved in Metabolism of Chlorophyll and ATP
3. Discussion
3.1. Zn Supplement Increases Cd Accumulation in Shoots of S. nigrum
3.2. Zn Supplement Decreases the Production of ROS in Leaves of S. nigrum
3.3. Zn Supplement Promotes Cd Transport and Sequestration in Leaves of S. nigrum
3.4. Zn Supplement Decreased Cd Toxicity in Leaves of S. nigrum
3.5. Zn Promotes Chlorophyll and ATP Biosynthesis in Leaves of S. nigrum
4. Materials and Methods
4.1. Plant Material and Treatment
4.2. Preparation of Phloem and Xylem Saps
4.3. Determination of Zn and Cd Content
4.4. Hydrogen Peroxide (H2O2) and Superoxide Anion (O2−) Localization In Situ
4.5. Determination of H2O2 and O2− in Leaf Extract
4.6. Microscopic Observation of Mesophyll Cells
4.7. Determination of Chlorophyll Content
4.8. Transcriptome Sequencing
4.9. Quantitative Real-Time PCR Analysis (qRT-PCR)
4.10. Proteome Analysis
4.11. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rizwan, M.; Ali, S.; Adrees, M.; Rizvi, H.; ZiaurRehman, M.; Hannan, F.; Qayyum, M.F.; Hafeez, F.; Ok, Y.S. Cadmium stress in rice: Toxic effects, tolerance mechanisms, and management: A critical review. Environ. Sci. Pollut Res. 2016, 23, 17859–17879. [Google Scholar] [CrossRef] [PubMed]
- De Livera, J.; McLaughlin, M.J.; Hettiarachchi, G.M.; Kirby, J.K.; Beak, D.G. Cadmium solubility in paddy soils: Effects of soil oxidation, metal sulfides and competitive ions. Sci. Total Environ. 2011, 409, 1489–1497. [Google Scholar] [CrossRef] [PubMed]
- Ferraz, P.; Fidalgo, F.; Almeida, A.; Teixeira, J. Phytostabilization of nickel by the zinc and cadmium hyperaccumulator Solanum nigrum L. Are metallothioneins involved? Plant Physiol. Bioch. 2012, 57, 254–260. [Google Scholar] [CrossRef]
- Qiu, R.L.; Thangavel, P.; Hu, P.J.; Senthilkumar, P.; Ying, R.R.; Tang, Y.T. Interaction of cadmium and zinc on accumulation and sub-cellular distribution in leaves of hyperaccumulator Potentilla griffithii. J. Hazard. Mater. 2011, 186, 1425–1430. [Google Scholar] [CrossRef] [PubMed]
- McKenna, I.M.; Chaney, R.L.; Williams, F.M. The effects of cadmium and zinc interactions on the accumulation and tissue distribution of zinc and cadmium in lettuce and spinach. Environ. Pollut. 1993, 79, 113–120. [Google Scholar] [CrossRef]
- Driessnack, M.K.; Jamwal, A.; Niyogi, S. Effects of chronic waterborne cadmium and zinc interactions on tissue-specific metal accumulation and reproduction in fathead minnow (Pimephales promelas). Ecotox. Environ. Saf. 2017, 140, 65–75. [Google Scholar] [CrossRef]
- Adil, M.F.; Sehar, S.; Han, Z.G.; Lwalaba, J.L.W.; Jilani, G.; Zeng, F.R.; Chen, Z.H.; Shamsi, I.H. Zinc alleviates cadmium toxicity by modulating photosynthesis, ROS homeostasis, and cation flux kinetics in rice. Environ. Pollut. 2020, 265, 114979. [Google Scholar] [CrossRef]
- Adil, M.F.; Sehar, S.; Chen, G.; Chen, Z.H.; Jilani, G.; Chaudhry, A.N.; Shamsi, I.H. Cadmium-zinc cross-talk delineates toxicity tolerance in rice via differential genes expression and physiological/ultrastructural adjustments. Ecotox. Environ. Saf. 2020, 190, 110076. [Google Scholar] [CrossRef]
- Clemens, S. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 2006, 88, 1707–1719. [Google Scholar] [CrossRef]
- Tang, Z.; Wang, H.Q.; Chen, J.; Chang, J.D.; Zhao, F.J. Molecular mechanisms underlying the toxicity and detoxification of trace metals and metalloids in plants. J. Integr. Plant. Biol. 2023, 65, 570–593. [Google Scholar] [CrossRef]
- Clemens, S. Metal ligands in micronutrient acquisition and homeostasis. Plant Cell Environ. 2019, 42, 2902–2912. [Google Scholar] [CrossRef]
- Dahuja, A.; Kumar, R.R.; Sakhare, A.; Watts, A.; Singh, B.; Goswami, S.; Sachdev, A.; Praveen, S. Role of ATP-binding cassette transporters in maintaining plant homeostasis under abiotic and biotic stresses. Physiol. Plantarum 2021, 171, 785–801. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Shohag, M.J.I.; Feng, Y.; He, Z.; Yang, X. Transriptome comparison reveals the adaptive evolution of two contrasting ecotypes of Zn/Cd hyperaccumulator Sedum alfredii hance. Front. Plant. Sci. 2017, 8, 425. [Google Scholar]
- Küpper, H.; Mijovilovich, A.; Kroneck, M. Tissue- and age-dependent differences in the complexation of cadmium and zinc in the cadmium/zinc hyperaccumulator Thlaspi caerulescens (ganges ecotype) revealed by x-ray absorption spectroscopy. Plant Physiol. 2004, 134, 748–757. [Google Scholar] [CrossRef]
- Sarret, G.; Saumitou-Laprade, P.; Bert, V.; Proux, O.; Hazemann, J.L.; Traverse, A.; Marcus, M.; Manceau, A. Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri. Plant Physiol. 2003, 133, 423. [Google Scholar]
- Zeng, X.W.; Qiu, R.L.; Ying, R.R.; Tang, Y.T.; Tang, L.; Fang, X.H. The differentially-expressed proteome in Zn/Cd hyperaccumulator Arabis paniculata Franch. in response to Zn and Cd. Chemosphere 2011, 82, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Mcgrath, S.P.; Zhao, F.J. Phytoextraction of metals and metalloids from contaminated soils. Curr. Opin Biotech. 2003, 14, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, X.; Chu, S.; You, Y.; Chi, Y.; Wang, R.; Yang, X.; Hayat, K.; Zhang, D.; Zhou, P. Comparative cytology combined with transcriptomic and metabolomic analyses of Solanum nigrum L. in response to Cd toxicity. J. Hazard. Mater. 2022, 423, 127168. [Google Scholar] [CrossRef]
- Zhang, L.D.; Song, L.Y.; Dai, M.J.; Guo, Z.J.; Wei, M.Y.; Li, J.; Xu, C.Q.; Zhu, X.Y.; Zheng, H.L. Cadmium promotes the absorption of ammonium in hyperaccumulator Solanum nigrum L. mediated by ammonium transporters and aquaporins. Chemosphere 2022, 307, 136031. [Google Scholar] [CrossRef]
- Li, X.; Zhang, X.; Wang, X.; Cui, Z. Phytoremediation of multi-metal contaminated mine tailings with Solanum nigrum L. and biochar/attapulgite amendments. Ecotox. Environ. Saf. 2019, 180, 517–525. [Google Scholar] [CrossRef]
- Xu, J.; Yin, H.; Li, X. Protective effects of proline against cadmium toxicity in micropropagated hyperaccumulator, Solanum nigrum L. Plant Cell Rep. 2009, 28, 325–333. [Google Scholar] [CrossRef]
- Rehman, M.Z.u.; Rizwan, M.; Ali, S.; Ok, Y.S.; Ishaque, W.; Saifullah; Nawaz, M.F.; Akmal, F.; Waqar, M. Remediation of heavy metal contaminated soils by using Solanum nigrum: A review. Ecotox. Environ. Saf. 2017, 143, 236–248. [Google Scholar] [CrossRef]
- Sun, R.l.; Zhou, Q.x.; Jin, C.x. Cadmium accumulation in relation to organic acids in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator. Plant Soil 2006, 285, 125–134. [Google Scholar] [CrossRef]
- Deng, X.; Xia, Y.; Hu, W.; Zhang, H.; Shen, Z.G. Cadmium-induced oxidative damage and protective effects of n-acetyl-l-cysteine against cadmium toxicity in Solanum nigrum L. J. Hazard. Mater. 2010, 180, 722–729. [Google Scholar] [CrossRef]
- Xu, J.; Sun, J.; Du, L.; Liu, X. Comparative transcriptome analysis of cadmium responses in Solanum nigrum and Solanum torvum. New Phytol. 2012, 196, 110–124. [Google Scholar] [CrossRef]
- Feng, S.; Tan, J.; Zhang, Y.; Liang, S.; Xiang, S.; Wang, H.; Chai, T. Isolation and characterization of a novel cadmium-regulated yellow stripe-like transporter (SnYSL3) in Solanum nigrum. Plant Cell Rep. 2017, 36, 281–296. [Google Scholar] [CrossRef] [PubMed]
- Pons, M.L.; Collin, B.; Doelsch, E.; Chaurand, P.; Fehlauer, T.; Levard, C.; Keller, C.; Rose, J. X-ray absorption spectroscopy evidence of sulfur-bound cadmium in the Cd-hyperaccumulator Solanum nigrum and the non-accumulator Solanum melongena. Environ. Pollut. 2021, 279, 116897. [Google Scholar] [CrossRef] [PubMed]
- Song, L.Y.; Liu, X.; Zhang, L.D.; Hu, W.J.; Xu, C.Q.; Li, J.; Song, S.W.; Guo, Z.J.; Sun, C.Y.; Tang, H.C.; et al. Proteomic analysis reveals differential responsive mechanisms in Solanum nigrum exposed to low and high dose of cadmium. J. Hazard. Mater. 2023, 448, 130880. [Google Scholar] [CrossRef] [PubMed]
- Feller, U.; Anders, I.; Wei, S.H. Distribution and redistribution of 109Cd and 65Zn in the heavy metal hyperaccumulator Solanum nigrum L.: Influence of cadmium and zinc concentrations in the root medium. Plants 2019, 8, 340. [Google Scholar] [CrossRef]
- Jia, J.B.; Dai, H.P.; Wei, S.H.; Skuza, L.; Xue, J.M.; Li, R.; Sun, Q. Phytoremediation capacity of the hyperaccumulator Solanum nigrum L. and Solanum lycopersicum L. cultivars at the flowering stage in cadmium-polluted soil. Pedosphere 2024, 34, 676–680. [Google Scholar] [CrossRef]
- Sinclair, S.A.; Krämer, U. The zinc homeostasis network of land plants. BBA-Mol. Cell Res. 2012, 1823, 1553–1567. [Google Scholar] [CrossRef]
- Shinozaki, D.; Yoshimoto, K. Autophagy balances the zinc–iron seesaw caused by Zn-stress. Trends Plant Sci. 2021, 26, 882–884. [Google Scholar] [CrossRef]
- Chen, S.; Han, X.; Fang, J.; Lu, Z.; Qiu, W.; Liu, M.; Sang, J.; Jiang, J.; Zhuo, R. Sedum alfredii SaNramp6 metal transporter contributes to cadmium accumulation in transgenic Arabidopsis thaliana. Sci. Rep. 2017, 7, 13318. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Hudek, L.; Freestone, D.; Puhui, J.; Michalczyk, A.A.; Senlin, Z.; Ackland, M.L. Comparative analyses of cadmium and zinc uptake correlated with changes in natural resistance-associated macrophage protein (NRAMP) expression in Solanum nigrum L. and Brassica rapa. Environ. Chem. 2014, 11, 653–660. [Google Scholar] [CrossRef]
- Guerinot, M.L. The ZIP family of metal transporters. BBA Mol. Cell Res. 2000, 1465, 190–198. [Google Scholar] [CrossRef]
- Tan, L.; Zhu, Y.; Fan, T.; Peng, C.; Wang, J.; Sun, L.; Chen, C. OsZIP7 functions in xylem loading in roots and inter-vascular transfer in nodes to deliver Zn/Cd to grain in rice. Biochem. Biophys. Res. Commun. 2019, 512, 112–118. [Google Scholar] [CrossRef]
- Yuan, M.; Li, X.; Xiao, J.; Wang, S. Molecular and functional analyses of COPT/Ctr-type copper transporter-like gene family in rice. BMC Plant Biol. 2011, 11, 69. [Google Scholar] [CrossRef] [PubMed]
- Che, J.; Yamaji, N.; Ma, J.F. Role of a vacuolar iron transporter OsVIT2 in the distribution of iron to rice grains. New Phytol. 2021, 230, 1049–1062. [Google Scholar] [CrossRef] [PubMed]
- Kuromori, T.; Shinozaki, K. ABA transport factors found in Arabidopsis ABC transporters. Plant Signal Behav. 2010, 5, 1124–1126. [Google Scholar] [CrossRef]
- He, Y.; Shi, Y.; Zhang, X.; Xu, X.; Wang, H.; Li, L.; Zhang, Z.; Shang, H.; Wang, Z.; Wu, J.L. The OsABCI7 transporter interacts with OsHCF222 to stabilize the thylakoid membrane in rice. Plant Physiol. 2020, 184, 283–299. [Google Scholar] [CrossRef]
- Voith von Voithenberg, L.; Park, J.; Stübe, R.; Lux, C.; Lee, Y.; Philippar, K. A novel prokaryote-type ECF/ABC transporter module in chloroplast metal homeostasis. Front. Plant Sci. 2019, 10, 1264. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Lee, K.; Lee, J.; Noh, E.W.; Lee, Y. AtPDR12 contributes to lead resistance in Arabidopsis. Plant Physiol. 2005, 138, 827–836. [Google Scholar] [CrossRef]
- Song, W.Y.; Yamaki, T.; Yamaji, N.; Ko, D.; Jung, K.H.; Fujii-Kashino, M.; An, G.; Martinoia, E.; Lee, Y.; Ma, J.F. A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain. Proc. Natl. Acad. Sci. USA 2014, 111, 15699–15704. [Google Scholar] [CrossRef] [PubMed]
- Stacey, M.G.; Patel, A.; Mcclain, W.E.; Mathieu, M.; Remley, M.; Rogers, E.E.; Gassmann, W.; Stacey, B.G. The Arabidopsis AtOPT3 protein functions in metal homeostasis and movement of iron to developing seeds. Plant Physiol. 2008, 146, 589–601. [Google Scholar] [CrossRef]
- Pike, S.; Patel, A.; Stacey, G.; Gassmann, W. Arabidopsis OPT6 is an oligopeptide transporter with exceptionally broad substrate specificity. Plant Cell Physiol. 2009, 50, 1923–1932. [Google Scholar] [CrossRef]
- Vasconcelos, M.W.; Li, G.W.; Lubkowitz, M.A.; Grusak, M.A. Characterization of the PT clade of oligopeptide transporters in rice. Plant Genomics 2008, 1, 77–88. [Google Scholar] [CrossRef]
- Yi, T.H.; Ming, F.; Chen, W.W.; Jing, Y.Y.; Zheng, Y.X.; Li, G.X.; Xu, C.Y.; Yang, J.L.; Shao, J.Z. TcOPT3, a member of oligopeptide transporters from the hyperaccumulator Thlaspi caerulescens, is a novel Fe/Zn/Cd/Cu transporter. PLoS ONE 2012, 7, e38535. [Google Scholar]
- Fujiki, Y.; Teshima, H.; Kashiwao, S.; Kawano-Kawada, M.; Ohsumi, Y.; Kakinuma, Y.; Sekito, T. Functional identification of AtAVT3, a family of vacuolar amino acid transporters, in Arabidopsis. FEBS Lett. 2017, 591, 5–15. [Google Scholar] [CrossRef]
- Lu, Y.; Song, Z.; Lü, K.; Lian, X.; Cai, H. Molecular characterization, expression and functional analysis of the amino acid transporter gene family (OsAATs) in rice. Acta Physiol. Plant. 2012, 34, 1943–1962. [Google Scholar] [CrossRef]
- Couturier, J.; de Faÿ, E.; Fitz, M.; Wipf, D.; Blaudez, D.; Chalot, M. PtAAP11, a high affinity amino acid transporter specifically expressed in differentiating xylem cells of poplar. J. Exp. Bot. 2010, 61, 1671–1682. [Google Scholar] [CrossRef]
- Pan, W.; You, Y.; Weng, Y.N.; Shentu, J.L.; Du, S.T. Zn stress facilitates nitrate transporter 1.1-mediated nitrate uptake aggravating Zn accumulation in Arabidopsis plants. Ecotox. Environ. Saf. 2019, 190, 110104. [Google Scholar] [CrossRef] [PubMed]
- Stacey, G.; Koh, S.; Granger, C.; Becker, J.M. Peptide transport in plants. Trends Plant Sci. 2002, 7, 257–263. [Google Scholar] [CrossRef]
- Tarhan, L.; Kavakcioglu, B. Glutathione metabolism in Urtica dioica in response to cadmium based oxidative stress. Biol. Plant. 2016, 60, 163–172. [Google Scholar] [CrossRef]
- Liu, X.; Chen, J.; Wang, G.H.; Wang, W.H.; Shen, Z.J.; Luo, M.R.; Gao, G.F.; Simon, M.; Ghoto, K.; Zheng, H.L. Hydrogen sulfide alleviates zinc toxicity by reducing zinc uptake and regulating genes expression of antioxidative enzymes and metallothioneins in roots of the cadmium/zinc hyperaccumulator Solanum nigrum L. Plant Soil. 2016, 400, 177–192. [Google Scholar] [CrossRef]
- Teixeira, J.; Ferraz, P.; Almeida, A.; Verde, N.; Fidalgo, F. Metallothionein multigene family expression is differentially affected by chromium (III) and (VI) in Solanum nigrum L. plants. Food Energy Secur. 2013, 2, 130–140. [Google Scholar] [CrossRef]
- Shimoni-Shor, E.; Hassidim, M.; Yuval-Naeh, N.; Keren, N. Disruption of Nap14, a plastid-localized non-intrinsic ABC protein in Arabidopsis thaliana results in the over-accumulation of transition metals and in aberrant chloroplast structures. Plant Cell Environ. 2010, 33, 1029–1038. [Google Scholar] [CrossRef] [PubMed]
- Ryouichi, T.; Koichi, K.; Tatsuru, M. Tetrapyrrole metabolism in Arabidopsis thaliana. Arab. Book 2011, 9, e0145. [Google Scholar]
- Liu, L.; Lin, N.; Liu, X.; Yang, S.; Wang, W.; Wan, X. From chloroplast biogenesis to chlorophyll accumulation: The interplay of light and hormones on gene expression in Camellia sinensis cv. Shuchazao leaves. Front. Plant Sci. 2020, 11, 256. [Google Scholar] [CrossRef]
- Bayçu, G.; Gevrek-Kürüm, N.; Moustaka, J.; Csatári, I.; Rognes, S.E.; Moustakas, M. Cadmium-zinc accumulation and photosystem II responses of noccaea caerulescens to Cd and Zn exposure. Environ. Sci. Pollut Res. 2017, 24, 2840–2850. [Google Scholar] [CrossRef]
- Walker, C.J.; Griffiths, W.T. Protochlorophyllide reductase: A flavoprotein? FEBS Lett. 1988, 239, 259–262. [Google Scholar] [CrossRef]
- Tang, Y.; Li, M.; Chen, Y.; Wu, P.; Wu, G.; Jiang, H. Knockdown of OsPAO and OsRCCR1 cause different plant death phenotypes in rice. J. Plant Physiol. 2011, 168, 1952–1959. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Yu, H.; Zhou, J.M.; Smith, S.M.; Li, J. Malate circulation: Linking chloroplast metabolism to mitochondrial ROS. Trends Plant Sci. 2020, 25, 446–454. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, H.; Futai, M. Vacuolar-Type ATPases in Animal and Plant Cells; Springer: Berlin/Heidelberg, Germany, 2013; pp. 2719–2724. [Google Scholar]
- Pei, D.; Hua, D.; Deng, J.; Wang, Z.; Song, C.; Wang, Y.; Wang, Y.; Qi, J.; Hannes, K.; Yang, S. Phosphorylation of the plasma membrane H+-ATPase AHA2 by BAK1 is required for ABA-induced stomatal closure in Arabidopsis. Plant Cell. 2022, 34, 2708–2729. [Google Scholar] [CrossRef] [PubMed]
- Kato, Y.; Sakamoto, W. FtsH protease in the thylakoid membrane: Physiological functions and the regulation of protease activity. Front. Plant Sci. 2018, 9, 855. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Ji, Y.; Du, J.; Kong, D.; Liang, H. ClpC1, an ATP-dependent Clp protease in plastids, is involved in iron homeostasis in Arabidopsis leaves. Ann. Bot. 2010, 105, 823. [Google Scholar] [CrossRef]
- Hazama, K.; Nagata, S.; Fujimori, T.; Yanagisawa, S.; Yoneyama, T. Concentrations of metals and potential metal-binding compounds and speciation of Cd, Zn and Cu in phloem and xylem saps from castor bean plants (Ricinus communis) treated with four levels of cadmium. Physiol. Plant. 2015, 154, 243–255. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, W.; Chen, Y.; Xu, H.; Hou, D.; Lv, S.; Sun, X.; Wang, F.; Yang, L. The tolerance, absorption, and transport characteristics of Macleaya cordata in relation to lead, zinc, cadmium, and copper under hydroponic conditions. Appl. Sci. 2022, 12, 9598. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, F.; Xia, Y.; Wang, G.; Shen, Z. Excess copper induces production of hydrogen peroxide in the leaf of Elsholtzia haichowensis through apoplastic and symplastic CuZn-superoxide dismutase. J. Hazard. Mater. 2010, 178, 834–843. [Google Scholar] [CrossRef]
- Moseler, A.; Aller, I.; Wagner, S.; Nietzel, T.; Przybyla-Toscano, J.; Mühlenhoff, U.; Lill, R.; Berndt, C.; Rouhier, N.; Schwarzlnder, M. The mitochondrial monothiol glutaredoxin S15 is essential for iron-sulfur protein maturation in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 2015, 112, 13735–13740. [Google Scholar] [CrossRef]
- Ruzin, S.E. Plant microtechnique & microscopy (P). Taxon 1999, 32, 455–456. [Google Scholar]
- Zhang, H.; Hu, L.; Du, X.; Sun, X.; Wang, T.; Mu, Z. Physiological and molecular response and tolerance of Macleaya cordata to lead toxicity. BMC Genom. 2023, 24, 277. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Dai, C.; Li, Z.; Zhou, H.; Xiao, T.; Xie, Y.; Shen, W. Ectopic over-expression of BoHO1, a cabbage heme oxygenase gene, improved salt tolerance in Arabidopsis: A case study on proteomic analysis. J. Plant. Physiol. 2016, 196, 1–13. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, J.; Yue, Y.; Zhu, Y.; Wang, Y.; Zheng, W.; Hu, L.; Hou, D.; Wang, F.; Yang, L.; Zhang, H. Zinc Enhances Cadmium Accumulation in Shoots of Hyperaccumulator Solanum nigrum by Improving ATP-Dependent Transport and Alleviating Toxicity. Plants 2024, 13, 2528. https://doi.org/10.3390/plants13172528
Zheng J, Yue Y, Zhu Y, Wang Y, Zheng W, Hu L, Hou D, Wang F, Yang L, Zhang H. Zinc Enhances Cadmium Accumulation in Shoots of Hyperaccumulator Solanum nigrum by Improving ATP-Dependent Transport and Alleviating Toxicity. Plants. 2024; 13(17):2528. https://doi.org/10.3390/plants13172528
Chicago/Turabian StyleZheng, Jia, Yukang Yue, Yuting Zhu, Yufeng Wang, Wenwen Zheng, Linfeng Hu, Dianyun Hou, Fayuan Wang, Liming Yang, and Hongxiao Zhang. 2024. "Zinc Enhances Cadmium Accumulation in Shoots of Hyperaccumulator Solanum nigrum by Improving ATP-Dependent Transport and Alleviating Toxicity" Plants 13, no. 17: 2528. https://doi.org/10.3390/plants13172528
APA StyleZheng, J., Yue, Y., Zhu, Y., Wang, Y., Zheng, W., Hu, L., Hou, D., Wang, F., Yang, L., & Zhang, H. (2024). Zinc Enhances Cadmium Accumulation in Shoots of Hyperaccumulator Solanum nigrum by Improving ATP-Dependent Transport and Alleviating Toxicity. Plants, 13(17), 2528. https://doi.org/10.3390/plants13172528