Effects of Different Water and Nitrogen Supply Modes on Peanut Growth and Water and Nitrogen Use Efficiency under Mulched Drip Irrigation in Xinjiang
Abstract
:1. Introduction
2. Results
2.1. Effects of Water and Nitrogen Regulation on Growth and Physiological Indexes of Peanuts under Mulched Drip Irrigation
2.2. Effects of Water and Nitrogen Regulation on Peanut Yield under Mulched Drip Irrigation
2.3. Effects of Water and Nitrogen Regulation on Water Consumption of Peanuts under Mulched Drip Irrigation
2.4. Effects of Water and Nitrogen Regulation on Water and Nitrogen Use Efficiency of Peanuts under Mulched Drip Irrigation
2.5. Based on a Comprehensive Evaluation, the Most Appropriate Irrigation and Nitrogen Application Indexes Were Selected
3. Discussion
3.1. Effects of Water and Nitrogen Regulation on Growth and Physiological Indexes of Peanuts under Mulched Drip Irrigation
3.2. Effects of Water and Nitrogen Regulation on Peanut Yield under Mulched Drip Irrigation
3.3. Effects of Water and Nitrogen Regulation on the Water Consumption of Peanuts under Mulched Drip Irrigation
3.4. Effects of Water and Nitrogen Regulation on Water and Nitrogen Use Efficiency of Peanuts under Mulched Drip Irrigation
4. Materials and Methods
4.1. Overview of the Test Area
4.2. Peanut Cultivation Patterns
4.3. Experimental Design
4.4. Observation Items and Methods
4.4.1. Soil Moisture Content
4.4.2. Measurement of Crop Growth and Physiological Indexes
4.4.3. Calculation of Field Yield and Water Consumption
4.4.4. Water Use Efficiency
4.4.5. Nitrogen Partial Factor Productivity
4.5. Comprehensive Evaluation
4.5.1. Membership Function Method
4.5.2. Principal Component Analysis
4.6. Meteorological Indicators
4.7. Data Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shen, X.J.; Zhang, X.P.; Yao, B.L.; Li, Q.; Xue, Z.; Dong, J.S.; Yi, R.C. Effects of climate change on the suitable sowing dates for peanut under mulched drip irrigation in Xinjiang. J. Agric. Eng. 2023, 39, 107–115. [Google Scholar]
- National Bureau of Statistics of China. China Statistical Yearbook; China Statistics Press: Beijing, China, 2022. [Google Scholar]
- Wan, S.B.; Zhang, J.L. Strategies and countermeasures for the development of peanut industry in Xinjiang. J. Peanut 2019, 48, 66–68. [Google Scholar]
- Li, Q.; Jia, D.H.; Gu, Y.G.; Wang, J.; Su, J.H.; Wang, Z.M. Analysis of root growth and yield traits of spring rape in Xinjiang under different drip irrigation frequencies. Agric. Res. Arid Reg. 2018, 36, 23–30. [Google Scholar]
- Li, Y.; Wang, F.; Sun, J.S.; Liu, H.; Yang, J.Q.; Xian, F.; Su, H. Water and nitrogen coupling effects of under-membrane drip irrigation for machine harvested cotton in the dry zone of western Inner Mongolia. J. Appl. Ecol. 2016, 27, 845–854. [Google Scholar]
- Yi, R.C.; Shen, X.J.; Li, S.M.; Xue, Z.; Dong, J.S.; Yang, L.X.; Gao, Y. Study on the technical parameters of drip irrigation for winter wheat in northern Henan Province. J. Soil Water Conserv. 2023, 37, 208–216. [Google Scholar]
- Yang, Y.P.; Yin, J.; Ma, Z.H.; Wei, X.D.; Sun, F.B.; Yang, Z. Water and Nitrogen Regulation Effects and System Optimization for Potato (Solanum tuberosum L.) under Film Drip Irrigation in the Dry Zone of Ningxia China. Agronomy 2023, 13, 308. [Google Scholar] [CrossRef]
- Xia, G.M.; Wang, Y.J.; Hu, J.Q.; Wang, S.J.; Zhang, Y.; Wu, Q.; Chi, D.C. Effects of supplemental irrigation on water and nitrogen use, yield, and kernel quality of peanut under nitrogen-supplied conditions. Agric. Water Manag. 2021, 243, 106518. [Google Scholar] [CrossRef]
- Si, Z.Y.; Gao, Y.; Shen, X.J.; Liu, H.; Duan, A.W. Effects of water and nitrogen availability on summer cotton yield, water and nitrogen use and soil nitrate nitrogen accumulation. J. Appl. Ecol. 2017, 28, 3945–3954. [Google Scholar]
- Wagg, C.; Hann, S.; Kupriyanovich, Y.; Li, S. Timing of short period water stress determines potato plant growth, yield and tuber quality. Agric. Water Manag. 2021, 247, 106731. [Google Scholar] [CrossRef]
- Kaur, H.; Kohli, S.K.; Khanna, K.; Bhardwaj, R. Scrutinizing the impact of water deficit in plants: Transcriptional regulation, signaling, photosynthetic efficacy, and management. Physiol. Plant. 2021, 172, 935–962. [Google Scholar] [CrossRef]
- Plaut, Z.; Butow, B.J.; Blumenthal, C.S.; Wrigley, C.W. Transport of dry matter into developing wheat kernels and its contribution to grain yield under post-anthesis water deficit and elevated temperature. Field Crops Res. 2004, 86, 185–198. [Google Scholar] [CrossRef]
- Hu, S.J.; Tian, C.Y.; Wang, F.; Song, Y.D.; Zhong, X.C.; Liang, Z.; Ma, X.W.; Feng, Y.Z. Preliminary study on the coupling effect of water and fertilizer on cotton under drip irrigation. Arid. Zone Resour. Environ. 2005, 02, 192–195. [Google Scholar]
- Yan, F.L.; Zhang, F.C.; Fan, X.K.; Fan, J.L.; Wang, Y.; Zou, H.Y.; Wang, H.D.; Li, G.D. Determining irrigation amount and fertilization rate to simultaneously optimize grain yield, grain nitrogen accumulation and economic benefit of drip-fertigated spring maize in northwest China. Agric. Water Manag. 2021, 243, 106440. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, F.C.; Yuan, Y.X.; Qiang, S.C.; Fang, D.P. The effect of irrigation and fertilization on growth and quality of tomato under fertigation in greenhouse. Agric. Res. Arid Areas 2014, 32, 206–212. [Google Scholar]
- Wang, X.; Xiang, Y.Z.; Guo, J.J.; Tang, Z.J.; Zhao, S.T.; Wang, H.; Li, Z.J.; Zhang, F.C. Coupling effect analysis of drip irrigation and mixed slow-release nitrogen fertilizer on yield and physiological characteristics of winter wheat in Guanzhong area. Field Crops Res. 2023, 302, 109103. [Google Scholar] [CrossRef]
- Xia, G.M.; Chen, J.X.; Chi, D.C. Effect of water and nitrogen coupling effect of under-membrane drip irrigation on the yield of black peanut. China Rural. Water Conserv. Hydropower 2016, 401, 1–6. [Google Scholar]
- Zou, H.Y.; Fan, J.L.; Zhang, F.C.; Xiang, Y.Z.; Wu, L.F.; Yan, S.C. Optimization of drip irrigation and fertilization regimes for high grain yield, crop water productivity and economic benefits of spring maize in Northwest China. Agric. Water Manag. 2020, 230, 105986. [Google Scholar] [CrossRef]
- Xing, Y.Y.; Zhang, F.C.; Zhang, Y.; Li, J.; Qiang, S.C.; Wu, L.F. Effect of Irrigation and Fertilizer Coupling on Greenhouse Tomato Yield, Quality, Water and Nitrogen Utilization Under Fertigation. Sci. Agric. Sin. 2015, 48, 713–726. [Google Scholar]
- Qiu, H.N.; Yang, S.H.; Jiang, Z.W.; Xu, Y.; Jiao, X.Y. Effect of irrigation and fertilizer management on rice yield and nitrogen loss: A meta-analysis. Plants 2022, 11, 1690. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.X.; Wang, Q.Q.; Xia, G.M.; Wu, Q.; Chi, D.C. Continuous regulated deficit irrigation enhances peanut water use efficiency and drought resistance. Agric. Water Manag. 2021, 255, 106997. [Google Scholar] [CrossRef]
- Srivastava, R.K.; Panda, R.K.; Chakraborty, A.; Halder, D. Enhancing grain yield, biomass and nitrogen use efficiency of maize by varying sowing dates and nitrogen rate under rainfed and irrigated conditions. Field Crops Res. 2018, 221, 339–349. [Google Scholar] [CrossRef]
- Plaza-Bonilla, D.; Nolot, J.M.; Raffaillac, D.; Justes, E. Innovative cropping systems to reduce N inputs and maintain wheat yields by inserting grain legumes and cover crops in southwestern France. Eur. J. Agron. 2017, 82, 331–341. [Google Scholar] [CrossRef]
- Longnecker, N.; Kirby, E.J.M.; Robson, A. Leaf Emergence, Tiller Growth, and Apical Development of Nitrogen-Dificient Spring Wheat. Crop Sci. 1993, 33, 154–160. [Google Scholar] [CrossRef]
- Rodriguez, D.; Goudriaan, J. Effects of phosphorus and drought stresses on dry matter and phosphorus allocation in wheat. J. Plant Nutr. 1995, 18, 2501–2517. [Google Scholar] [CrossRef]
- Qi, Y.L.; Zhang, F.C.; Li, K.F. Effects of water deficit and nitrogen application on the growth and nitrogen uptake of winter wheat. J. Appl. Ecol. 2009, 20, 2399–2405. [Google Scholar]
- Liu, X.G.; Xu, H.; Cheng, J.H.; Jin, L.J.; Yang, Q.L.; Huang, Z.M. Effect of water-fertilizer coupling on the growth and water use of small-grain coffee seedlings. J. Zhejiang Univ. (Agric. Life Sci. Ed.) 2014, 40, 33–40. [Google Scholar]
- Fang, X.M.; Li, Y.S.; Nie, J.; Wang, C.; Huang, K.H.; Zhang, Y.K.; Zhang, Y.L.; She, H.Z.; Liu, X.B.; Ruan, R.W.; et al. Effects of nitrogen fertilizer and planting density on the leaf photosynthetic characteristics, agronomic traits and grain yield in common buckwheat (Fagopyrum esculentum M.). Field Crops Res. 2018, 219, 160–168. [Google Scholar] [CrossRef]
- Edmeades, G.O.; Daynard, T.B. The relationship between final yield and photosynthesis at flowering in individual maize plants. Can. J. Plant Sci. 1979, 59, 585–601. [Google Scholar] [CrossRef]
- Li, C.Y.; Kong, X.Q.; Luo, Z.; Li, W.J.; Tang, W.; Zhang, D.M.; Ma, C.L.; Dong, H.Z. Exogenous application of acetic acid improves the survival rate of cotton by increasing abscisic acid and jasmonic acid contents under drought stress. Acta Physiol. Plant. 2021, 43, 32. [Google Scholar] [CrossRef]
- Su, P.H.; Qi, G.P.; Kang, Y.X.; Wang, J.H.; Zhang, Z.P.; Li, X.M.; Cai, L.H.; Zhao, M. Effects of loss-regulating irrigation on photosynthetic characteristics and biomass of alfalfa under intercropping pattern of Chinese wolfberry and alfalfa. China Rural Water Conserv. Hydropower 2019, 442, 71–75+82. [Google Scholar]
- Shen, X.J.; Sun, J.S.; Zhang, J.Y.; Gao, Y.; Wang, J.L.; Liu, H. Effect of water regulation on yield and water use efficiency of wheat stubble cotton. J. Agric. Mach. 2014, 45, 150–160. [Google Scholar]
- Li, P.C.; Dong, H.L.; Liu, A.Z.; Liu, J.R.; Li, R.Y.; Sun, M.; Li, Y.B.; Mao, S.C. Effect of nitrogen application on physiological characteristics, nitrogen use efficiency and yield of functional leaves in cotton. J. Plant Nutr. Fertil. 2015, 21, 81–91. [Google Scholar]
- Ye, T.Y.; Ma, J.F.; Zhang, P.; Shan, S.; Liu, L.L.; Tang, L.; Cao, W.X.; Liu, B.; Zhu, Y. Interaction effects of irrigation and nitrogen on the coordination between crop water productivity and nitrogen use efficiency in wheat production on the North China Plain. Agric. Water Manag. 2022, 271, 107787. [Google Scholar] [CrossRef]
- He, P.Y.; Zhang, Y.; Zhou, L.; Zhou, L.; Huang, K.F.; Huang, X.Y. Effects of drought stress and nitrogen fertilizer regulation on morphology, physiological characteristics and yield of buckwheat plants. J. Appl. Environ. Biol. 2022, 28, 128–134. [Google Scholar]
- Wang, X.B.; Shangguan, Z.P. Regulation of nitrogen on root vigor and growth of different genotypes of wheat under drought stress. J. Wheat Crops 2017, 37, 820–827. [Google Scholar]
- Cong, X.; Zhang, L.Z.; Xu, Z.H.; Pang, G.B.; Feng, Y.M.; Zhao, D.L. Effects of water and nitrogen intercropping on water and fertilizer use efficiency and economic benefits of winter wheat. J. Agric. Mach. 2021, 52, 315–324. [Google Scholar]
- Feng, S.Y.; Wang, F.X.; Huang, G.H. Field experimental study on the coupling effect of water and fertilizer on peanut under sprinkler irrigation. J. Agric. Eng. 1998, 4, 98–102. [Google Scholar]
- Xia, G.M.; Chu, F.Y.; Chen, J.X.; Chen, G.M.; Yao, Z.Z. Effects of different irrigation amounts on yield and water use efficiency of black peanut based on sub-membrane drip irrigation. J. Shenyang Agric. Univ. 2015, 46, 119–123. [Google Scholar]
- Ren, G.; Wu, Z.B.; Zhang, H.Q. Experimental study on water consumption pattern of peanut and its water-saving irrigation system. Shanxi Water Conserv. Sci. Technol. 2009, 84–86. [Google Scholar]
- Li, J.P.; Wang, Z.M.; Song, Y.H.; Li, J.C.; Zhang, Y.H. Effects of reducing nitrogen application rate under different irrigation methods on grain yield, water and nitrogen utilization in winter wheat. Agronomy 2022, 12, 1835. [Google Scholar] [CrossRef]
- Al-Kaisi, M.M.; Yin, X. Effects of nitrogen rate, irrigation rate, and plant population on corn yield and water use efficiency. Agron. J. 2003, 95, 1475–1482. [Google Scholar] [CrossRef]
- Huang, C.; Liu, Z.D.; Zhao, B.; Zhang, K.; Ning, D.F.; Qin, A.Z.; Li, S. Research on photosynthetic and water consumption characteristics of summer maize at different yield levels. J. Irrig. Drain. 2019, 38, 19–28. [Google Scholar]
- Aujla, M.S.; Thind, H.S.; Buttar, G.S. Cotton yield and water use efficiency at various levels of water and N through drip irrigation under two methods of planting. Agric. Water Manag. 2005, 71, 167–179. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao Rome 1998, 300, D05109. [Google Scholar]
- Announcement No. 133 of the Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Gazette of the Ministry of Agriculture and Rural Affairs of the People’s Republic of China, 29 January 2019; p. 62.
- Shen, X.J.; Sun, J.S.; Zhang, J.Y.; Song, N.; Liu, X.F.; Yang, L. Research on the calculation of average soil water content under drip irrigation conditions. J. Soil Water Conserv. 2011, 25, 241–244+253. [Google Scholar]
- Shen, X.J. Real-Time Irrigation Forecasting Technology for Cotton with under-Membrane Drip Irrigation; Shihezi University: Shihezi, China, 2008. [Google Scholar]
Treatment | Main Stem Height (cm) | First Branch Length (cm) | Branch Number (pcs·plant−1) | Shoot Dry Mass (kg·ha−1) | LAI | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Seedling Stage | Flowering–Pegging Stage | Pod-Setting Stage | Pod-Filling Stage | Seedling Stage | Flowering–Pegging Stage | Pod-Setting Stage | Pod-Filling Stage | Seedling stage | Flowering–Pegging Stage | Pod-Setting Stage | Pod-Filling Stage | Seedling Stage | Flowering–Pegging Stage | Pod-Setting Stage | Pod-Filling Stage | Seedling Stage | Flowering–Pegging Stage | Pod-Setting Stage | Pod-Filling Stage | |
W1N2 | 3.23 bc | 11.60 abc | 16.47 c | 19.53 d | 3.20 b | 12.03 ab | 17.37 bc | 23.50 c | 8.67 a | 12.67 ab | 13.67 ab | 14.67 b | 752.59 a | 3937.19 c | 6848.20 cd | 8712.30 cd | 0.53 a | 0.91 bc | 3.85 b | 4.47 cd |
W2N2 | 3.97 ab | 12.30 ab | 19.17 ab | 26.73 b | 3.97 ab | 13.13 a | 18.33 b | 33.10 a | 7.67 a | 12.67 ab | 16.00 a | 17.00 a | 760.89 a | 4778.07 a | 11,231.80 a | 18,409.09 a | 0.51 a | 1.66 a | 4.73 a | 8.56 a |
W3N2 | 2.77 bc | 13.67 a | 19.77 a | 28.13 a | 3.40 ab | 13.73 a | 23.67 a | 33.40 a | 8.67 a | 13.33 a | 16.00 a | 16.67 a | 789.93 a | 4659.56 ab | 8225.98 bc | 11,868.84 b | 0.51 a | 1.14 b | 4.64 a | 7.34 b |
W1N1 | 4.57 a | 8.93 d | 10.40 e | 15.50 e | 4.33 a | 9.20 c | 9.83 d | 18.47 e | 7.67 a | 10.00 c | 12.33 b | 12.67 c | 719.41 a | 1598.81 e | 4520.69 e | 6709.33 d | 0.51 a | 0.74 c | 1.96 d | 2.88 e |
W2N1 | 3.20 bc | 10.07 bcd | 16.07 c | 24.13 c | 4.07 ab | 11.53 ab | 14.93 c | 26.97 b | 8.00 a | 12.33 ab | 14.33 ab | 14.67 b | 685.04 a | 4118.52 bc | 7689.28 bc | 9256.69 bcd | 0.5 a | 0.93 bc | 4.06 ab | 4.78 c |
W3N1 | 3.50 abc | 11.50 abc | 18.40 b | 26.10 b | 4.03 ab | 12.23 ab | 19.93 b | 27.40 b | 7.33 a | 12.00 b | 15.00 a | 15.67 ab | 744.30 a | 4699.85 ab | 8727.51 b | 10,353.78 bc | 0.52 a | 1.14 b | 4.25 ab | 5.4 c |
W2N0 | 2.60 c | 9.43 cd | 15.00 d | 19.07 c | 3.60 ab | 10.80 bc | 14.77 b | 20.23 d | 8.00 a | 11.67 b | 14.00 ab | 15.00 b | 764.44 a | 2680.89 d | 6123.85 d | 8255.21 cd | 0.49 a | 0.43 d | 2.75 c | 3.63 cd |
W | ns | ** | ** | ** | ns | ** | ** | ** | ns | ** | ** | ** | ns | ** | ** | ** | ns | ** | ** | ** |
N | ns | ** | ** | ** | ns | ** | ** | ** | ns | ** | * | * | ns | ** | ** | ** | ns | ** | ** | ** |
W × N | ns | ns | ** | ** | ns | ns | ns | * | ns | * | ns | ns | ns | ** | ** | ** | ns | * | * | * |
Treatment | SPAD | Net Photosynthetic Rate (µmol m−2 s−1) | Transpiration Rate (mmol m−2 s−1) | Stomatal Conductance (mol m−2 s−1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Seedling Stage | Flowering–Pegging Stage | Pod-Setting Stage | Pod-Filling Stage | Flowering–Pegging Stage | Pod-Setting Stage | Pod-Filling Stage | Flowering–Pegging Stage | Pod-Setting Stage | Pod-Filling Stage | Flowering–Pegging Stage | Pod-Setting Stage | Pod-Filling Stage | |
W1N2 | 49.70 a | 50.37 de | 54.50 d | 44.90 c | 13.79 de | 9.50 d | 5.26 c | 3.36 bc | 2.02 d | 1.73 a | 0.14 b | 0.07 c | 0.04 b |
W2N2 | 50.30 a | 53.90 a | 58.90 a | 54.23 a | 17.49 a | 14.30 a | 7.03 a | 6.43 a | 2.88 a | 1.95 a | 0.31 a | 0.12 a | 0.05 a |
W3N2 | 50.77 a | 52.43 b | 58.03 b | 47.80 b | 15.47 b | 10.91 c | 6.75 ab | 4.18 b | 2.77 a | 1.73 a | 0.18 b | 0.08 b | 0.05 ab |
W1N1 | 49.80 a | 50.27 de | 50.30 f | 41.73 d | 14.31 cd | 7.81 e | 1.41 d | 2.16 d | 1.61 e | 0.37 c | 0.08 b | 0.04 d | 0.01 d |
W2N1 | 50.63 a | 51.17 cd | 55.23 c | 45.30 c | 14.53 bcd | 9.67 d | 1.86 d | 5.95 a | 2.31 c | 0.94 b | 0.28 a | 0.07 c | 0.02 c |
W3N1 | 49.80 a | 52.13 bc | 57.83 b | 47.37 b | 15.08 bc | 12.14 b | 4.46 c | 3.34 bc | 2.41 b | 1.81 a | 0.14 b | 0.08 c | 0.05 ab |
W2N0 | 49.37 a | 50.00 e | 51.67 e | 44.07 c | 13.05 e | 7.05 e | 5.64 bc | 2.59 cd | 2.14 d | 1.59 a | 0.13 b | 0.06 c | 0.05 ab |
W | ns | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** |
N | ns | ** | ** | ** | ** | ** | ** | ** | ** | ** | * | ** | ** |
W × N | ns | * | ** | ** | ns | ** | ** | ns | * | ** | ns | ** | ** |
Treatment | Pod Yield (Mg·ha−1) | 100-Pod Weight(g) | 500 g Pod Number (pcs) | Kernel Rate (%) | 100-Kernel Weight (g) | Pod per Plant (pcs) | Pod Weight per Plant (g) | WUE (kg·m−3) | IWUE (kg·m−3) | NPP (kg·kg−1) |
---|---|---|---|---|---|---|---|---|---|---|
W1N2 | 2.7486 d | 140.82 d | 373.00 b | 61.76 e | 63.24 de | 15.67 bc | 17.75 cd | 0.86 d | 1.06 d | 24.99 e |
W2N2 | 4.5227 b | 179.42 b | 301.00 cd | 68.29 abc | 77.44 c | 19.00 b | 22.84 bc | 1.25 ab | 1.38 a | 41.12 c |
W3N2 | 5.2974 a | 208.54 a | 257.67 e | 70.83 a | 95.42 a | 24.00 a | 31.14 a | 1.32 a | 1.41 a | 48.16 b |
W1N1 | 2.2489 d | 136.58 d | 407.00 a | 62.93 de | 58.64 e | 13.00 c | 14.82 d | 0.68 e | 0.86 e | 29.02 d |
W2N1 | 3.6982 c | 165.26 c | 314.33 c | 66.47 bc | 72.86 c | 18.00 b | 21.11 abc | 1.01 cd | 1.12 c | 47.72 b |
W3N1 | 4.6977 b | 180.81 b | 281.67 de | 69.13 ab | 85.29 b | 19.67 b | 25.67 ab | 1.15 bc | 1.24 b | 60.61 a |
W2N0 | 3.3983 c | 156.48 c | 350.00 b | 65.61 cd | 70.33 cd | 17.67 b | 20.43 abc | 0.91 d | 1.08 d | - |
W | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** |
N | ** | ** | ** | ns | ** | ns | ns | ** | ** | ** |
W × N | ** | * | ns | ns | ns | ns | ns | ** | ** | ** |
Index | Pod Yield | 100-Pod Weight | 500 g Pod Number | Kernel Rate | 100-Kernel Weight | Pod per Plant | Pod Weight per Plant |
---|---|---|---|---|---|---|---|
Main stem height | 0.928 ** | 0.902 ** | −0.950 ** | 0.791 ** | 0.870 ** | 0.769 ** | 0.759 ** |
First branch Length | 0.873 ** | 0.843 ** | −0.842 ** | 0.694 ** | 0.785 ** | 0.700 ** | 0.691 ** |
Branch number | 0.803 ** | 0.730 ** | −0.712 ** | 0.555 ** | 0.695 ** | 0.713 ** | 0.598 ** |
Shoot dry mass | 0.613 ** | 0.561 ** | −0.538 * | 0.519 * | 0.427 | 0.426 | 0.336 |
LAI | 0.735 ** | 0.715 ** | −0.706 ** | 0.603 ** | 0.652 ** | 0.616 ** | 0.654 ** |
Treatment | Seedling Stage | Flowering–Pegging Stage | Pod-Setting Stage | Pod-Filling Stage | Total Growth Stage | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Water Consumption(mm) | Water Consumption Intensity (mm·d−1) | Water Consumption Percentage (%) | Water Consumption(mm) | Water Consumption Intensity (mm·d−1) | Water Consumption Percentage (%) | Water Consumption(mm) | Water Consumption Intensity (mm·d−1) | Water Consumption Percentage (%) | Water Consumption(mm) | Water Consumption Intensity (mm·d−1) | Water Consumption Percentage (%) | Water Consumption(mm) | |
W1N2 | 48.26 | 1.72 | 15.02 | 102.43 | 3.53 | 31.88 | 131.70 | 3.56 | 40.99 | 38.95 | 0.87 | 12.12 | 321.33 |
W2N2 | 51.66 | 1.85 | 14.33 | 114.98 | 3.96 | 31.91 | 151.61 | 4.10 | 42.07 | 42.13 | 0.94 | 11.69 | 360.38 |
W3N2 | 50.34 | 1.80 | 12.50 | 121.56 | 4.19 | 30.20 | 176.37 | 4.77 | 43.81 | 54.30 | 1.21 | 13.49 | 402.57 |
W1N1 | 47.09 | 1.68 | 14.28 | 104.86 | 3.62 | 31.79 | 137.81 | 3.72 | 41.78 | 40.05 | 0.89 | 12.14 | 329.81 |
W2N1 | 50.43 | 1.80 | 13.74 | 120.08 | 4.14 | 32.73 | 153.47 | 4.15 | 41.83 | 42.93 | 0.95 | 11.70 | 366.91 |
W3N1 | 48.44 | 1.73 | 11.88 | 126.70 | 4.37 | 31.08 | 178.16 | 4.82 | 43.71 | 54.30 | 1.21 | 13.32 | 407.60 |
W2N0 | 49.52 | 1.77 | 13.29 | 122.90 | 4.24 | 32.99 | 155.60 | 4.21 | 41.77 | 44.49 | 0.99 | 11.94 | 372.51 |
Index | x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | x9 | x10 |
---|---|---|---|---|---|---|---|---|---|---|
x1 | - | |||||||||
x2 | 0.935 ** | - | ||||||||
x3 | −0.942 ** | −0.938 ** | - | |||||||
x4 | 0.853 ** | 0.862 ** | −0.845 ** | - | ||||||
x5 | 0.932 ** | 0.952 ** | −0.947 ** | 0.830 ** | - | |||||
x6 | 0.784 ** | 0.761 ** | −0.770 ** | 0.613 ** | 0.797 ** | - | ||||
x7 | 0.784 ** | 0.786 ** | −0.783 ** | 0.615 ** | 0.826 ** | 0.784 ** | - | |||
x8 | 0.947 ** | 0.876 ** | −0.908 ** | 0.765 ** | 0.877 ** | 0.776 ** | 0.803 ** | - | ||
x9 | 0.896 ** | 0.806 ** | −0.842 ** | 0.689 ** | 0.818 ** | 0.729 ** | 0.761 ** | 0.985 ** | - | |
x10 | 0.798 ** | 0.710 ** | −0.808 ** | 0.731 ** | 0.760 ** | 0.634 ** | 0.664 ** | 0.707 ** | 0.608 ** | - |
Treatment | Membership Function Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
R(x1) | R(x2) | R(x3) | R(x4) | R(x5) | R(x6) | R(x7) | R(x8) | R(x9) | R(x10) | |
W1N2 | 0.145 | 0.160 | 0.307 | 0.191 | 0.234 | 0.262 | 0.129 | 0.237 | 0.307 | 0.046 |
W2N2 | 0.659 | 0.600 | 0.716 | 0.635 | 0.559 | 0.500 | 0.318 | 0.782 | 0.803 | 0.452 |
W3N2 | 0.884 | 0.931 | 0.962 | 0.808 | 0.971 | 0.857 | 0.624 | 0.865 | 0.836 | 0.629 |
W1N1 | 0.000 | 0.112 | 0.114 | 0.270 | 0.129 | 0.071 | 0.021 | 0.000 | 0.000 | 0.147 |
W2N1 | 0.420 | 0.439 | 0.640 | 0.511 | 0.454 | 0.429 | 0.253 | 0.445 | 0.390 | 0.618 |
W3N1 | 0.710 | 0.616 | 0.826 | 0.692 | 0.739 | 0.548 | 0.422 | 0.642 | 0.581 | 0.943 |
W2N0 | 0.333 | 0.338 | 0.438 | 0.453 | 0.397 | 0.405 | 0.228 | 0.314 | 0.337 | - |
Component | Eigenvalue | Variance (%) | Contribution Rate (%) |
---|---|---|---|
1 | 8.399 | 83.989 | 83.989 |
2 | 0.574 | 5.744 | 89.733 |
3 | 0.387 | 3.871 | 93.604 |
4 | 0.242 | 2.419 | 96.023 |
5 | 0.204 | 2.035 | 98.059 |
6 | 0.113 | 1.134 | 99.193 |
7 | 0.047 | 0.466 | 99.659 |
8 | 0.027 | 0.268 | 99.927 |
9 | 0.006 | 0.062 | 99.989 |
10 | 0.001 | 0.011 | 100.000 |
Index | Principal Component | |
---|---|---|
1 | 2 | |
x1 | 0.987 | −0.038 |
x2 | 0.953 | −0.078 |
x3 | −0.967 | 0.109 |
x4 | 0.863 | −0.383 |
x5 | 0.964 | −0.046 |
x6 | 0.869 | 0.316 |
x7 | 0.859 | 0.277 |
x8 | 0.962 | 0.15 |
x9 | 0.915 | 0.258 |
x10 | 0.807 | −0.375 |
Treatment | Principal Component Analysis | Membership Function Method | ||
---|---|---|---|---|
Comprehensive Score | Comprehensive Ranking | Comprehensive Score | Comprehensive Ranking | |
W1N2 | −2.035 | 6 | 0.202 | 6 |
W2N2 | 1.486 | 3 | 0.602 | 3 |
W3N2 | 4.004 | 1 | 0.837 | 1 |
W1N1 | −3.851 | 7 | 0.086 | 7 |
W2N1 | −0.287 | 4 | 0.460 | 4 |
W3N1 | 1.538 | 2 | 0.672 | 2 |
W2N0 | −0.856 | 5 | 0.324 | 5 |
Soil Layer (cm) | Available p (mg·kg−1) | Available K (mg·kg−1) | Alkaline Hydrolysis N (mg·kg−1) | Organic Matter (g·kg−1) | Bulk Density (g·cm−3) |
---|---|---|---|---|---|
0–20 | 23.77 | 199.06 | 42.98 | 14.86 | 1.35 |
20–40 | 22.17 | 169.33 | 32.04 | 14.28 | 1.43 |
40–60 | 22.86 | 114.46 | 43.41 | 9.73 | 1.44 |
Treatment | Irrigation Quota (mm) | Irrigation Cycle (d) | Fertilizer-N Application Rate (kg·ha−1) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Sowing–Emergence Stage | Seedling Stage | Flowering–Pegging Stage | Pod-Setting Stage | Pod-Filling Stage | Seedling Stage | Flowering–Pegging Stage | Pod-Setting Stage | Pod-Filling Stage | ||
W1N2 | 45 | - | 22.5 | 22.5 | 22.5 | - | 10 | 10 | 15 | 110 |
W2N2 | 45 | - | 30 | 30 | 30 | - | 10 | 10 | 15 | 110 |
W3N2 | 45 | - | 37.5 | 37.5 | 37.5 | - | 10 | 10 | 15 | 110 |
W1N1 | 45 | - | 22.5 | 22.5 | 22.5 | - | 10 | 10 | 15 | 77.5 |
W2N1 | 45 | - | 30 | 30 | 30 | - | 10 | 10 | 15 | 77.5 |
W3N1 | 45 | - | 37.5 | 37.5 | 37.5 | - | 10 | 10 | 15 | 77.5 |
W2N0 | 45 | - | 30 | 30 | 30 | - | 10 | 10 | 15 | 0 |
Day after Sowing (d) | Irrigation Quota (mm) | Fertilizer–N Application Rate (kg·ha−1) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
W1N2 | W2N2 | W3N2 | W1N1 | W2N1 | W3N1 | W2N0 | W1N2 | W2N2 | W3N2 | W1N1 | W2N1 | W3N1 | W2N0 | |
1 | 45.00 | 45.00 | 45.00 | 45.00 | 45.00 | 45.00 | 45.00 | 45 | 45 | 45 | 45 | 45 | 45 | - |
32 | 25.34 | 30.93 | 23.02 | 24.91 | 27.53 | 28.36 | 19.57 | 16.25 | 16.25 | 16.25 | 8.125 | 8.125 | 8.125 | - |
42 | 23.27 | 30.00 | 42.28 | 22.90 | 31.11 | 37.50 | 30.00 | 16.25 | 16.25 | 16.25 | 8.125 | 8.125 | 8.125 | - |
53 | 22.50 | 30.00 | 37.50 | 22.50 | 30.00 | 37.50 | 30.00 | 16.25 | 16.25 | 16.25 | 8.125 | 8.125 | 8.125 | - |
62 | 22.50 | 30.00 | 37.50 | 22.02 | 30.00 | 37.50 | 30.00 | 16.25 | 16.25 | 16.25 | 8.125 | 8.125 | 8.125 | - |
74 | 22.50 | 33.15 | 37.50 | 22.50 | 30.00 | 38.67 | 30.00 | - | - | - | - | - | - | - |
84 | 22.50 | 37.53 | 46.90 | 24.00 | 37.53 | 45.09 | 37.53 | - | - | - | - | - | - | - |
101 | 30.00 | 37.53 | 45.00 | 30.49 | 37.53 | 46.57 | 39.26 | - | - | - | - | - | - | - |
118 | 22.50 | 30.00 | 37.50 | 23.49 | 30.00 | 37.99 | 30.00 | - | - | - | - | - | - | - |
130 | 22.50 | 22.53 | 24.50 | 22.53 | 30.53 | 22.53 | 22.53 | - | - | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, J.; Xue, Z.; Shen, X.; Yi, R.; Chen, J.; Li, Q.; Hou, X.; Miao, H. Effects of Different Water and Nitrogen Supply Modes on Peanut Growth and Water and Nitrogen Use Efficiency under Mulched Drip Irrigation in Xinjiang. Plants 2023, 12, 3368. https://doi.org/10.3390/plants12193368
Dong J, Xue Z, Shen X, Yi R, Chen J, Li Q, Hou X, Miao H. Effects of Different Water and Nitrogen Supply Modes on Peanut Growth and Water and Nitrogen Use Efficiency under Mulched Drip Irrigation in Xinjiang. Plants. 2023; 12(19):3368. https://doi.org/10.3390/plants12193368
Chicago/Turabian StyleDong, Jianshu, Zhu Xue, Xiaojun Shen, Ruochen Yi, Junwei Chen, Qiang Li, Xianfei Hou, and Haocui Miao. 2023. "Effects of Different Water and Nitrogen Supply Modes on Peanut Growth and Water and Nitrogen Use Efficiency under Mulched Drip Irrigation in Xinjiang" Plants 12, no. 19: 3368. https://doi.org/10.3390/plants12193368
APA StyleDong, J., Xue, Z., Shen, X., Yi, R., Chen, J., Li, Q., Hou, X., & Miao, H. (2023). Effects of Different Water and Nitrogen Supply Modes on Peanut Growth and Water and Nitrogen Use Efficiency under Mulched Drip Irrigation in Xinjiang. Plants, 12(19), 3368. https://doi.org/10.3390/plants12193368