Effects of Post-Anthesis Irrigation on the Activity of Starch Synthesis-Related Enzymes and Wheat Grain Quality under Different Nitrogen Conditions
<p>Effects of different treatments of irrigation (<b>a</b>—I<sub>0</sub>, <b>b</b>—I<sub>1</sub>, and <b>c</b>—I<sub>2</sub>) and nitrogen fertilizer on the starch content in wheat grains during the grain-filling period. Data are the mean ± standard deviation (n = 3). The different letters on top of the error bars represent significant differences (<span class="html-italic">p</span> < 0.05).</p> "> Figure 2
<p>Effects of the different treatments of irrigation (<b>a</b>—I<sub>0</sub>, <b>b</b>—I<sub>1</sub>, and <b>c</b>—I<sub>2</sub>) and nitrogen fertilizer on the amylopectin content in wheat grains during the grain-filling period. Data are the mean ± standard deviation (n = 3). The different letters on top of the error bars represent significant differences (<span class="html-italic">p</span> < 0.05).</p> "> Figure 3
<p>Effects of the different treatments (<b>a</b>—I<sub>0</sub>, <b>b</b>—I<sub>1</sub>, and <b>c</b>—I<sub>2</sub>) on ADPG-PPase activity in wheat grains during the grain-filling period. Data are the mean ± standard deviation (n = 3). The different letters on top of the error bars represent significant differences (<span class="html-italic">p</span> < 0.05).</p> "> Figure 4
<p>Effects of the different treatments (<b>a</b>—I<sub>0</sub>, <b>b</b>—I<sub>1</sub>, and <b>c</b>—I<sub>2</sub>) on SSS activity in wheat grains during the grain-filling period. Data are the mean ± standard deviation (n = 3). The different letters on top of the error bars represent significant differences (<span class="html-italic">p</span> < 0.05).</p> "> Figure 5
<p>Effects of the different treatments (<b>a</b>—I<sub>0</sub>, <b>b</b>—I<sub>1</sub>, <b>c</b>—I<sub>2</sub>) on GBSS activity in wheat grains during the grain-filling period. Data are the mean ± standard deviation (n = 3). The different letters on top of the error bars represent significant differences (<span class="html-italic">p</span> < 0.05).</p> "> Figure 6
<p>Effects of different treatments (<b>a</b>—I<sub>0</sub>, <b>b</b>—I<sub>1</sub>, <b>c</b>—I<sub>2</sub>) on SBE activity in wheat grains during the grain-filling period. Data are the mean ± standard deviation (n = 3). The different letters on top of the error bars represent significant differences (<span class="html-italic">p</span> < 0.05).</p> "> Figure 7
<p>Rain, PAR, T<sub>max</sub>, and T<sub>min</sub> during the winter wheat growing season of 2022–2023.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Effect of Different Water–Nitrogen Treatments on the Soluble Sugar Content of Winter Wheat Grains
2.2. Effect of Different Water–Nitrogen Treatments on Starch Accumulation in Winter Wheat Grains
2.3. Effect of Different Water–Nitrogen Treatments on Amylopectin Content in Winter Wheat Grains
2.4. Dynamics of Enzyme Activity in Relation to the Conversion of Sucrose into Starch with Different Water–Nitrogen Treatments
2.4.1. Dynamics of ADPG-PPase Activity under Different Water–Nitrogen Treatments
2.4.2. Dynamics of SSS Activity under Different Water–Nitrogen Treatments
2.4.3. Dynamics of GBSS Activity under Different Water–Nitrogen Treatments
2.4.4. Dynamics of SBE Activity under Different Water–Nitrogen Treatments
2.5. Effect of Different Water–Nitrogen Treatments on the Grain Quality and Yield of Winter Wheat
3. Discussion
3.1. The Effects of Different Water and Nitrogen Treatments on the Activity of Starch Synthesis-Related Enzymes
3.2. The Effects of Different Water and Nitrogen Treatments on the Grains’ Soluble Sugar and Starch Content
3.3. The Effects of Different Water and Nitrogen Treatments on Grain Quality and the Yield of Winter Wheat
4. Materials and Methods
4.1. Plant Materials and Site Description
4.2. Experimental Design
4.3. Measurements
4.3.1. Contents of Soluble Sugar and Starch in Wheat Grains
4.3.2. Enzymatic Activity in Wheat Grains
4.3.3. Measurement of Grain Quality and Yield
4.4. Data Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mitura, K.; Cacak-Pietrzak, G.; Feledyn-Szewczyk, B.; Szablewski, T.; Studnicki, M. Yield and grain quality of common wheat (Triticum aestivum L.) depending on the different farming systems (Organic vs. Integrated vs. Conventional). Plants 2023, 12, 1022. [Google Scholar] [CrossRef]
- FAOSTAT. Available online: https://www.fao.org/ (accessed on 29 November 2022).
- Yu, S.M.; Lo, S.F.; Ho, T.H.D. Source–sink communication: Regulated by hormone, nutrient, and stress cross-signaling. Trends Plant Sci. 2015, 20, 844–857. [Google Scholar] [CrossRef]
- Stein, O.; Granot, D. An overview of sucrose synthases in plants. Front. Plant Sci. 2019, 10, 95. [Google Scholar] [CrossRef]
- Chen, T.; Li, G.; Islam, M.R.; Fu, W.; Feng, B.; Tao, L.; Fu, G. Abscisic acid synergizes with sucrose to enhance grain yield and quality of rice by improving the source-sink relationship. BMC Plant Biol. 2019, 19, 525. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Kim, J.Y. Understanding wheat starch metabolism in properties, environmental stress condition, and molecular approaches for value-added utilization. Plants 2021, 10, 2282. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Tan, H.; Zhang, C.; Li, Q.; Liu, Q. Starch biosynthesis in cereal endosperms: An updated review over the last decade. Plant Commun. 2021, 2, 100237. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhang, J.; Wang, Z.; Xu, G.; Zhu, Q. Activities of key enzymes in sucrose-to-starch conversion in wheat grains subjected to water deficit during grain filling. Plant Physiol. 2004, 135, 1621–1629. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Cui, S.; Zhang, Q.; Xu, G.; Feng, Q.; Chen, C.; Li, Y. Optimizing wheat yield, water, and nitrogen use efficiency with water and nitrogen inputs in China: A synthesis and life cycle assessment. Front. Plant Sci. 2022, 13, 930484. [Google Scholar] [CrossRef]
- Hamani, A.K.M.; Abubakar, S.A.; Si, Z.; Kama, R.; Gao, Y.; Duan, A. Responses of grain yield and water-nitrogen dynamic of drip-irrigated winter wheat (Triticum aestivum L.) to different nitrogen fertigation and water regimes in the North China Plain. Agric. Water Manag. 2023, 288, 108494. [Google Scholar] [CrossRef]
- Ali, N.; Akmal, M. Wheat growth, yield, and quality under water deficit and reduced nitrogen supply. A review. Gesunde Pflanz. 2022, 74, 371–383. [Google Scholar] [CrossRef]
- Zhu, D.; Zhu, G.; Zhang, Z.; Wang, Z.; Yan, X.; Yan, Y. Effects of independent and combined water-deficit and high-nitrogen treatments on flag leaf proteomes during wheat grain development. Int. J. Mol. Sci. 2020, 21, 2098. [Google Scholar] [CrossRef] [PubMed]
- Abid, M.; Ali, S.; Qi, L.; Zahoor, R.; Tian, Z.; Jiang, D.; Snider, J.; Dai, T. Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.). Sci. Rep. 2018, 8, 4615. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Ding, Y.; Long, M.; Liang, W.; Gu, X.; Liu, Y.; Wen, X. Effect of foliar application of various nitrogen forms on starch accumulation and grain filling of wheat (Triticum aestivum L.) under drought stress. Front. Plant Sci. 2021, 12, 645379. [Google Scholar] [CrossRef]
- Abdoli, M.; Saeidi, M. Evaluation of water deficiency at the post anthesis and source limitation during grain filling on grain yield, yield formation, some morphological and phonological traits and gas exchange of bread wheat cultivar. Albanian J. Agric. Sci. 2013, 12, 255–265. [Google Scholar]
- Liu, X.; Gu, W.; Li, C.; Li, J.; Wei, S. Effects of nitrogen fertilizer and chemical regulation on spring maize lodging characteristics, grain filling and yield formation under high planting density in Heilongjiang Province, China. J. Integr. Agric. 2021, 20, 511–526. [Google Scholar] [CrossRef]
- Yu, G.; Gaoyang, Y.; Liu, K.; Shoaib, N.; Deng, Y.; Zhang, N.; Li, Y.; Huang, Y. The structure, function, and regulation of starch synthesis enzymes SSIII with emphasis on maize. Agronomy 2022, 12, 1359. [Google Scholar] [CrossRef]
- Li, G.; Liu, J.; Dong, S.; Liu, P.; Zhang, J.; Zhao, B.; Shi, D. Effects of close planting and nitrogen application rates on grain yield and nitrogen utilization efficiency of different density-tolerance maize hybrids. Sci. Agric. Sin. 2017, 50, 2247–2258. [Google Scholar] [CrossRef]
- Filip, E.; Woronko, K.; Stępień, E.; Czarniecka, N. An overview of factors affecting the functional quality of common wheat (Triticum aestivum L.). Int. J. Mol. Sci. 2023, 24, 7524. [Google Scholar] [CrossRef]
- Si, Z.; Qin, A.; Liang, Y.; Duan, A.; Gao, Y. A review on regulation of irrigation management on wheat physiology, grain yield, and quality. Plants 2023, 12, 692. [Google Scholar] [CrossRef]
- Yan, S.; Wu, Y.; Fan, J.; Zhang, F.; Qiang, S.; Zheng, J.; Xiang, Y.; Guo, J.; Zou, H. Effects of water and fertilizer management on grain filling characteristics, grain weight and productivity of drip-fertigated winter wheat. Agric. Water Manag. 2019, 213, 983–995. [Google Scholar] [CrossRef]
- Mu, Q.; Cai, H.; Sun, S.; Wen, S.; Xu, J.; Dong, M.; Saddique, Q. The physiological response of winter wheat under short-term drought conditions and the sensitivity of different indices to soil water changes. Agric. Water Manag. 2021, 243, 106475. [Google Scholar] [CrossRef]
- Zhao, C.; He, M.; Wang, Z.; Wang, Y.; Lin, Q. Effects of different water availability at post-anthesis stage on grain nutrition and quality in strong-gluten winter wheat. Comptes Rendus Biol. 2009, 332, 759–764. [Google Scholar] [CrossRef]
- Chen, G.; Peng, L.; Gong, J.; Wang, J.; Wu, C.; Sui, X.; Tian, Y.; Hu, M.; Li, C.; He, X.; et al. Effects of water stress on starch synthesis and accumulation of two rice cultivars at different growth stages. Front. Plant Sci. 2023, 14, 1133524. [Google Scholar] [CrossRef]
- Zebarth, B.J.; Botha, E.J.; Rees, H. Rate and time of fertilizer nitrogen application on yield, protein and apparent efficiency of fertilizer nitrogen use of spring wheat. Can. J. Plant Sci. 2007, 87, 709–718. [Google Scholar] [CrossRef]
- Tong, J.; Wang, S.; He, Z.; Zhang, Y. Effects of Reduced Nitrogen Fertilization and Irrigation on Structure and Physicochemical Properties of Starch in Two Bread Wheat Cultivars. Agriculture 2021, 11, 26. [Google Scholar] [CrossRef]
- Horvat, D.; Šimić, G.; Dvojković, K.; Ivić, M.; Plavšin, I.; Novoselović, D. Gluten Protein Compositional Changes in Response to Nitrogen Application Rate. Agronomy 2021, 11, 325. [Google Scholar] [CrossRef]
- Xiong, F.; Yu, X.; Zhou, L.; Zhang, J.; Jin, Y.; Li, D.; Wang, Z. Effect of nitrogen fertilizer on distribution of starch granules in different regions of wheat endosperm. Crop J. 2014, 2, 46–54. [Google Scholar] [CrossRef]
- Yuan, L.; Zhou, T.; Li, K.; Tian, Y.; Xu, Y.; Zhang, J.; Yang, J. Moderate soil drying improves physiological performances and kernel yield of maize. Food Energy Secur. 2022, 12, e444. [Google Scholar] [CrossRef]
- Peng, Y.; Zhao, Y.; Yu, Z.; Zeng, J.; Xu, D.; Dong, J.; Ma, W. Wheat quality formation and its regulatory mechanism. Front. Plant Sci. 2022, 13, 834654. [Google Scholar] [CrossRef]
- Ahmadi, A.; Baker, D.A. The effect of water stress on the activities of key regulatory enzymes of the sucrose to starch pathway in wheat. Plant Growth Regul. 2001, 35, 81–91. [Google Scholar] [CrossRef]
- Thitisaksakul, M.; Jimėnez, R.C.; Arias, M.C.; Beckles, D.M. Effects of environmental factors on cereal starch biosynthesis and composition. J. Cereal Sci. 2012, 56, 67–80. [Google Scholar] [CrossRef]
- Guo, J.; Qu, L.; Hu, Y.; Lu, W.; Lu, D. Proteomics reveals the effects of drought stress on the kernel development and starch formation of waxy maize. BMC Plant Biol. 2021, 21, 434. [Google Scholar] [CrossRef]
- Ma, Y.; Chai, Y.; Guan, S.; Tuerti, T.; Liu, H.; Zhang, Z.; Diao, M. Effects of Different Levels of Nitrogen Supply on Key Enzyme Activities of Nitrogen Metabolism and Growth Stimulation of Endive (Cichorium endivia L.). Sustainability 2022, 14, 15159. [Google Scholar] [CrossRef]
- Yue, K.; Li, L.; Xie, J.; Liu, Y.; Xie, J.; Anwar, S.; Fudjoe, S.K. Nitrogen Supply Affects Yield and Grain Filling of Maize by Regulating Starch Metabolizing Enzyme Activities and Endogenous Hormone Contents. Front. Plant Sci. 2021, 12, 798119. [Google Scholar] [CrossRef]
- Ruan, Y. Sucrose metabolism: Gateway to diverse carbon use and sugar signaling. Annu. Rev. Plant Biol. 2014, 65, 33–67. [Google Scholar] [CrossRef]
- Dong, S.; Beckles, D.M. Dynamic changes in the starch-sugar interconversion within plant source and sink tissues promote a better abiotic stress response. J. Plant Physiol. 2019, 234–235, 80–93. [Google Scholar] [CrossRef]
- Yu, Y.; Qian, C.; Gu, W.; Li, C. Responses of root characteristic parameters and plant dry matter accumulation, distribution and transportation to nitrogen levels for spring maize in northeast China. Agriculture 2021, 11, 308. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, S.; Liang, Y.; Li, B.; Ma, S.; Wang, Z.; Ma, B.; Li, M. Nitrogen levels regulate sugar metabolism and transport in the shoot tips of crabapple plants. Front. Plant Sci. 2021, 12, 626149. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, G.; Chen, Y.; Jinag, Y.; Shi, Y.; Zhao, L.; Liao, P.; Wang, W.; Xu, K.; Dai, Q.; et al. Excessive nitrogen application leads to lower rice yield and grain quality by inhibiting the grain filling of inferior grains. Agriculture 2022, 12, 962. [Google Scholar] [CrossRef]
- The, S.V.; Snyder, R.; Tegeder, M. Targeting Nitrogen Metabolism and Transport Processes to Improve Plant Nitrogen Use Efficiency. Front. Plant Sci. 2021, 11, 628366. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Ma, X.; Wan, H.; Zheng, J.; Luo, J.; Hu, Y.; Pu, Z. Effects of differential nitrogen application on wheat grain proteome. J. Cereal Sci. 2021, 102, 103367. [Google Scholar] [CrossRef]
- Liu, Y.; Liao, Y.; Liu, W. High nitrogen application rate and planting density reduce wheat grain yield by reducing filling rate of inferior grain in middle spikelets. Crop J. 2021, 9, 412–426. [Google Scholar] [CrossRef]
- Zhao, W.; Liu, L.; Shen, Q.; Yang, J.; Han, X.; Tian, F.; Wu, J. Effects of water stress on photosynthesis, yield, and water use efficiency in winter wheat. Water 2020, 12, 2127. [Google Scholar] [CrossRef]
- Zheng, X.; Yu, Z.; Zhang, Y.; Shi, Y. Nitrogen supply modulates nitrogen remobilization and nitrogen use of wheat under supplemental irrigation in the North China Plain. Sci. Rep. 2020, 10, 3305. [Google Scholar] [CrossRef]
- Tan, Y.; Chang, Q.; Li, G.; Zhao, C.; Yu, A.; Fan, Z.; Yin, W.; Hu, F.; Fan, H.; Wang, Q.; et al. Improving wheat grain yield via promotion of water and nitrogen utilization in arid areas. Sci. Rep. 2021, 11, 13821. [Google Scholar] [CrossRef]
- Zhang, P.; Ma, G.; Wang, C.; Lu, H.; Li, S.; Xie, Y.; Ma, D.; Zhu, Y.; Guo, T. Effect of irrigation and nitrogen application on grain amino acid composition and protein quality in winter wheat. PLoS ONE 2017, 12, e0178494. [Google Scholar] [CrossRef] [PubMed]
- Rekowski, A.; Wimmer, M.A.; Tahmasebi, S.; Dier, M.; Kalmbach, S.; Hitzmann, B.; Zörb, C. Drought stress during anthesis alters grain protein composition and improves bread quality in field-grown Iranian and German wheat genotypes. Appl. Sci. 2021, 11, 9782. [Google Scholar] [CrossRef]
- Hamani, A.K.M.; Abubakar, S.A.; Si, Z.; Kama, R.; Gao, Y.; Duan, A. Suitable split nitrogen application increases grain yield and photosynthetic capacity in drip-irrigated winter wheat (Triticum aestivum L.) under different water regimes in the North China Plain. Front. Plant Sci. 2023, 13, 1105006. [Google Scholar] [CrossRef]
- Shen, X.; Wang, G.; Tilahun Zeleke, K.; Si, Z.; Chen, J.; Gao, Y. Crop water production functions for winter wheat with drip fertigation in the North China Plain. Agronomy 2020, 10, 876. [Google Scholar] [CrossRef]
- Jha, S.K.; Ramatshaba, T.S.; Wang, G.; Liang, Y.; Liu, H.; Gao, Y.; Duan, A. Response of growth, yield and water use efficiency of winter wheat to different irrigation methods and scheduling in North China Plain. Agric. Water Manag. 2019, 217, 292–302. [Google Scholar] [CrossRef]
- Yan, J.; Li, H.; Li, Y.; Zhang, N.; Zhang, S. Abscisic acid synthesis and root water uptake contribute to exogenous methyl jasmonate-induced improved tomato drought resistance. Plant Biotechnol. Rep. 2022, 16, 183–193. [Google Scholar] [CrossRef]
- Gao, J. Experimental Instruction in Plant Physiology; Higher Education Press: Beijing, China, 2006. [Google Scholar]
- Cheng, F.; Jiang, D.; Wu, P.; Shi, H. The dynamic change of starch synthesis enzymes during the grain filling stage and effects of temperature upon it. Acta Agron. Sin. 2001, 27, 202. [Google Scholar]
- Nakamura, Y.; Yuki, K. Changes in enzyme activities associated with carbohydrate metabolism during the development of rice endosperm. Plant Sci. 1992, 82, 15–20. [Google Scholar] [CrossRef]
Treatment | Days after Flowering | ||||
---|---|---|---|---|---|
6 | 12 | 18 | 24 | 30 | |
I0N0 | 93.57 ± 6.28 c | 65.94 ± 5.84 c | 51.25 ± 3.54 c | 38.52 ± 2.56 b | 30.21 ± 2.74 d |
I0N1 | 99.48 ± 8.73 b | 78.61 ± 6.49 b | 64.18 ± 4.51 b | 46.25 ± 4.84 a | 39.51 ± 2.68 c |
I0N2 | 117.82 ± 8.41 a | 90.21 ± 6.54 a | 81.41 ± 5.24 a | 47.82 ± 5.28 a | 38.52 ± 2.41 b |
I0N3 | 115.23 ± 6.75 a | 92.14 ± 7.51 a | 85.42 ± 8.77 a | 51.21 ± 4.86 a | 41.25 ± 3.41 a |
I1N0 | 102.24 ± 6.54 c | 84.63 ± 6.54 c | 56.21 ± 4.91 c | 43.56 ± 3.61 b | 36.34 ± 2.89 c |
I1N1 | 108.24 ± 9.77 b | 94.26 ± 7.48 b | 68.62 ± 6.21 b | 48.26 ± 4.52 ab | 41.61 ± 4.91 b |
I1N2 | 128.34 ± 11.44 a | 111.54 ± 8.54 a | 83.32 ± 5.21 a | 52.61 ± 5.61 a | 42.14 ± 4.11 a |
I1N3 | 125.11 ± 14.51 a | 110.25 ± 8.75 a | 82.31 ± 7.84 a | 55.32 ± 5.14 a | 48.26 ± 3.62 a |
I2N0 | 145.21 ± 13.55 c | 124.52 ± 12.28 c | 61.25 ± 4.21 c | 45.26 ± 5.22 b | 35.21 ± 2.11 b |
I2N1 | 160.82 ± 16.24 b | 134.21 ± 11.29 b | 88.62 ± 6.24 ab | 47.65 ± 3.65 b | 41.26 ± 3.15 a |
I2N2 | 190.26 ± 15.62 a | 142.61 ± 14.63 a | 94.26 ± 7.22 a | 57.41 ± 3.28 a | 45.62 ± 4.65 a |
I2N3 | 188.24 ± 17.21 a | 145.26 ± 11.34 a | 93.84 ± 4.21 a | 56.22 ± 4.58 a | 48.93 ± 3.81 a |
I | ** | ** | ** | ** | * |
N | ** | ** | ** | ** | ** |
I × N | ** | ** | ** | ** | ** |
Treatment | Protein Content (g 100 g−1) | Sedimentation Value (mL) | Wet Gluten Content (%) | Thousand-Grain Weight (g) | Yield (kg hm−2) |
---|---|---|---|---|---|
I0N0 | 13.24 e | 30.56 f | 32.21 e | 40.42 f | 6298.22 g |
I0N1 | 15.23 d | 32.52 e | 34.67 d | 40.34 e | 7208.23 e |
I0N2 | 17.62 c | 34.25 d | 36.36 c | 43.11 c | 7711.42 d |
I0N3 | 20.21 b | 34.21 d | 38.10 ab | 43.25 c | 7506.48 de |
I1N0 | 14.36 e | 36.25 c | 34.31 d | 40.91 d | 6322.01 fg |
I1N1 | 16.38 c | 42.26 b | 37.21 c | 44.85 bc | 8080.11 c |
I1N2 | 23.21 a | 46.26 a | 42.52 a | 49.77 a | 9256.72 a |
I1N3 | 19.32 b | 47.21 a | 41.45 a | 45.24 b | 8605.79 b |
I2N0 | 16.25 c | 36.61 c | 34.51 d | 40.02 d | 6275.12 f |
I2N1 | 17.26 c | 40.12 b | 36.77 c | 44.83 bc | 8136.15 c |
I2N2 | 19.26 b | 45.26 a | 38.52 ab | 48.09 a | 9041.50 a |
I2N3 | 20.36 b | 48.52 a | 41.25 a | 46.25 b | 8679.61 b |
I | 0.000 ** | 0.000 ** | 0.000 ** | 0.024 * | 0.031 * |
N | 0.038 * | 0.079 | 0.062 | 0.001 ** | 0.000 ** |
I × N | 0.058 | 0.101 | 0.092 | 0.027 * | 0.006 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xin, L.; Fu, Y.; Ma, S.; Li, C.; Wang, H.; Gao, Y.; Wang, X. Effects of Post-Anthesis Irrigation on the Activity of Starch Synthesis-Related Enzymes and Wheat Grain Quality under Different Nitrogen Conditions. Plants 2023, 12, 4086. https://doi.org/10.3390/plants12244086
Xin L, Fu Y, Ma S, Li C, Wang H, Gao Y, Wang X. Effects of Post-Anthesis Irrigation on the Activity of Starch Synthesis-Related Enzymes and Wheat Grain Quality under Different Nitrogen Conditions. Plants. 2023; 12(24):4086. https://doi.org/10.3390/plants12244086
Chicago/Turabian StyleXin, Lang, Yuanyuan Fu, Shoutian Ma, Caixia Li, Hongbo Wang, Yang Gao, and Xingpeng Wang. 2023. "Effects of Post-Anthesis Irrigation on the Activity of Starch Synthesis-Related Enzymes and Wheat Grain Quality under Different Nitrogen Conditions" Plants 12, no. 24: 4086. https://doi.org/10.3390/plants12244086
APA StyleXin, L., Fu, Y., Ma, S., Li, C., Wang, H., Gao, Y., & Wang, X. (2023). Effects of Post-Anthesis Irrigation on the Activity of Starch Synthesis-Related Enzymes and Wheat Grain Quality under Different Nitrogen Conditions. Plants, 12(24), 4086. https://doi.org/10.3390/plants12244086