Time-Dependent Resistance of Sol–Gel HfO2 Films to In Situ High-Temperature Laser Damage
<p>Varying viscosity of HfO<sub>2</sub> sol with time.</p> "> Figure 2
<p>Transmittance curves of HfO<sub>2</sub> films after annealing at 423 K for different durations.</p> "> Figure 3
<p>XRD patterns of HfO<sub>2</sub> films annealed at 423 K for different durations.</p> "> Figure 4
<p>Surface morphology in AFM images of films annealed at 423 K for different durations. (<b>a</b>) 0.5 h, (<b>b</b>) 2 h, (<b>c</b>) 24 h, (<b>d</b>) 7 d, and (<b>e</b>) 15 d.</p> "> Figure 5
<p>Absorption of HfO<sub>2</sub> films annealed at 423 K for different durations.</p> "> Figure 6
<p>In situ high-temperature LIDT at 423 K after various heating times.</p> "> Figure 7
<p>Typical laser-induced morphology of the films when heated at 423 K for different durations. (<b>a</b>) 0.5 h, (<b>b</b>) close-up of Area A, (<b>c</b>) 2 h, (<b>d</b>) close-up of Area B, (<b>e</b>) 24 h, (<b>f</b>) close-up of Area C, (<b>g</b>) 7 d, (<b>h</b>) close-up of Area D, (<b>i</b>) 15 d, (<b>j</b>) close-up of Area E.</p> "> Figure 8
<p>Variation of the LIDT of films with heating time at 423 K.</p> ">
Abstract
:1. Introduction
2. Experimental Details
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ling, X.; Liu, S.; Liu, X. Enhancement of laser-induced damage threshold of optical coatings by ion-beam etching in vacuum environment. Optik 2020, 200, 163429. [Google Scholar] [CrossRef]
- Bright, T.J.; Watjen, J.I.; Zhang, Z.M.; Muratore, C.; Voevodin, A.A. Optical properties of HfO2 thin films deposited by magnetron sputtering: From the visible to the far-infrared. Thin Solid Films 2012, 520, 6793–6802. [Google Scholar] [CrossRef]
- Luo, X.; Li, Y.; Yang, H.; Liang, Y.; He, K.; Sun, W.; Lin, H.-H.; Yao, S.; Lu, X.; Wan, L.; et al. Investigation of HfO2 thin films on Si by X-ray photoelectron spectroscopy, rutherford backscattering, grazing Incidence X-ray diffraction and variable angle spectroscopic ellipsometry. Crystals 2018, 8, 248. [Google Scholar] [CrossRef]
- Pervak, V.; Krausz, F.; Apolonski, A. Hafnium oxide thin films deposited by reactive middle-frequency dual-magnetron sputtering. Thin Solid Films 2007, 515, 7984–7989. [Google Scholar] [CrossRef]
- Stolz, C.J.; Negres, R.A. Ten-year summary of the boulder damage symposium annual thin film laser damage competition. Opt. Eng. 2018, 57, 121910. [Google Scholar] [CrossRef]
- Andre, B.; Poupinet, L.; Ravel, G. Evaporation and ion assisted deposition of HfO2 coatings: Some key points for high power laser applications. J. Vac. Sci. Technol. A Vac. Surf. Film 2000, 18, 2372. [Google Scholar] [CrossRef]
- Jena, S.; Tokas, R.B.; Tripathi, S.; Rao, K.D.; Udupa, D.V.; Thakur, S.; Sahoo, N.K. Influence of oxygen partial pressure on microstructure, optical properties, residual stress and laser induced damage threshold of amorphous HfO2 thin films. J. Alloys Compd. 2019, 771, 373–381. [Google Scholar] [CrossRef]
- Grosso, D.; Sermon, P.A. Scandia optical coatings for application at 351 nm. Thin Solid Films 2000, 368, 116–124. [Google Scholar] [CrossRef]
- Zhang, M.; Zhu, Y.; Li, D.; Feng, P.; Xu, C. An innovative method for preparation of sol–gel HfO2 films with high laser-induced damage threshold after high-temperature annealing. Appl. Surf. Sci. 2021, 554, 149615. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, M.; Han, S.; Xu, L.; Li, D.; Feng, P.; Xu, C. Niobium pentoxide films with high laser-induced damage threshold under high temperature environment. Photonics 2022, 9, 832. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, W.; He, H. Laser-induced damage behaviors of antireflective coatings at cryogenic condition. Opt. Soc. Am. 2012, 51, 8687–8692. [Google Scholar] [CrossRef]
- Di Sarcina, I.; Grilli, M.L.; Menchini, F.; Piegari, A.; Scaglione, S.; Sytchkova, A.; Zola, D. Behavior of optical thin-film materials and coatings under proton and gamma irradiation. Appl. Opt. 2014, 53, A314–A320. [Google Scholar] [CrossRef]
- Mikami, K.; Motokoshi, S.; Somekawa, T.; Jitsuno, T.; Fujita, M.; Tanaka, K.A. Temperature dependence of laser-induced damage threshold of optical coatings at different pulse widths. Opt. Express. 2013, 21, 28719–28728. [Google Scholar] [CrossRef]
- Xu, C.; Jia, J.; Yang, D.; Fan, H.; Qiang, Y.; Liu, J.; Hu, G.; Li, D. Nanosecond laser-induced damage at different initial temperatures of Ta2O5 films prepared by dual ion beam sputtering. J. Appl. Phys. 2014, 116, 053102. [Google Scholar] [CrossRef]
- Zhu, Y.; Ma, M.; Zhang, P.; Cai, W.; Li, D.; Xu, C. Preparation of sol-gel ZrO2 films with high laser-induced damage threshold under high temperature. Opt. Express 2019, 27, 37568. [Google Scholar] [CrossRef]
- Moutai, F.; Elyaagoubi, M.; Afkir, A.; Rochdi, R.; El Boujlaidi, A.; Rochdi, N. Effect of oxygen pressure and post-annealing on the properties of reactively sputtered zinc oxide thin films. Mater. Today Proc. 2021, 39, 1163–1169. [Google Scholar] [CrossRef]
- Xu, C.; Fan, H.; Li, D.; Qi, J.; Yang, S.; Qiang, Y. Comparative studies on the laser-induced damage of TiO2 films with different additives and thickness. Optik 2015, 126, 5478–5482. [Google Scholar] [CrossRef]
- ISO 11254-1; Lasers and Laser-Related Equipment-Determination of Laser-Induced Damage Threshold of Optical Surfaces. Part 1. 1-on-1 Test. ISO: Geneva, Switzerland, 2000.
- Zhang, P.; Lin, D.; Zhu, Y.; Cai, W.; Li, D.; Xu, C. In-situ high temperature laser-induced damage of sol-gel Ta2O5 films with different dual additives. Thin Solid Films 2020, 693, 137723. [Google Scholar] [CrossRef]
- Ho, I.; Podbielska, H.; Bauer, J.; Ulatowska-Jar, A. Viscosity, surface tension and refractive index of tetraethylorthosilicate-based sol-gel materials depending on ethanol content. Opt. Appl. 2005, 35, 691–699. [Google Scholar]
- Joraid, A.A.; Solieman, A.S.; Al-Maghrabi, M.A.; Almutairy, M.H. Studies of crystallization kinetics and optical properties of ZnO films prepared by sol–gel technique. J. Sol-Gel Sci. Technol. 2021, 97, 523–539. [Google Scholar] [CrossRef]
- Weng, J.; Chen, W.; Xia, W.; Zhang, J.; Jiang, Y.; Zhu, G. Low-temperature solution-based fabrication of high-k HfO2 dielectric thin films via combustion process. J. Sol-Gel Sci. Technol. 2017, 81, 662–668. [Google Scholar] [CrossRef]
- Atuchin, V.V.; Lebedev, M.S.; Korolkov, I.V.; Kruchinin, V.N.; Maksimovskii, E.A.; Trubin, S.V. Composition-sensitive growth kinetics and dispersive optical properties of thin HfxTi1−xO2 (0 ≤ x ≤ 1) films prepared by the ALD method. J. Mater. Sci. Mater. Electron. 2019, 30, 812–823. [Google Scholar] [CrossRef]
- Atuchin, V.V.; Aleksandrovsky, A.S.; Molokeev, M.S.; Krylov, A.S.; Oreshonkov, A.S.; Zhou, D. Structural and spectroscopic properties of self-activated monoclinic molybdate BaSm2(MoO4)4. J. Alloys Compd. 2017, 729, 843–849. [Google Scholar] [CrossRef]
- Wong, Y.H.; Atuchin, V.V.; Kruchinin, V.N.; Cheong, K.Y. Physical and dispersive optical characteristics of ZrON/Si thin-film system. Appl. Phys. A 2014, 115, 1069–1072. [Google Scholar] [CrossRef]
- Guo, Y.J.; Zu, X.T.; Yuan, X.D.; Jiang, X.D. Influence of porosity on laser damage threshold of sol–gel ZrO2 and SiO2 monolayer films. Optik 2012, 123, 479–484. [Google Scholar] [CrossRef]
- Xu, C.; Li, D.; Fan, H.; Deng, J.; Qi, J.; Yi, P.; Qiang, Y. Effects of different post-treatment methods on optical properties, absorption and nanosecond laser-induced damage threshold of Ta2O5 films. Thin Solid Films 2015, 580, 12–20. [Google Scholar] [CrossRef]
- Cai, W.; Yang, Y.; Zhu, Y.; Li, D.; Xu, C. Preparation of high laser-induced damage threshold sol-gel Nb2O5 films with different additives. Optik 2020, 206, 164306. [Google Scholar] [CrossRef]
- Xu, C.; Yang, S.; Zhang, S.H.; Niu, J.N.; Qiang, Y.H.; Liu, J.T.; Li, D.W. Temperature dependences of optical properties, chemical composition, structure, and laser damage in Ta2O5 films. Chin. Phys. B 2012, 21, 114213. [Google Scholar] [CrossRef]
- Goldenberg, H.; Tranter, C.J. Heat flow in an infinite medium heated by a sphere. Br. J. Appl. Phys. 1952, 3, 296–298. [Google Scholar] [CrossRef]
- Suleiman, A.A.; Ritchie, J.T. Modeling soil water redistribution during second-stage evaporation. Soil Sci. Soc. Am. J. 2003, 67, 377–386. [Google Scholar] [CrossRef]
- Xu, C.; Dong, H.; Ma, J.; Jin, Y.; Shao, J.; Fan, Z. Influences of SiO2 protective layers and annealing on the laser-induced damage threshold of Ta2O5 films. Chin. Opt. Lett. 2008, 6, 228–230. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Hao, Z.; Peng, Z.; Zhang, M.; Feng, P.; Xu, C. Time-Dependent Resistance of Sol–Gel HfO2 Films to In Situ High-Temperature Laser Damage. Photonics 2024, 11, 976. https://doi.org/10.3390/photonics11100976
Liu H, Hao Z, Peng Z, Zhang M, Feng P, Xu C. Time-Dependent Resistance of Sol–Gel HfO2 Films to In Situ High-Temperature Laser Damage. Photonics. 2024; 11(10):976. https://doi.org/10.3390/photonics11100976
Chicago/Turabian StyleLiu, Haojie, Ziwei Hao, Zirun Peng, Miao Zhang, Peizhong Feng, and Cheng Xu. 2024. "Time-Dependent Resistance of Sol–Gel HfO2 Films to In Situ High-Temperature Laser Damage" Photonics 11, no. 10: 976. https://doi.org/10.3390/photonics11100976
APA StyleLiu, H., Hao, Z., Peng, Z., Zhang, M., Feng, P., & Xu, C. (2024). Time-Dependent Resistance of Sol–Gel HfO2 Films to In Situ High-Temperature Laser Damage. Photonics, 11(10), 976. https://doi.org/10.3390/photonics11100976