DeepChaos+: Signal Detection Quality Enhancement of High-Speed DP-16QAM Optical Fiber Communication Based on Chaos Masking Technique with Deep Generative Models
<p>Conceptual Conceptional diagram of the COC and CFOC channels in the long-haul WDM optical communication system using the <math display="inline"><semantics> <mrow> <mi>D</mi> <mi>P</mi> <mo>−</mo> <mn>16</mn> <mi>Q</mi> <mi>A</mi> <mi>M</mi> </mrow> </semantics></math> modulation scheme.</p> "> Figure 2
<p>Overview of the DeepChaos+ framework. The framework introduces two key models: the Variational Autoencoder (VAE) and the lightweight Informer Network. The VAE is trained to generate interpolated data from the set <math display="inline"><semantics> <mi mathvariant="script">X</mi> </semantics></math>. The generated data are then combined with the dataset <math display="inline"><semantics> <mi mathvariant="script">D</mi> </semantics></math> and used to iteratively retrain the VAE. The lightweight Informer Network, with fewer parameters but functionality equivalent to the VAE’s decoder, is trained to predict a set <math display="inline"><semantics> <mover accent="true"> <mi mathvariant="script">X</mi> <mo>˜</mo> </mover> </semantics></math> that minimizes the bit error rate <math display="inline"><semantics> <mrow> <mi mathvariant="script">B</mi> <mo>(</mo> <mover accent="true"> <mi mathvariant="script">X</mi> <mo>˜</mo> </mover> <mo>,</mo> <mi mathvariant="script">X</mi> <mo>)</mo> </mrow> </semantics></math>. Knowledge Distillation is employed to ensure the Informer achieves similar performance to the decoder while enabling faster inference time.</p> "> Figure 3
<p>The training performance of DeepChaos+ in the 60% dataset is shown in the <b>left</b> figure, while the learning performance of the student model is depicted for different sizes in the <b>right</b> figure. The red line in the right figure represents the training time, indicating that, as the size of the student model increases, the training time also lengthens.</p> "> Figure 4
<p>The figure on the <b>left</b> illustrates the performance of DeepChaos+ on the testing set of training datasets of 20%, 40%, 60%, and 80%. The figure on the <b>right</b> displays the BER (bit error rate) of DeepChaos compared to the other methods, particularly on the 60% and 80% datasets.</p> ">
Abstract
:1. Introduction
2. Background and Problem Setting
2.1. Long-Haul WDM Optical Communication System Using DP-16QAM Modulation Scheme
2.2. Problem Definition
3. Related Work
4. Our Solution: DeepChaos+
4.1. Overview Process of DeepChaos+
4.2. End-to-End Learning Objective
5. Experiment
5.1. Experiment Setup
5.2. Training Efficiency Analysis
5.3. Inference Efficiency Analysis
5.4. Quantitative Analysis
5.5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Igarashi, K.; Tsuritani, T.; Morita, I.; Tsuchida, Y.; Maeda, K.; Tadakuma, M.; Saito, T.; Watanabe, K.; Imamura, K.; Sugizaki, R.; et al. Super-Nyquist-WDM transmission over 7326-km seven-core fiber with capacity-distance product of 1.03 Exabit/s·km. Opt. Express 2014, 22, 1220–1228. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Qian, Z.; Shou, G.; Hu, Y. OCDMA over WDM System Based on Chebyshev-Map Chaotic Spread Spectrum in Passive Optical Network. In Proceedings of the 2009 WRI World Congress on Computer Science and Information Engineering, Los Angeles, CA, USA, 31 March–2 April 2009; Volume 1, pp. 208–211. [Google Scholar] [CrossRef]
- Guo, P.; Hou, W.; Guo, L.; Ning, Z.; Obaidat, M.S.; Liu, W. WDM-MDM Silicon-Based Optical Switching for Data Center Networks. In Proceedings of the ICC 2019, 2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, J.; Chi, N. Generation and transmission of 512-Gb/s quad-carrier digital super-Nyquist spectral shaped signal. Opt. Express 2013, 21, 31212–31217. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhou, T.; Jia, H.; Yang, S.; Ding, J.; Fu, X.; Zhang, L. General architectures for on-chip optical space and mode switching. Optica 2018, 5, 180–187. [Google Scholar] [CrossRef]
- Bosco, G.; Curri, V.; Carena, A.; Poggiolini, P.; Forghieri, F. On the Performance of Nyquist-WDM Terabit Superchannels Based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM Subcarriers. J. Light. Technol. 2011, 29, 53–61. [Google Scholar] [CrossRef]
- Zhou, Y.R.; Smith, K.; Payne, R.; Lord, A.; Raddatz, L.; Bertolini, M.; Van De Velde, T.; Colombo, C.; Korkmaz, E.; Fontana, M.; et al. 1.4Tb real-time alien superchannel transport demonstration over 410 km installed fiber link using software reconfigurable DP-16QAM/QPSK. In Proceedings of the OFC 2014, San Francisco, CA, USA, 9–13 March 2014; pp. 1–3. [Google Scholar] [CrossRef]
- Tokle, T.; Serbay, M.; Jensen, J.; Geng, Y.; Rosenkranz, W.; Jeppesen, P. Investigation of Multilevel Phase and Amplitude Modulation Formats in Combination With Polarization Multiplexing up to 240 Gb/s. IEEE Photonics Technol. Lett. 2006, 18, 2090–2092. [Google Scholar] [CrossRef]
- Buchali, F.; Steiner, F.; Böcherer, G.; Schmalen, L.; Schulte, P.; Idler, W. Rate Adaptation and Reach Increase by Probabilistically Shaped 64-QAM: An Experimental Demonstration. J. Light. Technol. 2016, 34, 1599–1609. [Google Scholar] [CrossRef]
- Yu, J.; Dong, Z.; Chien, H.C.; Shao, Y.; Chi, N. 7Tb/s (7 × 1.284 Tb/s/ch) Signal Transmission over 320 km Using PDM-64QAM Modulation. IEEE Photonics Technol. Lett. 2012, 24, 264–266. [Google Scholar] [CrossRef]
- Charlet, G.; Renaudier, J.; Mardoyan, H.; Tran, P.; Pardo, O.B.; Verluise, F.; Achouche, M.; Boutin, A.; Blache, F.; Dupuy, J.Y.; et al. Transmission of 16.4-bit/s Capacity Over 2550 km Using PDM QPSK Modulation Format and Coherent Receiver. J. Light. Technol. 2009, 27, 153–157. [Google Scholar] [CrossRef]
- Wollschlaeger, M.; Sauter, T.; Jasperneite, J. The Future of Industrial Communication: Automation Networks in the Era of the Internet of Things and Industry 4.0. IEEE Ind. Electron. Mag. 2017, 11, 17–27. [Google Scholar] [CrossRef]
- Said, S.; Azzaz, M.S.; Djeddou, M.; Benssalah, M. An FPGA real-time implementation of the Chen’s chaotic system for securing chaotic communications. Int. J. Nonlinear Sci. 2009, 7, 467–474. [Google Scholar]
- Kocarev, L.; Sterjev, M.; Fekete, A.; Vattay, G. Public-key encryption with chaos. Chaos 2005, 14, 1078–1082. [Google Scholar] [CrossRef] [PubMed]
- Çavuşoğlu, Ü.; Akgul, A.; Zengin, A.; Pehlivan, I. The design and implementation of hybrid RSA algorithm using a novel chaos based RNG. Chaos Solitons Fractals 2017, 104, 655–667. [Google Scholar] [CrossRef]
- Kun, Y.; Han, Z.; Zhaohui, L. An Improved AES Algorithm Based on Chaos. In Proceedings of the 2009 International Conference on Multimedia Information Networking and Security, Hubei, China, 18–20 November 2009; Volume 2, pp. 326–329. [Google Scholar] [CrossRef]
- Qiu, J.; Zhang, L.; Li, D.; Liu, X. High security chaotic multiple access scheme for visible light communication systems with advanced encryption standard interleaving. Opt. Eng. 2016, 55, 066121. [Google Scholar] [CrossRef]
- Çavuşoğlu, Ü.; Kacar, S.; Zengin, A.; Pehlivan, I. A novel hybrid encryption algorithm based on chaos and S-AES algorithm. Nonlinear Dyn. 2018, 92, 1745–1759. [Google Scholar] [CrossRef]
- Fu, C.; Lin, B.B.; Miao, Y.S.; Liu, X.; Chen, J.J. A novel chaos-based bit-level permutation scheme for digital image encryption. Opt. Commun. 2011, 284, 5415–5423. [Google Scholar] [CrossRef]
- Enayatifar, R.; Abdullah, H.; Isnin, I. Chaos-based image encryption using a hybrid genetic algorithm and a DNA sequence. Opt. Lasers Eng. 2014, 56, 83–93. [Google Scholar] [CrossRef]
- Hameed Al-Moliki, Y.; Alresheedi, M.; Al-Harthi, Y. Physical-Layer Security against Known/Chosen Plaintext Attacks for OFDM-based VLC system. IEEE Commun. Lett. 2017, 21, 2606–2609. [Google Scholar] [CrossRef]
- Xiang, S.Y.; Pan, W.; Luo, B.; Yan, L.S.; Zou, X.H.; Li, N.; Zhu, H.N. Wideband Unpredictability-Enhanced Chaotic Semiconductor Lasers with Dual-Chaotic Optical Injections. IEEE J. Quantum Electron. 2012, 48, 1069–1076. [Google Scholar] [CrossRef]
- Li, N.; Susanto, H.; Cemlyn, B.; Henning, I.; Adams, M. Secure communication systems based on chaos in optically pumped spin-VCSELs. Opt. Lett. 2017, 42, 3494–3497. [Google Scholar] [CrossRef]
- Illing, L. Digital communication using chaos and nonlinear dynamics. Nonlinear Anal. Theory Methods Appl. 2009, 71, e2958–e2964. [Google Scholar] [CrossRef]
- Annovazzi-Lodi, V.; Aromataris, G.; Benedetti, M.; Merlo, S. Secure Chaotic Transmission on a Free-Space Optics Data Link. Quantum Electron. IEEE J. 2008, 44, 1089–1095. [Google Scholar] [CrossRef]
- Xiang, S.Y.; Pan, W.; Luo, B.; Yan, L.S.; Zou, X.H.; Jiang, N.; Li, N.Q.; Zhu, H.N. Message Encoding/Decoding Using Unpredictability-Enhanced Chaotic VCSELs. IEEE Photonics Technol. Lett. 2012, 24, 1267–1269. [Google Scholar] [CrossRef]
- Abdulameer, L.F.; Jignesh, J.D.; Sripati, U.; Kulkarni, M. BER performance enhancement for secure wireless optical communication systems based on chaotic MIMO techniques. Nonlinear Dyn. 2014, 75, 7–16. [Google Scholar] [CrossRef]
- Jiang, N.; Zhao, A.; Wang, Y.; Liu, S.; Tang, J.; Qiu, K. Security-enhanced chaotic communications with optical temporal encryption based on phase modulation and phase-to-intensity conversion. OSA Contin. 2019, 2, 3422–3437. [Google Scholar] [CrossRef]
- Kanakidis, D.; Bogris, A.; Argyris, A.; Syvridis, D. Numerical investigation of fiber transmission of a chaotic encrypted message using dispersion compensation schemes. J. Light. Technol. 2004, 22, 2256–2263. [Google Scholar] [CrossRef]
- Canyelles-Pericas, P.; Burton, A.; Le-Minh, H.; Ghassemlooy, Z.; Busawon, K. Chaos synchronization on Visible Light Communication with application for secure data communications. In Proceedings of the 2013 Africon, Pointe aux Piments, Mauritius, 9–12 September 2013; pp. 1–5. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, L.; Lu, H. High Security Differential Chaos-Based Modulation with Channel Scrambling for WDM-Aided VLC System. IEEE Photonics J. 2016, 8, 7804513. [Google Scholar] [CrossRef]
- Shu, X.; Wang, H.; Wang, J. Underwater chaos-based DS-CDMA system. In Proceedings of the 2015 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Ningbo, China, 19–22 September 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Bai, C.; Ren, H.P.; Grebogi, C.; Baptista, M.S. Chaos-Based Underwater Communication with Arbitrary Transducers and Bandwidth. Appl. Sci. 2018, 8, 162. [Google Scholar] [CrossRef]
- Bai, C.; Ren, H.; Baptista, M.D.; Grebogi, C. Digital underwater communication with chaos. Commun. Nonlinear Sci. Numer. Simul. 2019, 73, 14–24. [Google Scholar] [CrossRef]
- Boulkroune, A.; Bouzeriba, A.; Hamel, S.; Bouden, T. Adaptive fuzzy control-based projective synchronization of uncertain nonaffine chaotic systems. Complexity 2014, 21, 180–192. [Google Scholar] [CrossRef]
- Jiang, X.; Shao, L.; Zhang, S.X.; Yi, X.; Wiersig, J.; Wang, L.; Gong, Q.; Lončar, M.; Yang, L.; Xiao, Y.F. Chaos-assisted broadband momentum transformation in optical microresonators. Science 2017, 358, 344–347. [Google Scholar] [CrossRef]
- Zhang, J.Z.; Wang, A.B.; Wang, J.F.; Wang, Y.C. Wavelength division multiplexing of chaotic secure and fiber-optic communications. Opt. Express 2009, 17, 6357–6367. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Yin, H. Performance analysis of dense wavelength division multiplexing secure communications with multiple chaotic optical channels. Opt. Commun. 2012, 285, 693–698. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Krupitzer, C.; Müller, S.; Lesch, V.; Züfle, M.; Edinger, J.; Lemken, A.; Schäfer, D.; Kounev, S.; Becker, C. A Survey on Human Machine Interaction in Industry 4.0. arXiv 2020, arXiv:2002.01025. [Google Scholar]
- Károly, A.I.; Galambos, P.; Kuti, J.; Rudas, I.J. Deep Learning in Robotics: Survey on Model Structures and Training Strategies. IEEE Trans. Syst. Man, Cybern. Syst. 2021, 51, 266–279. [Google Scholar] [CrossRef]
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, MN, USA, 4 June 2019. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.M.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. In Proceedings of the 31st Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Mobini, M.; Kaddoum, G.; Herceg, M. Design of a SIMO Deep Learning-Based Chaos Shift Keying (DLCSK) Communication System. Sensors 2022, 22, 333. [Google Scholar] [CrossRef]
- Kanakidis, D. Secure Optical Communication Systems based on Chaotic Carriers. In Proceedings of the International Conference on Security and Cryptography (SECRYPT), Lisbon, Portugal, 8–10 July 2010. [Google Scholar]
- Bülow, H. Experimental Demonstration of Optical Signal Detection Using Nonlinear Fourier Transform. J. Light. Technol. 2015, 33, 1433–1439. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Lawrance, A.; Ohama, G. Exact calculation of bit error rates in communication systems with chaotic modulation. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 2003, 50, 1391–1400. [Google Scholar] [CrossRef]
- Fan, Q.; Zhou, G.; Gui, T.; Lu, C.; Lau, A.P.T. Advancing theoretical understanding and practical performance of signal processing for nonlinear optical communications through machine learning. Nat. Commun. 2020, 11, 3694. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, A.; Guo, P.; He, P. OSNR and nonlinear noise power estimation for optical fiber communication systems using LSTM based deep learning technique. Opt. Express 2018, 26, 21346–21357. [Google Scholar] [CrossRef] [PubMed]
- Koike-Akino, T.; Wang, Y.; Millar, D.S.; Kojima, K.; Parsons, K. Neural Turbo Equalization: Deep Learning for Fiber-Optic Nonlinearity Compensation. J. Light. Technol. 2020, 38, 3059–3066. [Google Scholar] [CrossRef]
- Wang, L.; Gao, M.; Zhang, Y.; Cao, F.; Huang, H. Optical Phase Conjugation with Complex-Valued Deep Neural Network for WDM 64-QAM Coherent Optical Systems. IEEE Photonics J. 2021, 13, 7200308. [Google Scholar] [CrossRef]
- Li, C.; Wang, Y.; Wang, J.; Yao, H.; Liu, X.; Gao, R.; Yang, L.; Xu, H.; Zhang, Q.; Ma, P.; et al. Convolutional Neural Network-Aided DP-64 QAM Coherent Optical Communication Systems. J. Light. Technol. 2022, 40, 2880–2889. [Google Scholar] [CrossRef]
- Xie, T.; Yu, J. Long-range photonics-aided 17.6 Gbit/s D-band PS-64QAM transmission using gate recurrent unit algorithm with a complex QAM input. Opt. Express 2023, 31, 40056–40069. [Google Scholar] [CrossRef]
- Abbass, A.M.; Fyath, R.S. Performance investigation of geometric constellation shaping-based coherent WDM optical fiber communication system supported by deep-learning autoencoder. Results Opt. 2024, 15, 100629. [Google Scholar] [CrossRef]
- He, L.; Lai, R.; Shao, S.; Li, Z. Design of a Chaotic Communication System Based on Deep Learning with Two-Dimensional Reshaping. IEEE Trans. Veh. Technol. 2024, 73, 10421–10434. [Google Scholar] [CrossRef]
- Yang, Z.; Ke, J.; Zhuge, Q.; Hu, W.; Yi, L. Coherent chaotic optical communication of 30 Gb/s over 340-km fiber transmission via deep learning. Opt. Lett. 2022, 47, 2650–2653. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, L.; Jiang, Y.; Wu, Z. Reliable and Secure Deep Learning-Based OFDM-DCSK Transceiver Design without Delivery of Reference Chaotic Sequences. IEEE Trans. Veh. Technol. 2022, 71, 8059–8074. [Google Scholar] [CrossRef]
- Ke, J.; Yi, L.; Yang, Z.; Yang, Y.; Zhuge, Q.; Chen, Y.; Hu, W. 32 Gb/s chaotic optical communications by deep-learning-based chaos synchronization. Opt. Lett. 2019, 44, 5776–5779. [Google Scholar] [CrossRef]
- Anh, D.V.; Tran Thi Thanh, T.; Huu, L.N.; Dung Truong, C.; Xuan, Q.N. Performance Analysis of High-Speed Wavelength Division Multiplexing Communication between Chaotic Secure and Optical Fiber Channels Using DP-16QAM Scheme. In Proceedings of the 2020 IEEE Eighth International Conference on Communications and Electronics (ICCE), Phu Quoc, Vietnam, 13–15 January 2021; pp. 33–38. [Google Scholar] [CrossRef]
- Graves, A. Long Short-Term Memory; Springer: Berlin/Heidelberg, Germany, 2012; pp. 37–45. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.; Zhang, W. Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020. [Google Scholar] [CrossRef]
- Che, Z.; Purushotham, S.; Cho, K.; Sontag, D.; Liu, Y. Recurrent neural networks for multivariate time series with missing values. Sci. Rep. 2018, 8, 6085. [Google Scholar] [CrossRef] [PubMed]
- Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal Policy Optimization Algorithms. arXiv 2017, arXiv:1707.06347. [Google Scholar]
Hyperparameter | Value |
---|---|
Learning rate for the VAE model | 0.0003 |
Learning rate for the student model | 0.001 |
Optimizer | Adam [47] |
Total epochs per update | 8 |
Update time step | 600 |
Mini-batch size | 128 |
Aggregation model for VAE and student models | Informer (Attention and Convolution) |
Activation function for the VAE model | ELU |
VAE–student coefficient | 0.6 |
Gradient norm | 0.5 |
Model | 20% | 40% | 60% | 80% | Each Data Point (Average) |
---|---|---|---|---|---|
BiLSTM | |||||
GRU-D | |||||
DeepChaos | |||||
DeepChaos | |||||
DeepChaos | |||||
DeepChaos | |||||
DeepChaos+ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vu, D.A.; Do, N.K.H.; Nguyen, H.N.T.; Dam, H.M.; Tran, T.T.T.; Nguyen, Q.X.; Truong, D.C. DeepChaos+: Signal Detection Quality Enhancement of High-Speed DP-16QAM Optical Fiber Communication Based on Chaos Masking Technique with Deep Generative Models. Photonics 2024, 11, 967. https://doi.org/10.3390/photonics11100967
Vu DA, Do NKH, Nguyen HNT, Dam HM, Tran TTT, Nguyen QX, Truong DC. DeepChaos+: Signal Detection Quality Enhancement of High-Speed DP-16QAM Optical Fiber Communication Based on Chaos Masking Technique with Deep Generative Models. Photonics. 2024; 11(10):967. https://doi.org/10.3390/photonics11100967
Chicago/Turabian StyleVu, Dao Anh, Nguyen Khoi Hoang Do, Huyen Ngoc Thi Nguyen, Hieu Minh Dam, Thuy Thanh Thi Tran, Quyen Xuan Nguyen, and Dung Cao Truong. 2024. "DeepChaos+: Signal Detection Quality Enhancement of High-Speed DP-16QAM Optical Fiber Communication Based on Chaos Masking Technique with Deep Generative Models" Photonics 11, no. 10: 967. https://doi.org/10.3390/photonics11100967
APA StyleVu, D. A., Do, N. K. H., Nguyen, H. N. T., Dam, H. M., Tran, T. T. T., Nguyen, Q. X., & Truong, D. C. (2024). DeepChaos+: Signal Detection Quality Enhancement of High-Speed DP-16QAM Optical Fiber Communication Based on Chaos Masking Technique with Deep Generative Models. Photonics, 11(10), 967. https://doi.org/10.3390/photonics11100967