[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A novel hybrid encryption algorithm based on chaos and S-AES algorithm

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this study, a novel chaos-based hybrid encryption algorithm design for secure and effective image encryption is presented. To design the algorithm, the Zhongtang chaotic system has been selected because of its rich dynamic features and its dynamical analysis is performed. On the base of this system, a new chaos-based random number generator (RNG) is developed and usefulness of the designed RNG in an encryption process is shown over NIST 800-22 randomness tests. S-Box generation algorithm is designed, and the performance tests of S-Box are realized. By using the designed RNG and S-Box generation algorithms, the new hybrid image encryption algorithm based on AES (CS-AES) is developed. Image encryption applications are performed for comparison with other encryption algorithms in the literature to show its security level and efficiency. Security and performance analyses are made, and results are evaluated. So, it is proved that the proposed CS-AES algorithm is more secure and effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chodowiec, P., Gaj, K.: Very compact FPGA implementation of the AES agorithm. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) Cryptographic hardware and embedded systems-CHES 2003. CHES 2003. Lecture Notes in Computer Science, vol. 2779, pp. 319–333. Springer, Berlin (2003)

  2. Amigó, J.M., Kocarev, L., Szczepanski, J.: Theory and practice of chaotic cryptography. Phys. Lett. A 366(3), 211–216 (2007)

    Article  MATH  Google Scholar 

  3. Jakimoski, G., Kocarev, L., et al.: Chaos and cryptography: block encryption ciphers based on chaotic maps. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 48(2), 163–169 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Wang, Y., Wong, K.-W., Liao, X., Chen, G.: A new chaos-based fast image encryption algorithm. Appl. Soft Comput. 11(1), 514–522 (2011)

    Article  Google Scholar 

  5. Hua, Z., Zhou, Y.: Image encryption using 2d logistic-adjusted-sine map. Inf. Sci. 339, 237–253 (2016)

    Article  Google Scholar 

  6. Xiangjun, W., Wang, D., Kurths, J., Kan, H.: A novel lossless color image encryption scheme using 2D DWT and 6D hyperchaotic system. Inf. Sci. 349, 137–153 (2016)

    Google Scholar 

  7. Çavuşoğlu, Ü., Zengin, A., Pehlivan, I., Kaçar, S.: A novel approach for strong S-Box generation algorithm design based on chaotic scaled Zhongtang system. Nonlinear Dyn. 87(2), 1081–1094 (2017)

    Article  MATH  Google Scholar 

  8. Wang, X., Zhang, W., Guo, W., Zhang, J.: Secure chaotic system with application to chaotic ciphers. Inf. Sci. 221, 555–570 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bakhache, B., Ghazal, J.M., Assad, S.E.: Improvement of the security of zigbee by a new chaotic algorithm. IEEE Syst. J. 8(4), 1024–1033 (2014)

    Article  Google Scholar 

  10. Çavuşoğlu, Ü., Uyaroglu, Y., Pehlivan, I.: Design of a continuous-time autonomous chaotic circuit and application of signal masking. J. Fac. Eng. Archit. Gazi Univ. 29(1), 79–87 (2014)

    Google Scholar 

  11. Zhang, Y., Li, C., Li, Q., Zhang, D., Shu, S.: Breaking a chaotic image encryption algorithm based on perceptron model. Nonlinear Dyn. 69(3), 1091–1096 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhang, Y., Xiao, D., Wen, W., Li, M.: Breaking an image encryption algorithm based on hyper-chaotic system with only one round diffusion process. Nonlinear Dyn. 76(3), 1645–1650 (2014)

    Article  Google Scholar 

  13. Zhang, Y., Xiao, D., Wen, W., Nan, H.: Cryptanalysis of image scrambling based on chaotic sequences and vigenère cipher. Nonlinear Dyn. 78(1), 235–240 (2014)

    Article  Google Scholar 

  14. Yap, W.-S., Phan, R.C.-W., Yau, W.-C., Heng, S.-H.: Cryptanalysis of a new image alternate encryption algorithm based on chaotic map. Nonlinear Dyn. 80(3), 1483–1491 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wen, W., Zhang, Y., Moting, S., Zhang, R., Chen, J., Li, M.: Differential attack on a hyper-chaos-based image cryptosystem with a classic bi-modular architecture. Nonlinear Dyn. 87(1), 383–390 (2017)

    Article  Google Scholar 

  16. Li, C., Zhang, L.Y., Ou, R., Wong, K.-W., Shu, S.: Breaking a novel colour image encryption algorithm based on chaos. Nonlinear Dyn. 70(4), 2383–2388 (2012)

    Article  MathSciNet  Google Scholar 

  17. Solak, E., Çokal, C., Yildiz, O.T., Bıyıkoğlu, T.: Cryptanalysis of Fridrich’s chaotic image encryption. Int. J. Bifurc. Chaos 20(05), 1405–1413 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rhouma, R., Solak, E., Belghith, S.: Cryptanalysis of a new substitution-diffusion based image cipher. Commun. Nonlinear Sci. Numer. Simul. 15(7), 1887–1892 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kocarev, L., Lian, S.: Chaos-Based Cryptography: Theory, Algorithms and Applications, vol. 354. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  20. Jolfaei, A., Mirghadri, A.: Image encryption using chaos and block cipher. Comput. Inf. Sci. 4(1), 172 (2010)

    Google Scholar 

  21. Muhaya, F.T.B.: Chaotic and AES cryptosystem for satellite imagery. Telecommun. Syst. 52(2), 573–581 (2013)

    Google Scholar 

  22. Zeghid, M., Machhout, M., Khriji, L., Baganne, A., Tourki, R.: A modified AES based algorithm for image encryption. Int. J. Comput. Sci. Eng. 1(1), 70–75 (2007)

    Google Scholar 

  23. Musa, M.A., Schaefer, E.F., Wedig, S.: A simplified AES algorithm and its linear and differential cryptanalyses. Cryptologia 27(2), 148–177 (2003)

    Article  MATH  Google Scholar 

  24. Özkaynak, F.: Cryptographically secure random number generator with chaotic additional input. Nonlinear Dyn. 78(3), 2015–2020 (2014)

    Article  MathSciNet  Google Scholar 

  25. Ozer, A., Turk, M., Avaroglu, E., Koyuncu, I.: Hybrid pseudo-random number generator for cryptographic systems. Nonlinear Dyn. 82(1–2), 239–248 (2015)

    MathSciNet  Google Scholar 

  26. Zhu, H., Zhao, C., Zhang, X., Yang, L.: A novel iris and chaos-based random number generator. Comput. Secur. 36, 40–48 (2013)

    Article  Google Scholar 

  27. Zhongtang, W., Wang, M., Jin, J., Feng, J.: A novel strange attractor and its dynamic analysis. J. Multimed. 9(3), 408–415 (2014)

    Google Scholar 

  28. Kim, S.-J., Umeno, K., Hasegawa, A.: Corrections of the nist statistical test suite for randomness. arXiv preprint arXiv:0401040 [nlin] (2004)

  29. Hanselman, D.C., Littlefield, B.: Mastering Matlab 7. Pearson/Prentice Hall, Englewood Cliffs (2005)

    Google Scholar 

  30. Davies, D.W.: Some regular properties of the data encryption standard algorithm. In: Rivest, R.L., Sherman, A.T. (eds.) Advances in Cryptology, pp. 89–96. Springer, Berlin (1983)

  31. Brickell, E.F., Denning, D.E., Kent, S.T., Maher, D.P., Tuchman, W.: Skipjack review: interim report. In Building in Big Brother, pp. 119–130. Springer, New York (1995)

  32. Özkaynak, F., Yavuz, S.: Designing chaotic S-Boxes based on time-delay chaotic system. Nonlinear Dyn. 74(3), 551–557 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tang, G., Liao, X.: A method for designing dynamical S-Boxes based on discretized chaotic map. Chaos Solitons Fractals 23(5), 1901–1909 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Liu, H., Kadir, A., Niu, Y.: Chaos-based color image block encryption scheme using S-Box. AEU-Int. J. Electron. Commun. 68(7), 676–686 (2014)

    Article  Google Scholar 

  35. Wang, Y., Wong, K.-W., Liao, X., Xiang, T.: A block cipher with dynamic S-Boxes based on tent map. Commun. Nonlinear Sci. Numer. Simul. 14(7), 3089–3099 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Chen, G., Chen, Y., Liao, X.: An extended method for obtaining S-Boxes based on three-dimensional chaotic baker maps. Chaos Solitons Fractals 31(3), 571–579 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Özkaynak, F., Bedri Özer, A.: A method for designing strong S-Boxes based on chaotic Lorenz system. Phys. Lett. A 374(36), 3733–3738 (2010)

    Article  MATH  Google Scholar 

  38. Zaibi, G., Peyrard, F., Kachouri, A., Fournier-Prunaret, D., Samet, M.: Efficient and secure chaotic S-Box for wireless sensor network. Secur. Commun. Netw. 7(2), 279–292 (2014)

    Article  Google Scholar 

  39. Zhang, Y., Xiao, D.: Cryptanalysis of S-Box-only chaotic image ciphers against chosen plaintext attack. Nonlinear Dyn. 72(4), 751–756 (2013)

    Article  MathSciNet  Google Scholar 

  40. Zhang, X., Nie, W., Ma, Y., Tian, Q.: Cryptanalysis and improvement of an image encryption algorithm based on hyper-chaotic system and dynamic S-Box. Multimed. Tools Appl. 76(14), 15641–15659 (2017)

    Article  Google Scholar 

  41. Webster, A.F., Tavares, S.E.: On the design of S-Boxes. In: Advances in Cryptology—crypto’85. Lecture Notes in Computer Science, pp. 523–534

  42. Hussain, I., Shah, T., Mahmood, H., Gondal, M.A.: Construction of S8 Liu J S-Boxes and their applications. Comput. Math. Appl. 64(8), 2450–2458 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  43. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J. Cryptol. 4(1), 3–72 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  44. Pareek, N.K., Patidar, V., Sud, K.K.: Image encryption using chaotic logistic map. Image Vis. Comput. 24(9), 926–934 (2006)

    Article  Google Scholar 

  45. Wang, Y., Wong, K.-W., Liao, X., Xiang, T., Chen, G.: A chaos-based image encryption algorithm with variable control parameters. Chaos Solitons Fractals 41(4), 1773–1783 (2009)

    Article  MATH  Google Scholar 

  46. Shannon, C.E.: Communication theory of secrecy systems. Bell Labs Tech. J. 28(4), 656–715 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  47. Ahmed, H., Kalash, H., Allah, O.F.: Encryption quality analysis of the RC5 block cipher algorithm for digital images. Opt. Eng. 45(10), 107003 (2006)

    Article  Google Scholar 

  48. Jolfaei, A., Mirghadri, A.: A new approach to measure quality of image encryption. Int. J. Comput. Netw. Secur. 2(8), 38–44 (2010)

    Google Scholar 

  49. Alvarez, G., Li, S.: Some basic cryptographic requirements for chaos-based cryptosystems. Int. J. Bifurc. Chaos 16(08), 2129–2151 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ünal Çavuşoğlu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çavuşoğlu, Ü., Kaçar, S., Zengin, A. et al. A novel hybrid encryption algorithm based on chaos and S-AES algorithm. Nonlinear Dyn 92, 1745–1759 (2018). https://doi.org/10.1007/s11071-018-4159-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4159-4

Keywords

Navigation