Dynamic Attention Mixer-Based Residual Network Assisted Design of Holographic Metasurface
<p>The inverse design of dual-band metasurface holography by controlling phase based on the deep learning network.</p> "> Figure 2
<p>Schematic diagram of the metasurface element structure and the propagation characteristics under LCP wave incidence. (<b>a</b>) The front view of the metasurface unit structure. (<b>b</b>) The side view of the metasurface unit structure. (<b>c</b>,<b>d</b>) The transmission amplitude and phase shift at 8.6 GHz with varying rotation angles <span class="html-italic">θ</span><sub>1</sub>. (<b>e</b>,<b>f</b>) The transmission amplitude and phase shift at 13.6 GHz with varying rotation angles <span class="html-italic">θ</span><sub>2</sub>. The blue shaded area represents uniform phase variation.</p> "> Figure 3
<p>The network architecture diagram.</p> "> Figure 4
<p>Statistical plots of MSE, MAE loss, and error for network training. (<b>a</b>) The variation in MSE during training with the DAMR. (<b>b</b>) The change in MAE for <span class="html-italic">θ</span><sub>1</sub> during training. (<b>c</b>) The change in MAE for <span class="html-italic">θ</span><sub>2</sub> during training. (<b>d</b>) The error histogram distribution for <span class="html-italic">θ</span><sub>1</sub> and <span class="html-italic">θ</span><sub>2</sub>. The vertical axis represents quantity, and the horizontal axis represents error.</p> "> Figure 5
<p>Result prediction. (<b>a</b>–<b>d</b>) The prediction curves obtained by randomly predicting four units using the DAMR.</p> "> Figure 6
<p>The inverse design and simulation of the meta-surface. (<b>a</b>,<b>b</b>) The discretized input images “V” and “L”. (<b>c</b>,<b>d</b>) The electric field images of “V” and “L” reconstructed at a distance of 61 mm from the metasurface at frequencies of 8.6 GHz and 13.6 GHz. (<b>e</b>,<b>f</b>) The predicted results of “V” and “L” obtained through network prediction.</p> ">
Abstract
:1. Introduction
2. Structure and Methodology
3. The Design of Reverse Network Structure
4. Results and Discussion
5. Simulation Testing
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
EM | electromagnetic |
DAMR | dynamic attention mixer-based residual |
MSE | mean squared error |
MAE | mean absolute error |
MDCSR | double C-slot resonator |
DCOSR | double C-open slot resonator |
RCP | right circularly polarized |
LCP | left circularly polarized |
ReLU | Rectiffed linear unit |
LSTM | long short-term memory |
FC | Fully connected layers |
PSNR | peak signal-to-noise ratio |
SSIM | structural similarity |
SOTA | some state of the arts |
References
- Chen, S.; Liu, W.; Li, Z.; Cheng, H.; Tian, J. Metasurface-empowered optical multiplexing and multifunction. Adv. Mater. 2020, 32, e1805912. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.; Lu, H.; Mao, D.; Du, Y.; Hua, H.; Zhao, W.; Zhao, J. Graphene-empowered dynamic metasurfaces and metadevices. Opto-Electronic Adv. 2022, 5, 200098. [Google Scholar] [CrossRef]
- Gigli, C.; Leo, G. All-dielectric χ(2) metasurfaces: Recent progress. Opto-Electronic Adv. 2022, 5, 210093-1–210093-14. [Google Scholar] [CrossRef]
- Liang, S.; Xu, F.; Li, W.; Yang, W.; Cheng, S.; Yang, H.; Chen, J.; Yi, Z.; Jiang, P. Tunable smart mid infrared thermal control emitter based on phase change material VO2 thin film. Appl. Therm. Eng. 2023, 232, 121074. [Google Scholar] [CrossRef]
- Li, W.; Zhao, W.; Cheng, S.; Zhang, H.; Yi, Z.; Sun, T.; Wu, P.; Zeng, Q.; Raza, R. Tunable metamaterial absorption device based on Fabry–Perot resonance as temperature and refractive index sensing. Opt. Lasers Eng. 2024, 181, 108368. [Google Scholar] [CrossRef]
- Ra’di, Y.; Simovski, C.R.; Tretyakov, S.A. Thin perfect absorbers for electromagnetic waves: Theory, design, and realizations. Phys. Rev. Appl. 2015, 3, 037001. [Google Scholar] [CrossRef]
- Schurig, D.; Mock, J.J.; Justice, B.J.; Cummer, S.A.; Pendry, J.B.; Starr, A.F.; Smith, D.R. Metamaterial electromagnetic cloak at microwave frequencies. Science 2006, 314, 977–980. [Google Scholar] [CrossRef]
- Xu, H.X.; Hu, G.; Wang, Y.; Wang, C.; Wang, M.; Wang, S.; Huang, Y.; Genevet, P.; Huang, W.; Qiu, C.-W. Polarization-insensitive 3D conformal-skin metasurface cloak. Light Sci. Appl. 2021, 10, 75. [Google Scholar] [CrossRef]
- Lou, Q.; Chen, Z.N. Sidelobe suppression of metalens antenna by amplitude and phase controllable metasurfaces. IEEE Trans. Antennas Propag. 2021, 69, 6977–6981. [Google Scholar] [CrossRef]
- Yi, Z.; Gaofeng, L.; Zhongquan, W.; Zhihai, Z.; Zhengguo, S.; Gang, C. Recent research progress in optical super-resolution planar meta-lenses. Opto-Electron. Eng. 2021, 48, 210399-1–210399-19. [Google Scholar]
- Zhu, L.; Zhou, W.; Dong, L.; Wu, Q.; Shah, N.; Ding, X. Multifunctional full-space metahologram employing a monolayer phase-encoding metasurface. Phys. Rev. Appl. 2022, 18, 054080. [Google Scholar] [CrossRef]
- Zhu, L.; Wei, J.; Dong, L.; Shang, G.; Shah, N.; Ding, X. Multi-Dimensional Meta-Holography Encrypted by Orbital Angular Momentum, Frequency, and Polarization. Laser Photonics Rev. 2024, 18, 2301362. [Google Scholar] [CrossRef]
- Shang, G.; Wang, Z.; Li, H.; Zhang, K.; Wu, Q.; Burokur, S.N.; Ding, X. Metasurface holography in the microwave regime. Photonics 2021, 8, 135. [Google Scholar] [CrossRef]
- Wan, W.; Gao, J.; Yang, X. Metasurface holograms for holographic imaging. Adv. Opt. Mater. 2017, 5, 1700541. [Google Scholar] [CrossRef]
- So, S.; Badloe, T.; Noh, J.; Bravo-Abad, J.; Rho, J. Deep learning enabled inverse design in nanophotonics. Nanophotonics 2020, 9, 1041–1057. [Google Scholar] [CrossRef]
- Chen, P.; Chen, J.; Yan, H.; Mo, Q.; Xu, Z.; Liu, J.; Zhang, W.; Yang, Y.; Lu, Y. Improving material property prediction by leveraging the large-scale computational database and deep learning. J. Phys. Chem. C 2022, 126, 16297–16305. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, L.; Lanteri, S.; Viquerat, J. Dynamic metasurface control using deep reinforcement learning. Math. Comput. Simul. 2022, 197, 377–395. [Google Scholar] [CrossRef]
- Goudos, S.K.; Sahalos, J.N. Microwave absorber optimal design using multi-objective particle swarm optimization. Microw. Opt. Technol. Lett. 2006, 48, 1553–1558. [Google Scholar] [CrossRef]
- Li, S.; Song, W.; Fang, L.; Chen, Y.; Ghamisi, P.; Benediktsson, J.A. Deep learning for hyperspectral image classification: An overview. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6690–6709. [Google Scholar] [CrossRef]
- Phan, N.; Dou, D.; Wang, H.; Kil, D.; Piniewski, B. Ontology-based deep learning for human behavior prediction with explanations in health social networks. Inf. Sci. 2017, 384, 298–313. [Google Scholar] [CrossRef]
- Otter, D.W.; Medina, J.R.; Kalita, J.K. A Survey of the usages of deep learning for natural language processing. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 604–624. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Du, W.; Dong, L.; Wei, J. Optimized design for absorption metasurface based on autoencoder (AE) and BiLSTM-Attention-FCN-Net. Phys Scr. 2024, 99, 036002. [Google Scholar] [CrossRef]
- Dou, K.; Xie, X.; Pu, M.; Li, X.; Ma, X.; Wang, C.; Luo, X. Off-axis multi-wavelength dispersion controlling metalens for multi-color imaging. Opto-Electron. Adv. 2020, 3, 190005. [Google Scholar] [CrossRef]
- Sajedian, I.; Lee, H.; Rho, J. Double-deep Q-learning to increase the efficiency of metasurface holograms. Sci. Rep. 2019, 9, 10899. [Google Scholar] [CrossRef]
- Ma, W.; Liu, Z.; Kudyshev, Z.A.; Boltasseva, A.; Cai, W.; Liu, Y. Deep learning for the design of photonic structures. Nat. Photonics 2021, 15, 77–90. [Google Scholar] [CrossRef]
- Malkiel, I.; Mrejen, M.; Nagler, A.; Arieli, U.; Wolf, L.; Suchowski, H. Plasmonic nanostructure design and characterization via deep learning. Light. Sci. Appl. 2018, 7, 60. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.; Wang, J.; Fu, X.; Liu, X.; Liu, T.; Chu, Z.; Han, Y.; Qiu, T.; Sui, S.; Qu, S.; et al. Deep-learning-empowered holographic metasurface with simultaneously customized phase and amplitude. ACS Appl. Mater. Interfaces 2022, 14, 48303–48310. [Google Scholar] [CrossRef]
- Wen, D.; Yue, F.; Li, G.; Zheng, G.; Chan, K.; Chen, S.; Chen, M.; Li, K.F.; Wong, P.W.H.; Cheah, K.W.; et al. Helicity multiplexed broadband metasurface holograms. Nat. Commun. 2015, 6, 8241. [Google Scholar] [CrossRef]
- Huang, J.; Pogorzelski, R. A Ka-band microstrip reflectarray with elements having variable rotation angles. IEEE Trans. Antennas Propag. 1998, 46, 650–656. [Google Scholar] [CrossRef]
- Bomzon, Z.; Biener, G.; Kleiner, V.; Hasman, E. Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings. Opt. Lett. 2002, 27, 1141–1143. [Google Scholar] [CrossRef]
- Hsiao, H.H.; Chu, C.H.; Tsai, D.P. Fundamentals and applications of metasurfaces. Small Methods 2017, 1, 1600064. [Google Scholar] [CrossRef]
- Ding, X.; Monticone, F.; Zhang, K.; Zhang, L.; Gao, D.; Burokur, S.N.; De Lustrac, A.; Wu, Q.; Qiu, C.W.; Alù, A. Ultrathin Pancharatnam–Berry metasurface with maximal cross-polarization efficiency. Adv. Mater. 2015, 27, 1195–1200. [Google Scholar] [CrossRef] [PubMed]
- Arbabi, A.; Faraon, A. Fundamental limits of ultrathin metasurfaces. Sci. Rep. 2017, 7, srep43722. [Google Scholar] [CrossRef]
- Jiang, L.; Li, X.; Wu, Q.; Wang, L.; Gao, L. Neural network enabled metasurface design for phase manipulation. Opt. Express 2021, 29, 2521–2528. [Google Scholar] [CrossRef] [PubMed]
- Qu, K.; Chen, K.; Hu, Q.; Zhao, J.; Jiang, T.; Feng, Y. Deep-learning-assisted inverse design of dual-spin/frequency metasurface for quad-channel off-axis vortices multiplexing. Adv. Photonics Nexus 2023, 2, 016010. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, X.; Liu, K.; Zhang, H.; Shi, L.; Song, S.; Tang, D.; Guo, Y. Complex-amplitude metasurface design assisted by deep learning. Ann. der Phys. 2022, 534, 202200188. [Google Scholar] [CrossRef]
- Han, C.; Shen, Y. Three-dimensional scene encryption algorithm based on phase iteration algorithm of the angular-spectral domain. IEEE/CAA J. Autom. Sin. 2019, 7, 1074–1080. [Google Scholar] [CrossRef]
- Chen, D.; Sang, X.; Wang, P.; Yu, X.; Gao, X.; Yan, B.; Wang, H.; Qi, S.; Ye, X. Virtual view synthesis for 3D light-field display based on scene tower blending. Opt. Express 2021, 29, 7866–7884. [Google Scholar] [CrossRef]
- Wei, W.; Tang, P.; Shao, J.; Zhu, J.; Zhao, X.; Wu, C. End-to-end design of metasurface-based complex-amplitude holograms by physics-driven deep neural networks. Nanophotonics 2022, 11, 2921–2929. [Google Scholar] [CrossRef]
Network | Epoch | MSE | MAE of θ1 | MAE of θ2 | Time (s) |
---|---|---|---|---|---|
Our model | 10,000 | 0.47 | 0.2 | 0.6 | 785 |
ResNet | 10,000 | 1 | 0.6 | 1 | 1443 |
CNN | 10,000 | 0.8 | 0.5 | 0.8 | 1104 |
DA-Mixer-CNN | 10,000 | 0.6 | 0.5 | 0.7 | 983 |
ResNet50 | 10,000 | 0.6 | 0.2 | 1 | 7815 |
MSCDNN | 10,000 | 0.7 | 0.4 | 0.7 | 1300 |
The Rotation Angle (°) | θ1 | θ2 | θ1 | θ2 | θ1 | θ2 | θ1 | θ2 |
---|---|---|---|---|---|---|---|---|
Label | 130 | 20 | 95 | 120 | 175 | 45 | 30 | 55 |
Our model | 129.3 | 19.9 | 94.7 | 119.9 | 175 | 44.9 | 29.4 | 54.5 |
ResNet | 129.4 | 20.1 | 95.3 | 121.3 | 174.8 | 46.4 | 31.9 | 59 |
CNN | 128.5 | 20.2 | 93.6 | 117.9 | 172.6 | 44 | 29.5 | 54.1 |
DA-Mixer-CNN | 128.8 | 20.9 | 94 | 117.9 | 173.2 | 45.6 | 29.5 | 54.4 |
ResNet50 | 128.6 | 17.9 | 93.5 | 120.1 | 175.7 | 43.3 | 29.5 | 53.8 |
MSCDNN | 128.8 | 18.5 | 94 | 117.4 | 173.2 | 44.8 | 28.3 | 53.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, L.; Zhang, H.; Dong, L.; Lv, Z.; Ding, X. Dynamic Attention Mixer-Based Residual Network Assisted Design of Holographic Metasurface. Photonics 2024, 11, 963. https://doi.org/10.3390/photonics11100963
Zhu L, Zhang H, Dong L, Lv Z, Ding X. Dynamic Attention Mixer-Based Residual Network Assisted Design of Holographic Metasurface. Photonics. 2024; 11(10):963. https://doi.org/10.3390/photonics11100963
Chicago/Turabian StyleZhu, Lei, Hongda Zhang, Liang Dong, Zhengliang Lv, and Xumin Ding. 2024. "Dynamic Attention Mixer-Based Residual Network Assisted Design of Holographic Metasurface" Photonics 11, no. 10: 963. https://doi.org/10.3390/photonics11100963
APA StyleZhu, L., Zhang, H., Dong, L., Lv, Z., & Ding, X. (2024). Dynamic Attention Mixer-Based Residual Network Assisted Design of Holographic Metasurface. Photonics, 11(10), 963. https://doi.org/10.3390/photonics11100963