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Abstract: Multi-channel holographic metasurfaces have great potential for applications in wireless
communications and radar. However, geometric phase-based multichannel metasurface units often
have complex phase spectra, making the design of holographic metasurfaces complex and time-
consuming. To address this challenge, we propose a dynamic attention mixer-based residual network
to streamline the optimization and design of a multi-channel holographic metasurface unit. We
conduct validation using multi-channel metasurface units, with a training set mean squared error
(MSE) of 0.003 and a validation set MSE of 0.4. Additionally, we calculate the mean absolute error
(MAE) for the geometric parameters θ1 and θ2 of the backward-predicted metasurface units in the
validation set, which are 0.2◦ and 0.6◦, respectively. Compared to traditional networks, our method
achieves robust learning outcomes without the need for extensive datasets and provides accurate
results even in complex electromagnetic responses. It is believed that the method presented in this
paper is also applicable to the design of other artificial materials or multifunctional metasurfaces.

Keywords: residual network; attention; metasurface; holography; inverse design

1. Introduction

Metasurfaces are two-dimensional artificial electromagnetic materials composed of
arrays of meta-atoms that exhibit a high degree of freedom in manipulating electromagnetic
(EM) waves [1]. As the two-dimensional counterpart of metamaterials, metasurfaces exhibit
exceptional physical properties that are not found in conventional materials. This enables
the flexible regulation of electromagnetic properties [2–4]. Owing to the flexible modu-
lation of EM waves, metasurfaces have spawned a number of enchanting applications,
such as perfect absorbers [5,6], cloaking devices [7,8], planar meta-lens [9,10] and meta-
holograms [11,12]. The capacity of metasurface holography to reconstruct wavefronts has
generated considerable interest, with the technology opening new avenues for microwave
and optical devices [13,14]. Many fascinating works are springing up, which have greatly
enriched the design and application of holograms. The conventional techniques for the
design of metasurfaces frequently necessitate a trial-and-error optimization process [15],
which is dependent on the designer’s empirical extrapolation of the electromagnetic re-
sponse of the meta-atom and is a time-consuming endeavor [16]. In order to enhance the
design efficiency, the researchers endeavored to address these issues through the utilization
of optimization algorithms, including reinforcement learning algorithms [17] and parti-
cle swarm optimization algorithms [18]. Nevertheless, these algorithms often encounter
difficulties in converging towards the global optimal solution.
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In recent years, machine learning has emerged as a prominent area of research, rapidly
attracting significant attention from the academic community. Deep learning, a branch of
machine learning, has demonstrated its powerful expressions and predictive capabilities,
quickly becoming a focal point in the field of artificial intelligence. Its applications span
diverse domains, including image classification [19], behavioral prediction [20] and natural
language processing [21]. Naturally, due to its strong data-learning capabilities, deep
learning has also been introduced into the design of metasurfaces, such as multi-band
absorbers [22], metasurface lenses [23], and holograms [24]. For hologram learning, the
most common methods are applied at the microstructural level, encompassing both forward
and inverse design of metasurface units. That is, the EM response can be directly inferred
from the unit structure. Conversely, the geometrical parameters can be derived from
the EM responses [25,26]. In the event of encountering more intricate EM spectra, it
becomes necessary to increase the number of nodes and layers within the network to fit
these complex response spectra. However, this approach of enlarging the network size
inevitably leads to increased computational complexity, extended runtime, and heightened
resource utilization pressure. Recently, Jiafu Wang et al. [27] have used residual networks
to learn the complex amplitude responses of metasurfaces, thereby achieving the learning
of metasurface holography. However, there are problems of low learning efficiency and
slow learning speed for the structure design of the meta-atoms. Moreover, when designing
multi-channel metasurface holography [28], the geometric parameters that control the
phase in different bands are interdependent, which has the effect of reducing the accuracy
of the design and increasing the complexity of the metasurface unit. Moreover, due to the
complexity of the data, it is often necessary to increase the number of network layers to
learn these deep relationships.

To address these challenges, this paper proposes a dynamic attention mixer-based
residual network (DAMR) architecture for the inverse design of metasurface units. The
prediction units are arranged into an array using the angular spectral diffraction algorithm
to realize the holographic reconstruction verification. This approach allows for the rapid
prediction of structural parameters from electromagnetic responses, offering a promising
solution for the fast and precise design of metasurface units. Furthermore, a novel DAMR
is introduced, which integrates a long short-term memory module, a dynamic attention
mechanism, and parallel mixer modules within the residual module by using the dynamic
attention mechanism to assign different weights to different frequency bands, effectively
decreasing the crosstalk issues between bands, and employs an LSTM module along with
parallel mixers to enhance feature extraction and accelerate the training process. Compared
to traditional residual modules, the proposed approach not only enhances the feature
extraction process but also facilitates the capture of the temporal sequence relationship
of the input electromagnetic responses. This is achieved through the incorporation of a
long short-term memory module and a dynamic attention mechanism, which enables the
accurate prediction of the structural parameters of the metasurface unit. Subsequently,
the simulated dataset of the unit is obtained for training, the mean squared error (MSE)
of the validation dataset stabilizes below 0.4, and the mean absolute error (MAE) for the
two structural parameters is less than 0.6◦. We also conducted simulation tests on the
predicted units in the validation set and compared them with the true phases, calculating
the average absolute phase error of 3.16◦. Furthermore, the peak signal-to-noise ratio
(PSNR) is introduced to evaluate the quality of holographic images, with PSNR values of
40.8 dB and 29.156 dB for “V” and “L”, respectively, confirming high-resolution images.
This method can not only be applied to multi-channel holographic metasurfaces but can
also be extended to the design of multi-polarization, multi-wavelength metasurface devices
in the future, enabling rapid design and prediction.
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2. Structure and Methodology

The inverse design schematic diagram of dual-band metasurface holographic based
on the DAMR network is illustrated in Figure 1. Here, a multi-channel metasurface
holographic unit based on multiple annular resonators is designed, which manipulates
circularly polarized waves based on the principle of geometric phase [29,30]. Dual-band
phase control is achieved by adjusting the rotation angle of the resonators. The meta-atoms
are simulated using full-wave simulation software in order to obtain electromagnetic (EM)
response curves, which are used to build a dataset for training DAMR networks. The
acquired dataset comprises the phase curves and geometric parameters of the elements.
The data samples are employed for the purpose of training the network, with the objective
of obtaining the predicted metasurface elements. Subsequently, the target image is phase-
encoded to obtain the encoded array and the predicted unit is arranged according to the
encoded array to obtain the predicted dual-channel holographic images.

Photonics 2024, 11, x FOR PEER REVIEW 3 of 13 
 

 

2. Structure and Methodology 
The inverse design schematic diagram of dual-band metasurface holographic based 

on the DAMR network is illustrated in Figure 1. Here, a multi-channel metasurface holo-
graphic unit based on multiple annular resonators is designed, which manipulates circu-
larly polarized waves based on the principle of geometric phase [29,30]. Dual-band phase 
control is achieved by adjusting the rotation angle of the resonators. The meta-atoms are 
simulated using full-wave simulation software in order to obtain electromagnetic (EM) 
response curves, which are used to build a dataset for training DAMR networks. The ac-
quired dataset comprises the phase curves and geometric parameters of the elements. The 
data samples are employed for the purpose of training the network, with the objective of 
obtaining the predicted metasurface elements. Subsequently, the target image is phase-
encoded to obtain the encoded array and the predicted unit is arranged according to the 
encoded array to obtain the predicted dual-channel holographic images. 

 
Figure 1. The inverse design of dual-band metasurface holography by controlling phase based on 
the deep learning network. 

To verify the reliability of the network, a dual-channel metasurface unit based on 
transmission modes is designed in this study, which consists of a metal layer and a sub-
strate, as shown in Figure 2. The metal layer includes an improved double C-slot resonator 
(MDCSR) and a double C-open slot resonator (DCOSR). The metal layer is made of copper 
metal, with a thickness of t = 0.035 mm. The substrate is made of F4B (εr = 2.2, tanδ = 0.001) 
dielectric material, with a thickness of h = 2 mm. Figure 2a demonstrates the front view of 
the metasurface structure, where r1 = 5.7 mm, r2 = 4 mm, r3 = 3 mm, r4 = 2 mm, w1 = 0.5 mm, 
w2 = 0.8 mm, w3 = 0.4 mm, w4 = 0.4 mm, d1 = 0.9 mm, d2 = 0.4 mm, and d3 = 0.4 mm. In order 
to obtain the 2π phase variation and provide full-wave front control, the PB phase is em-
ployed to manipulate the phase shift of the circularly polarized wave. 

When a meta-atom is rotated by an angle of θ and illuminated with right circularly 
polarized (RCP) and left circularly polarized (LCP) waves (𝐸ூோ/𝐸ூ௅), the RCP and LCP com-
ponents of the transmissive wave can be expressed as [31] Equation (1): ൤𝐸ோ்𝐸௅்൨ = 12 ቈ 𝑡଴ + 𝑡௘ 𝑒௜ଶఏ(𝑡଴ − 𝑡௘)𝑒௜ଶఏ(𝑡଴ + 𝑡௘) 𝑡଴ + 𝑡௘ ቉ ൤𝐸ூோ𝐸ூ௅൨ (1)

where t0 and te are the complex amplitude coefficients of the linearly polarized incident 
wave along the two principal axis directions of the anisotropic meta-atoms. From Equa-
tion (1), it can be observed that the metasurface is capable of generating cross-polarization 
components carrying additional phase shifts (±2𝜃) under circular polarization illumina-
tion. By rotating the meta-atoms from 0 to π, the 2π phase coverage can be achieved. 

Figure 1. The inverse design of dual-band metasurface holography by controlling phase based on the
deep learning network.

To verify the reliability of the network, a dual-channel metasurface unit based on
transmission modes is designed in this study, which consists of a metal layer and a substrate,
as shown in Figure 2. The metal layer includes an improved double C-slot resonator
(MDCSR) and a double C-open slot resonator (DCOSR). The metal layer is made of copper
metal, with a thickness of t = 0.035 mm. The substrate is made of F4B (εr = 2.2, tanδ = 0.001)
dielectric material, with a thickness of h = 2 mm. Figure 2a demonstrates the front view of
the metasurface structure, where r1 = 5.7 mm, r2 = 4 mm, r3 = 3 mm, r4 = 2 mm, w1 = 0.5 mm,
w2 = 0.8 mm, w3 = 0.4 mm, w4 = 0.4 mm, d1 = 0.9 mm, d2 = 0.4 mm, and d3 = 0.4 mm. In
order to obtain the 2π phase variation and provide full-wave front control, the PB phase is
employed to manipulate the phase shift of the circularly polarized wave.

When a meta-atom is rotated by an angle of θ and illuminated with right circularly
polarized (RCP) and left circularly polarized (LCP) waves (ER

I /EL
I ), the RCP and LCP

components of the transmissive wave can be expressed as [31] Equation (1):[
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T

]
=

1
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[
t0 + te ei2θ(t0 − te)

ei2θ(t0 + te) t0 + te

][
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I
EL

I

]
(1)

where t0 and te are the complex amplitude coefficients of the linearly polarized incident wave
along the two principal axis directions of the anisotropic meta-atoms. From Equation (1), it
can be observed that the metasurface is capable of generating cross-polarization components
carrying additional phase shifts (±2θ) under circular polarization illumination. By rotating
the meta-atoms from 0 to π, the 2π phase coverage can be achieved.
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Figure 2. Schematic diagram of the metasurface element structure and the propagation characteristics
under LCP wave incidence. (a) The front view of the metasurface unit structure. (b) The side view of
the metasurface unit structure. (c,d) The transmission amplitude and phase shift at 8.6 GHz with
varying rotation angles θ1. (e,f) The transmission amplitude and phase shift at 13.6 GHz with varying
rotation angles θ2. The blue shaded area represents uniform phase variation.

To characterize the performance of the proposed dual-band meta-atoms, numerical
simulations are carried out using the commercial electromagnetic simulation software CST
Microwave Studio (2020). The x and y boundary conditions are set to periodic boundaries,
while the z direction is set to an open boundary. LCP wave is vertically incident from the
top metal layer onto the substrate, while RCP wave is transmitted through the structure
in the transmission mode. As illustrated in Figure 2c–f, when the rotation angle θ1 (θ2)
of the resonator is varied from 0 to π in increments of π/8, the amplitude of the metasur-
face elements at f 1 = 8.6 GHz (f 2 = 13.6 GHz) exceeds 0.45, approaching the theoretical
maximum of 0.5 [32,33]. At this point, the phase shift of the metasurface element achieves
full phase coverage close to 2π. Therefore, by adjusting the values of θ1 and θ2, higher
transmission efficiency and 2π phase shift are achieved at frequencies f 1 = 8.6 GHz and
f 2 = 13.6 GHz, allowing to achieve 2-bit phase encoding with the designed meta-atom. By
rotating the angles θ1 and θ2 of the MDCSR and DCOSR, respectively, the corresponding
phases of the two resonators could be changed, enabling arbitrary phase modulation at the
two operating frequencies.
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3. The Design of Reverse Network Structure

Since cross-coupled interference is difficult to achieve independent control and precise
design, it is challenging to flexibly control the phase response of the two frequency bands
by adjusting the rotation angles of the two resonators. As the two rotation angles θ1 and θ2
rotate, the different parameters result in phase differences and mutual interference between
the two frequencies. In order to facilitate the learning of such complex spectral responses,
it may be effective to increase the size of the dataset or to enhance the sophistication of
the model. However, as the dataset and model depth increase, the learning difficulty and
resource occupation also increase. To address this, this paper proposes a dynamic attention
mixer-based residual network (DAMR) to learn the correspondence between structural
parameters and electromagnetic responses.

In this study, a unique mechanism that integrates dynamic attention with mixers in
the residual blocks is introduced to balance the data volume and depth within the network
model. As shown in Figure 3, the DAMR network includes an encoder, a residual module,
and three fully connected layers. The encoder is meticulously designed and consists of
three convolution–pooling–activation modules, each comprising a one-dimensional con-
volutional layer, a MaxPool layer, and a rectified linear unit (ReLU) activation function.
The input channels of the one-dimensional convolutional layer are set to [1, 32, 64] and the
output channels are set to [32, 64, 128]. The kernel size and stride of the convolutional opera-
tion are set to 3 and 2, respectively, with a padding of 0. The MaxPool operation has a kernel
and stride of 2. The encoder performs convolutional operations to extract features and re-
duces the spatial dimensions of the feature maps using pooling, while the ReLU activation
function introduces nonlinearity, enhancing the model’s representation capability.
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The traditional residual module consists of convolutional layers, activation function
layers, and a residual skip connection. However, it requires high precision and a large
amount of training data, leading to potential issues such as gradient vanishing and ex-
ploding during the training process. Therefore, this study proposes an innovative residual
module based on a dynamic attention mixer. The residual module includes a long short-
term memory (LSTM) module, a dynamic attention module, two parallel mixer modules,
two sets of convolution–activation modules, and a residual skip connection. Each mixer
module consists of two linear layers with hidden dimensions and two ReLU activation
functions. After processing each feature through the LSTM layer, a corresponding hidden
state for each piece of data is obtained. These hidden states store the features extracted
from the data and include contextual information about the EM spectra. Among these, the
final hidden state of the LSTM layer is particularly important, as it represents the ultimate
state of the entire EM spectra. Here, the last hidden state is passed to the dynamic attention
mechanism, yielding a dynamic attention weight, which indicates the model’s focus on
feature points in the phase spectra. Finally, the dynamic attention weight is integrated with
the last hidden state of the LSTM layer to form a new state feature, which is then passed to
the mixer module for independent mixing operations. The outputs are then aggregated
and collectively passed into the convolution–activation modules to extract features from
the mixed data. The convolution–activation modules consist of a convolutional layer with
a kernel size of 3 and padding of 1, followed by a ReLU activation function to introduce
nonlinearity for the mixed input features. Finally, four fully connected layers (FCs) are used
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for linear transformations and output prediction, with input dimensions of [n*s, 64, 16, 8]
(n represents the number of feature channels, s represents the sequence length, both values
are obtained from algorithmic computations) and output dimensions of [256, 64, 8, 2]. The
dynamic attention mixer residual module enhances the model’s representation capability
and adaptability, improving network performance. Although the mixed information is
fed to the FC layers, the original information extracted by the encoder is also directly
connected to the FC layers to prevent the potential loss of important mixed information.
This dual-input strategy ensures that the network retains crucial subtle differences in the
input data, contributing to the overall accuracy and effectiveness of the DAMR model.

Since the phase spectrum has a complex data structure, it may meet the jump of 0–360◦

at the abrupt change. This abrupt phase change seriously interferes with the prediction
of the network. To address this issue, preprocessing is performed on the network’s input,
removing numerical differences between various parameters [34]. The input data are
preprocessed by z-score normalization. Equation (2) is used for preprocessing:

y =
x − x

σ
(2)

Here, x represents the mean of the dataset, and σ represents the standard deviation of
the dataset.

Due to the potential loss of features during the process of summing and averaging by
the mixer, in order to extract data features as much as possible, a residual skip connection
is added in this study. It concatenates the encoder output with the data processed through
the residual block. The residual connection calculation is shown in Equation (3).

y = F(x, {Wi}) + x (3)

In this equation, x represents the input vector, F(x, {Wi}) represents the output vector
obtained through mixer and convolutional layer operations, and y represents the output
vector after the residual connection. High-dimensional features extracted through residual
combination are passed to the fully connected layers after being flattened. Finally, the
network predicts the geometric parameters for the metasurface unit. The loss function is the
mean squared error (MSE) function, which can be represented by Equation (4). The smaller
the MSE value, the closer the predicted values are to the true values, indicating higher
model accuracy. Furthermore, the performance of parameters θ1 and θ2 is also evaluated
by the mean absolute error (MAE) function Equation (5). The smaller the MAE value, the
closer the predicted values are to the true values, indicating higher model accuracy.

MSE =
1
n

n

∑
i=1

(yi − yr)
2 (4)

MAE =
1
n

n

∑
i=1

|yi − yr| (5)

where yi represents the predicted value, yr represents the true value, and n represents the
number of samples. The value of the loss function is used to update the weights of the
network through backpropagation. The model is optimized using the Adam optimizer, with
an initial learning rate set to 0.001. The Adam optimizer possesses adaptability, allowing
for dynamic adjustment of training effectiveness during the optimization process.

The dataset is obtained using the commercial electromagnetic simulation software CST
Microwave Studio (2020). The values of θ1 and θ2 range from 0 to 180◦, with a sampling
interval of 5◦ (excluding 180◦). After generating an additional batch of random angle data
and excluding some erroneous data, a total of 1740 units and their corresponding EM
responses are collected as the dataset. The input data consist of phase responses from
6–16 GHz, and the output data are the rotation angles of θ1 and θ2. The dataset is divided
into a training set and a validation set in a ratio of 90% to 10%, respectively. The training
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batch size is set to 300, and iterations are performed 10,000 times. The performance of the
MSE loss function is shown in Figure 4a, indicating a rapid decrease and convergence of
the loss function values for both the training and validation sets. After 2000 iterations, the
MSE loss of the model converges to around 1.5 for both the training and validation sets.
After 10,000 iterations, the MSE loss of the model converges to 0.003 and 0.4 on the two sets,
respectively. Compared with reference [27] (epoch = 2000, MSE = 13), our validation set
has a smaller MSE loss after the same 2000 iterations. Additionally, this paper includes
the MAE as further validation. As can be observed from Figure 4b,c, after 2000 training
iterations, the MAEs for θ1 and θ2 are 0.5◦ and 0.7◦, respectively. After 10,000 training
iterations, the MAEs for θ1 and θ2 are 0.2◦ and 0.6◦, respectively.
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In this study, predictions are made using the well-trained model, and the errors be-
tween the predicted and actual values are accumulated and displayed through histograms.
Figure 4d indicates that 95% of the data in the validation set have absolute errors con-
centrated between approximately −1◦ and 1◦, with only a very small number of absolute
errors distributed between approximately 1◦ and 4◦ as well as between approximately
−4◦ and −1◦. The absolute errors follow a Gaussian distribution, which suggests that
the network has good predictive capabilities. However, there are some singularities in
the training process, which are caused by the stochastic gradient algorithm. The model
adopts Adam optimizer, which is adaptive and can dynamically adjust the training effect
during the optimization process. As a result, the model can quickly jump out of these
singularities, which ensures the robustness of the model. We also conduct simulation
tests on the predicted units in the validation set and compare them with the true phases,
calculating the average absolute phase error to be 3.16◦. This proves that the network has
good prediction ability.
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4. Results and Discussion

To validate the effectiveness of the network and the dynamic attention mixer, this
paper employs multiple networks for comparative experiments under the same condi-
tions: a Resnet network without the addition of a dynamic attention mixer module, a
CNN network without any added modules, and a CNN network with an added dynamic
attention mixer module (DA-Mixer-CNN), as shown in Table 1. After training each of
these networks for 10,000 iterations, the MSE for the Resnet is 1, for the CNN network is
0.8, and for the DA-Mixer-CNN network is 0.6. It can be observed that in the process of
learning the complex phase spectrum in the dual-frequency band, the traditional network’s
performance is actually not good with a small number of datasets, while the network
with the added dynamic attention mixer module has shown certain improvements in both
learning efficiency and convergence speed. We also conduct a comparative study with
some state-of-the-art (SOTA) networks, such as deep ResNet50 and MSCDNN networks.
It can be observed that both MSE and MAE have decreased when learning with the deep
ResNet50 network, but the training time is significantly increased. Moreover, it occupies a
considerable amount of computational resources. Learning using the MSCDNN network
may be affected by singular data in the dataset, resulting in a poor learning effect. This phe-
nomenon may also be associated with the complexity of the phase response. We attempted
to manually remove some singular data and found that the loss decreased, indicating that
the MSCDNN network still faces some challenges when learning from small datasets.

Table 1. MSE losses and MAE losses for θ1 and θ2 obtained from different networks training.

Network Epoch MSE MAE of θ1 MAE of θ2 Time (s)

Our model 10,000 0.47 0.2 0.6 785
ResNet 10,000 1 0.6 1 1443
CNN 10,000 0.8 0.5 0.8 1104

DA-Mixer-CNN 10,000 0.6 0.5 0.7 983
ResNet50 10,000 0.6 0.2 1 7815
MSCDNN 10,000 0.7 0.4 0.7 1300

As shown in Table 2, several units are randomly selected from the test set and their
geometric parameters are predicted using the different networks. It can be seen from the
table that the improvement of the network’s learning effect by the Mixer is significant.
Furthermore, the proposed DAMR network in this study has shown a substantial improve-
ment compared to traditional networks. This study randomly selected metasurface units
and validated the validation set using the DAMR network. The prediction curves shown in
Figure 5a–d demonstrate that the predicted results are generally consistent with the actual
results. Therefore, under the conditions of a fixed dataset size and network depth, the
learning efficiency of the proposed network in this paper remains high.

Table 2. The performance of different networks in predicting geometric parameters.

The Rotation
Angle (◦) θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2

Label 130 20 95 120 175 45 30 55
Our model 129.3 19.9 94.7 119.9 175 44.9 29.4 54.5

ResNet 129.4 20.1 95.3 121.3 174.8 46.4 31.9 59
CNN 128.5 20.2 93.6 117.9 172.6 44 29.5 54.1

DA-Mixer-CNN 128.8 20.9 94 117.9 173.2 45.6 29.5 54.4
ResNet50 128.6 17.9 93.5 120.1 175.7 43.3 29.5 53.8
MSCDNN 128.8 18.5 94 117.4 173.2 44.8 28.3 53.7
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In addition, we compare phase errors and dataset sizes in references [27,35,36], with
the results shown in Table 3. It can be observed that Ref. [27] has a slightly lower phase
error due to its implementation of single-channel holography, which experiences almost
no crosstalk in the phase response. In contrast, for multi-channel holographic designs in
Ref. [35], it is found that with a small dataset, the 10◦phase error is somewhat large. In
Ref. [36], a large amount of data are used, resulting in a small phase error of 3.28◦, but
the increase in the dataset also leads to an increase in training time and computational
resources. Our multi-channel holographic design, using a smaller dataset, achieved a small
phase error of 3.16◦, which fully demonstrates the effectiveness of our network.
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Table 3. Comparison of training epoch, phase errors, and dataset for different designs.

Design Epoch Phase Error (Degree) Dataset

[27] 2000 2.68 2745
[35] 200 10 3200
[36] 20,000 3.28 11,000

Our model 10,000 3.16 1740

5. Simulation Testing

To further validate the feasibility of the network, we construct a dual-channel meta-
surface array. As shown in Figure 6a,b, the target images “V” and “L” are discretized into
0 and 1 pixels, and the angular spectral diffraction algorithm [37] is used to encode the
phase of the target images. The encoded target images are propagated through diffraction
using the diffraction propagation formula, yielding theoretical diffraction images and
encoding arrays, with the units arranged in an array configuration. The metasurface array
is simulated using the CST Microwave Studio. The number of metasurface units is set to
20 × 20, and the array size is 240 mm × 240 mm. The electromagnetic waves are incident
on the metasurface from the top with LCP waves, and the RCP waves are transmitted from
the substrate. The reconstruction of “V” and “L” is achieved at a distance of 61 mm from
the metasurface at 8.6 GHz and 13.6 GHz, as shown in Figure 6c,d.

Simultaneously, this paper also uses a neural network to predict the metasurface units,
obtaining the predicted metasurface structure and performing holographic simulations
using the same method. The results are shown in Figure 6e,f. Here, the peak signal-to-
noise ratio (PSNR) and structural similarity (SSIM) are used for assessing image quality.
PSNR is used to compare the difference between the original image and the reconstructed
image. SSIM is an index used to assess the similarity between two images based on their
luminance, contrast, and structural information, with the formulas for PSNR and SSIM
being represented as Equation (6) and Equation (7), respectively.

PSNR = 10·log10

(
MAX2

I
MSE

)
(6)
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where the MAXI represents the maximum pixel value and MSE is the mean square error.

SSIM(x, y) =

(
2µxµy + c1

)(
2σxy + c2

)(
µ2

x + µ2
y + c1

)(
σ2

x + σ2
y + c2

) (7)

Here, µx and µy represent the means of x and y, respectively. σx and σy represent the
standard deviations of x and y in sequence. σxy indicates the covariance between x and y.
c1 and c2 are constants.

When the PSNR is around 30 dB and the SSIM is greater than 95%, it can be considered
that the two images are almost identical [38,39]. In this study, the predicted images for “V”
and “L” have PSNR values of 40.8 dB and 29.156 dB, respectively, and SSIM values of 99.6%
and 97.8%, respectively.
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the metasurface at frequencies of 8.6 GHz and 13.6 GHz. (e,f) The predicted results of “V” and “L”
obtained through network prediction.

6. Conclusions

In this paper, a deep learning-based holographic metasurface optimization method
is proposed, which is capable of predicting the geometrical parameters of the meta-atom
structure to achieve the design of dual-channel holographic metasurfaces. The structural
parameters of the metasurface can be rapidly estimated by inputting the target phase
response. In comparison to the conventional metasurface design methodology, the op-
timization network proposed in the article is capable of expediting the scanning and
optimization of parameters. This study also introduces an innovative dynamic attention
mixer residual module to further extract features, optimize the crosstalk between spectra
and reduce dependence on large datasets, which includes an LSTM module, a dynamic
attention mechanism, and parallel mixers. The MAE for θ1 and θ2 is below 0.6◦, and the
errors for the validation set are found to follow a Gaussian distribution, demonstrating
high prediction accuracy and reliability of the inverse design. The predicted unit structure
is employed for holographic display and is then compared with the holographic image
generated from the original unit structure. The PSNR values for “V” and “L” are 40.8 dB
and 29.156 dB, respectively, indicating a close match between the predicted and original
holographic images. In summary, our proposed deep learning-based multi-channel holo-
graphic metasurface unit optimization method can learn complex phase responses with
small datasets and still show high learning efficiency, which is conducive to more efficient



Photonics 2024, 11, 963 11 of 12

design and optimization of metasurface devices. It is anticipated that the method will be
extended to higher channels in the future, thereby achieving greater efficiency in the de
metasurface design.
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The following abbreviations are used in this manuscript:
EM electromagnetic
DAMR dynamic attention mixer-based residual
MSE mean squared error
MAE mean absolute error
MDCSR double C-slot resonator
DCOSR double C-open slot resonator
RCP right circularly polarized
LCP left circularly polarized
ReLU Rectiffed linear unit
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