Polymeric Nanoparticles and Chitosan Gel Loading Ketorolac Tromethamine to Alleviate Pain Associated with Condyloma Acuminata during the Pre- and Post-Ablation
"> Figure 1
<p>Swelling and degradation processes of KT-CTS gel. Modelling graphic expressed as mean ± SD (<span class="html-italic">n</span> = 3). Panel (<b>a</b>) shows the KT-CTS gel; and panel (<b>b</b>) the blank gel without KT (CTS gel).</p> "> Figure 2
<p>SEM images of the dried discs of KT-CTS gel. (<b>a</b>) Magnification 1000×; and (<b>b</b>) magnification 5000×; the scale bar is 20 µm length.</p> "> Figure 3
<p>Rheological profile of KT-CTS gel. Blue curve represents the formulation viscosity. Red curve represents the shear stress of the formulation.</p> "> Figure 4
<p>TEM image of KT-NPs.</p> "> Figure 5
<p>In vitro release profile of the formulations, KT-NPs and KT-CTS gel (<span class="html-italic">p</span> < 0.001). Each value represents mean ± SD (<span class="html-italic">n</span> = 6).</p> "> Figure 6
<p>Biomechanical properties in human volunteers before the formulations applications (Basal) 1 h and 2 h post-application: TEWL for both formulations; and the evolution of the stratum corneum hydration for both formulations.</p> "> Figure 7
<p>Histological images of the mice ear after the TPA-induced ear oedema in mice. (<b>a</b>) negative control ear; (<b>b</b>) positive control ear; (<b>c</b>) ear treated with KT-NPs, and (<b>d</b>) ear treated with KT-CTS gel. The scale bar is 50 µm in length. The small purple cells corresponding to the immune system cells.</p> "> Figure 8
<p>Anti-inflammatory efficacy of studied formulations expressed as a percentage reduction in in-flammation when compared to a control. The results are presented as the mean ± SD of three measurements. * stands for statistical differences between the formulations and the positive control and the KT solution, ** stands for statistical differences between KT-NPs and KT-CTS gel (<span class="html-italic">p</span> < 0.0001).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Formulations
2.2.1. Preparation of CTS Gel
2.2.2. Preparation of NPs
2.3. Physical Characterization of Formulations
2.3.1. Characterization of CTS Gel
pH Study
Swelling and Degradation Tests
Morphological Studies
Rheological Study
2.3.2. Characterization of the NPs
Physicochemical Characterization
Encapsulation Efficiency
2.4. Stability Studies
2.5. In Vitro Drug Release Study
2.6. Ex Vivo Permeation Studies
2.7. HPLC Analysis
2.8. In Vivo Anti-Inflammatory Efficacy Evaluation
2.8.1. TPA-Induced Ear Oedema in Mice
2.8.2. Histological Analysis
2.9. In Vivo Tolerance Study
2.10. Statistical Analysis
3. Results
3.1. Characterization of Formulations
3.1.1. Characterization of CTS Gel
3.1.2. Characterization of NPs
3.2. Stability Studies
3.3. In Vitro Drug Release Study
3.4. Ex Vivo Permeation of KT through Human Skin
3.5. In Vivo Anti-Inflammatory Efficacy Evaluation
3.5.1. TPA-Induced Ear Oedema in Mice
3.5.2. Histological Analysis
3.6. In Vivo Tolerance Study
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Regional Committee for Africa Global Health Sector Strategy on Sexually Transmitted Infections: Implementation Framework for the African Region. Available online: https://apps.who.int/iris/handle/10665/260232 (accessed on 31 May 2021).
- Kreuter, A.; Weyandt, G.; Wieland, U. Therapieoptionen Bei Condylomata Acuminata Und Analen Dysplasien. Coloproctology 2021, 43, 87–91. [Google Scholar] [CrossRef]
- Gross, G.; Pfister, H. Role of Human Papillomavirus in Penile Cancer, Penile Intraepithelial Squamous Cell Neoplasias and in Genital Warts. Med. Microbiol. Immunol. 2004, 193, 35–94. [Google Scholar] [CrossRef]
- El Moussaoui, S.E.; Fernández-Campos, F.; Alonso, C.; Limón, D.; Mallandrich, M. Topical Mucoadhesive Alginate-Based Hydrogel Loading Ketorolac for Pain Management after Pharmacotherapy, Ablation, or Surgical Removal in Condyloma Acuminata. Gels 2021, 7, 8. [Google Scholar] [CrossRef]
- Fleischer, A.B.; Parrish, C.A.; Glenn, R.; Feldman, S.R. Condylomata Acuminata (Genital Warts): Patient Demographics and Treating Physicians. Sex. Transm. Dis. 2001, 28, 643–647. [Google Scholar] [CrossRef]
- Giancristoforo, S.; Diociaiuti, A.; Tchidjou, H.K.; Lucchetti, M.C.; Carnevale, C.; Rotunno, R.; D’Argenio, P.; el Hachem, M. Successful Topical Treatment of Anal Giant Condylomata Acuminata in an Infant. Dermatol. Ther. 2020, 33, e13624. [Google Scholar] [CrossRef]
- Sugai, S.; Nishijima, K.; Enomoto, T. Management of Condyloma Acuminata in Pregnancy: A Review. Sex. Transm. Dis. 2021, 48, 403–409. [Google Scholar] [CrossRef]
- Patel, H.; Wagner, M.; Singhal, P.; Kothari, S. Systematic Review of the Incidence and Prevalence of Genital Warts. BMC Infect. Dis. 2013, 13, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Ambrogio, A.; Yerly, S.; Sahli, R.; Bouzourene, H.; Demartines, N.; Cotton, M.; Givel, J.C. Human Papilloma Virus Type and Recurrence Rate after Surgical Clearance of Anal Condylomata Acuminata. Sex. Transm. Dis. 2009, 36, 536–540. [Google Scholar] [CrossRef] [Green Version]
- Ahuja, M.; Dhake, A.S.; Sharma, S.K.; Majumdar, D.K. Topical Ocular Delivery of NSAIDs. AAPS J. 2008, 10, 229–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elgadir, M.A.; Uddin, M.S.; Ferdosh, S.; Adam, A.; Chowdhury, A.J.K.; Sarker, M.Z.I. Impact of Chitosan Composites and Chitosan Nanoparticle Composites on Various Drug Delivery Systems: A Review. J. Food Drug Anal. 2015, 23, 619–629. [Google Scholar] [CrossRef] [Green Version]
- Makadia, H.K.; Siegel, S.J. Poly Lactic-Co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers 2011, 3, 1377–1397. [Google Scholar] [CrossRef] [PubMed]
- Shariatinia, Z. Pharmaceutical Applications of Chitosan. Adv. Colloid Interface Sci 2019, 263, 131–194. [Google Scholar] [CrossRef]
- Ali, A.; Ahmed, S. A Review on Chitosan and Its Nanocomposites in Drug Delivery. Int. J. Biol. Macromol. 2018, 109, 273–286. [Google Scholar] [CrossRef]
- Muxika, A.; Etxabide, A.; Uranga, J.; Guerrero, P.; de la Caba, K. Chitosan as a bioactive polymer: Processing, properties and applications. Int. J. Biol. Macromol. 2017, 105, 1358–1368. [Google Scholar] [CrossRef] [PubMed]
- Benson, H.A.E. Skin Structure, Function, and Permeation. In Topical and Transdermal Drug Delivery; Benson, H.A.E., Watkinson, A.C., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2012; pp. 1–22. [Google Scholar]
- Prausnitz, M.R. Microneedles for Transdermal Drug Delivery. Adv. Drug Deliv. Rev. 2004, 56, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Alkilani, A.Z.; McCrudden, M.T.C.; Donnelly, R.F. Transdermal Drug Delivery: Innovative Pharmaceutical Developments Based on Disruption of the Barrier Properties of the Stratum Corneum. Pharmaceutics 2015, 7, 438–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanikkannan, N. Iontophoresis-Based Transdermal Delivery Systems. BioDrugs 2002, 16, 339–347. [Google Scholar] [CrossRef]
- Mallandrich, M.; Calpena, A.C.; Clares, B.; Parra, A.; García, M.L.; Soriano, J.L.; Fernández-Campos, F. Nano-Engineering of Ketorolac Tromethamine Platforms for Ocular Treatment of Inflammatory Disorders. Nanomedicine 2021, 16, 401–414. [Google Scholar] [CrossRef]
- Bilati, U.; Allémann, E.; Doelker, E. Sonication Parameters for the Preparation of Biodegradable Nanocapsulesof Controlled Size by the Double Emulsion Method. Pharm. Dev. Technol. 2003, 8, 1–9. [Google Scholar] [CrossRef]
- Mallandrich, M.; Fernández-Campos, F.; Clares, B.; Halbaut, L.; Alonso, C.; Coderch, L.; Garduño-Ramírez, M.L.; Andrade, B.; del Pozo, A.; Lane, M.E.; et al. Developing Transdermal Applications of Ketorolac Tromethamine Entrapped in Stimuli Sensitive Block Copolymer Hydrogels. Pharm. Res. 2017, 34, 1728–1740. [Google Scholar] [CrossRef] [Green Version]
- Domínguez-Villegas, V.; Clares-Naveros, B.; García-López, M.L.; Calpena-Campmany, A.C.; Bustos-Zagal, P.; Garduño-Ramírez, M.L. Development and Characterization of Two Nano-Structured Systems for Topical Application of Flavanones Isolated from EysenhardtiaPlatycarpa. Colloids Surf. B Biointerfaces 2014, 116, 183–192. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, G.S.; Agarwal, D.; Benzon, H.T. Perioperative Single Dose Ketorolac to Prevent Postoperative Pain: A Meta-Analysis of Randomized Trials. AnesthAnalg 2012, 114, 424–433. [Google Scholar]
- Donnenfeld, E.D.; Perry, H.D.; Wittpenn, J.R.; Solomon, R.; Nattis, A.; Chou, T. Preoperative Ketorolac Tromethamine 0.4% in Phacoemulsification Outcomes: Pharmacokinetic-Response Curve. J. Cataract Refract. Surg. 2006, 32, 1474–1482. [Google Scholar] [CrossRef]
- El-Harazi, S.M.; Ruiz, R.S.; Feldman, R.M.; Villanueva, G.; Chuang, A.Z. Efficacy of Preoperative versus Postoperative Ketorolac Tromethamine 0.5% in Reducing Inflammation after Cataract Surgery. J. Cataract Refract. Surg. 2000, 26, 1626–1630. [Google Scholar] [CrossRef]
- Peppas, N.A.; Bures, P.; Leobandung, W.; Ichikawa, H. Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 2000, 50, 27–46. [Google Scholar] [CrossRef]
- Peniche, C.; Elvira, C.; Roman, J.S. Interpolymer complexes of chitosan and polymethacrylic derivatives of salicylic acid: Preparation, characterization and modification by thermal treatment. Polymer 1998, 39, 6549–6554. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, G.; Murray, P.; Zhang, H. Porous Chitosan by Crosslinking with Tricarboxylic Acid and Tuneable Release. SN Appl. Sci. 2020, 2, 435. [Google Scholar] [CrossRef] [Green Version]
- Modrzejewska, Z.; Skwarczyńska, A.; Maniukiewicz, W.; Douglas, T.E.L. Mechanism of Formation of Thermosensitive Chitosan Chloride Gels. Prog. Chem. Appl. Chitin. Deriv. 2014, 19, 125–134. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Kumar, A.; Kumar, R.; Rana, N.K.; Koch, B. Development of a Novel Chitosan Based Biocompatible and Self-Healing Hydrogel for Controlled Release of Hydrophilic Drug. Int. J. Biol. Macromol. 2018, 116, 37–44. [Google Scholar] [CrossRef]
- Orue, I.G.; Vizcaíno, E.S.; Etxeberria, A.E.; Uranga, J.; Hernandez, R.M. Development of Bioinspired Gelatin and Gelatin/Chitosan Bilayer Hydrofilms for Wound Healing. Pharmaceutics 2019, 11, 314. [Google Scholar] [CrossRef] [Green Version]
- Bhattarai, N.; Gunn, J.; Zhang, M. Chitosan-Based Hydrogels for Controlled, Localized Drug Delivery. Adv. Drug Deliv. Rev. 2010, 62, 83–99. [Google Scholar] [CrossRef]
- José, L.; Gastres, G. Hidrogeles Poliiónicos De Chitosán Y Ácido Poliacrílico Como Nuevos Sistemas De Libreación Gástrica De Amoxicilina Para El Tratamiento De “H Pylori”; Universidad Complutense de Madrid: Madrid, Spain, 2003. [Google Scholar]
- Adewale, F.J.; Lucky, A.P.; Oluwabunmi, A.P.; Boluwaji, E.F. Selecting the Most Appropriate Model for Rheological Characterization of Synthetic Based Drilling Mud. Int. J. Appl. Eng. Res. 2017, 12, 7614–7629. [Google Scholar]
- Bell, C.L.; Peppas, N.A. Modulation of drug permeation through interpolymer complexed hydrogels for drug delivery applications. J. Control. Release 1996, 39, 201–207. [Google Scholar] [CrossRef]
- Gabrielii, I.; Gatenholm, P. Preparation and properties of hydrogels based on hemicellulose. J. Appl. Polym. Sci. 1998, 69, 1661–1667. [Google Scholar] [CrossRef]
- Iglesias, N.; Galbis, E.; Valencia, C.; de-Paz, M.V.; Galbis, J.A. Reversible PH-Sensitive Chitosan-BasedHydrogels. Influence of Dispersion Composition on Rheological Properties and Sustained Drug Delivery. Polymers 2018, 10, 392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, J.P.; Geckeler, K.E. Polymer nanoparticles: Preparation techniques and size-control parameters. Prog. Polym. Sci. 2011, 36, 887–913. [Google Scholar] [CrossRef]
- Llabot, J.; Palma, S.D. Nanopartículas poliméricas sólidas. Nuestra Farm. 2008, 53, 40–47. [Google Scholar]
- Ghitman, J.; Biru, E.I.; Stan, R.; Iovu, H. Review of Hybrid PLGA Nanoparticles: Future of Smart Drug Delivery and Theranostics Medicine. Mater. Des. 2020, 193, 108805. [Google Scholar] [CrossRef]
- Lee, A.; Tsai, H.-Y.; Yates, Z.M. Steric Stabilization of Thermally Responsive NisopropylacrylamideParticles by Poly (vinyl alcohol). Langmuir 2010, 26, 18055–18060. [Google Scholar] [CrossRef]
- Zambaux, M.F.; Bonneaux, F.; Gref, R.; Maincent, P.; Dellacherie, E.; Alonso, M.J.; Labrude, P.; Vignerona, C. Influence of experimental parameters on the characteristics of poly(lactic acid) nanoparticles prepared by a double emulsion method. J. Control. Release 1998, 50, 31–40. [Google Scholar] [CrossRef]
- Mainardes, R.M.; Evangelista, R.C. Praziquantel-loaded PLGA nanoparticles: Preparation and characterization. J. Microencapsul. 2005, 22, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Schmid-Wendtner, M.H.; Korting, H.C. The PH of the Skin Surface and Its Impact on the Barrier Function. Ski. Pharm. 2006, 19, 296–302. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.M.; Yosipovitch, G. Skin PH: From Basic Science to Basic Skin Care. Acta DermVenereol 2013, 93, 261–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, H.S.; Kim, S.Y.; Lee, Y.M. Indomethacin release behaviors from pH and thermoresponsive poly (vinyl alcohol) and poly (acrylic acid) IPN hydrogels for site-specific drug delivery. J. Appl. Polym. Sci. 1997, 65, 685–693. [Google Scholar] [CrossRef]
- Campbell, K.; Lichtensteiger, C. Structure and Function of The Skin. In Small Animal Dermatology Secrets; Elsevier: Amsterdam, The Netherlands, 2003; pp. 1–9. [Google Scholar]
- Mohammed, D.; Hirata, K.; Hadgraft, J.; Lane, M.E. Influence of skin penetration enhancers on skin barrier function and skin protease activity. Eur. J. Pharm. Sci. 2014, 51, 118–122. [Google Scholar] [CrossRef] [PubMed]
- Raney, S.G.; Hope, M.J. The Effect of Bilayer and Hexagonal HII Phase Lipid Films on Transepidermal Water Loss. Exp. Derm. 2006, 15, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Del Pozo, A.; Viscasillas, A. Efficacy Evaluation. In Analysis of Cosmetic Products, 1st ed.; Salvador, S., Chisvert, A., Eds.; Elsiever: Amsterdam, The Netherlands, 2007; pp. 462–474. [Google Scholar]
- Constantin, M.M.; Poenaru, E.; Poenaru, C.; Constantin, T. Skin Hydration Assessment through Modern Non-Invasive Bioengineering Technologies. Maedica 2014, 9, 33–38. [Google Scholar]
- Hammarlund, K.; Nyström, M.; Jomeen, J. Young women’s experiences of managing self-treatment for anogenital warts. Sex. Reprod. Healthc. 2012, 3, 117–121. [Google Scholar] [CrossRef]
- Linnehan, M.J.; Groce, N.E. Counseling and educational interventions for women with genital human papillomavirus infection. AIDS Patient Care STDs 2000, 14, 439–445. [Google Scholar] [CrossRef]
- Kumar, A.; Dixit, C.K. Method for characterization of nanoparticles. In Bool Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids; Nimesh, S., Chandra, R., Gupta, N., Eds.; Woodhead Publishing: Southston, UK, 2017; pp. 43–58. [Google Scholar]
Parameter | Swelling | Degradation | |
---|---|---|---|
KT-CTS gel | Y0 (g) 1 | 3.681 ± 0.050 * | 2.952 ± 0.168 |
K 2 | 0.006 ± 0.001 | 0.005 ± 0.002 | |
R2 | 0.9033 | 0.9322 | |
CTS gel (blank) | Y0 (g) 1 | 3.526 ± 0.062 | 3.164 ± 0.183 |
K 2 | 0.008 ± 0.001 | 0.006 ± 0.002 | |
R2 | 0.9085 | 0.9341 |
Parameter | KT-NPs Day 0 | KT-NPs Day 90 | p-Value |
---|---|---|---|
Zave (nm) | 108.9 ± 2.3 | 111.2 ± 3.6 | p = 0.4039 |
PI | 0.061 ± 0.013 | 0.064 ± 0.018 | p = 0.8265 |
ZP | −6.20 ± 0.48 | −6.28 ± 0.39 | p = 0.8337 |
pH aqueous external phase (W2) | 5.2 ± 0.1 | 5.2 ± 0.2 | p = 1.000 |
EE% | 93.9 ± 2.83 | 92.4 ± 2.45 | p = 0.5258 |
Parameter | KT-CTS Gel | KT-NPs | p-Value |
---|---|---|---|
%R∞ (%) 1 | 18.6 ± 0.3 | 92.0 ± 2.3 | p < 0.0001 |
K (h−1) 2 | 0.9 ± 0.2 | 1.8 ± 0.1 | p < 0.0001 |
Half-time (h) | 0.8 | 0.4 | p = 0.0014 |
R2 | 0.9422 | 0.9287 | - |
Biodistribution | KT-NPs (µg/cm2) | KT-CTS Gel (µg/cm2) | p-Value |
---|---|---|---|
Total applied | 14.61 | 26.91 | - |
Skin surface | 12.14 ± 1.31 | 26.51 ± 0.84 | - |
Stratum corneum | 0.08 ± 0.02 | 0.04 ± 0.01 | 0.03 * |
Epidermis | 0.71 ± 0.32 | 0.32 ± 0.17 | 0.13 |
Dermis | 0.001 ± 0.001 | 0.002 ± 0.001 | 0.57 |
Receptor Fluid | 0.02 ± 0.01 | 0.49 ± 0.09 | <0.01 * |
Total recovery | 12.95 ± 0.84 | 27.36 ± 0.85 | - |
Percutaneous Absorption | 0.73 ± 0.32 | 0.81 ± 0.19 | 0.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Moussaoui, S.; Abo-Horan, I.; Halbaut, L.; Alonso, C.; Coderch, L.; Garduño-Ramírez, M.L.; Clares, B.; Soriano, J.L.; Calpena, A.C.; Fernández-Campos, F.; et al. Polymeric Nanoparticles and Chitosan Gel Loading Ketorolac Tromethamine to Alleviate Pain Associated with Condyloma Acuminata during the Pre- and Post-Ablation. Pharmaceutics 2021, 13, 1784. https://doi.org/10.3390/pharmaceutics13111784
El Moussaoui S, Abo-Horan I, Halbaut L, Alonso C, Coderch L, Garduño-Ramírez ML, Clares B, Soriano JL, Calpena AC, Fernández-Campos F, et al. Polymeric Nanoparticles and Chitosan Gel Loading Ketorolac Tromethamine to Alleviate Pain Associated with Condyloma Acuminata during the Pre- and Post-Ablation. Pharmaceutics. 2021; 13(11):1784. https://doi.org/10.3390/pharmaceutics13111784
Chicago/Turabian StyleEl Moussaoui, Salima, Ismael Abo-Horan, Lyda Halbaut, Cristina Alonso, Lluïsa Coderch, María Luisa Garduño-Ramírez, Beatriz Clares, José Luis Soriano, Ana Cristina Calpena, Francisco Fernández-Campos, and et al. 2021. "Polymeric Nanoparticles and Chitosan Gel Loading Ketorolac Tromethamine to Alleviate Pain Associated with Condyloma Acuminata during the Pre- and Post-Ablation" Pharmaceutics 13, no. 11: 1784. https://doi.org/10.3390/pharmaceutics13111784
APA StyleEl Moussaoui, S., Abo-Horan, I., Halbaut, L., Alonso, C., Coderch, L., Garduño-Ramírez, M. L., Clares, B., Soriano, J. L., Calpena, A. C., Fernández-Campos, F., & Mallandrich, M. (2021). Polymeric Nanoparticles and Chitosan Gel Loading Ketorolac Tromethamine to Alleviate Pain Associated with Condyloma Acuminata during the Pre- and Post-Ablation. Pharmaceutics, 13(11), 1784. https://doi.org/10.3390/pharmaceutics13111784