Development of Bioinspired Gelatin and Gelatin/Chitosan Bilayer Hydrofilms for Wound Healing
"> Figure 1
<p>Scheme and photograph of gelatin bilayer films.</p> "> Figure 2
<p>Ex vivo assay scheme.</p> "> Figure 3
<p>Gelatin crosslinking. (<b>A</b>) Representation of the early stage of Maillard reaction between gelatin and lactose (gal=galactose) and the chemical reaction between gelatin and citric acid. (<b>B</b>) Fourier-transform infrared (FTIR) spectra of mHF-Lac and mHF-CA. (<b>C</b>) Protein conformation in gelatin films crosslinked with lactose or citric acid. (<b>D</b>) Scanning electron microscopy (SEM) analysis of mHF-Lac and mHF-CA cross-section.</p> "> Figure 3 Cont.
<p>Gelatin crosslinking. (<b>A</b>) Representation of the early stage of Maillard reaction between gelatin and lactose (gal=galactose) and the chemical reaction between gelatin and citric acid. (<b>B</b>) Fourier-transform infrared (FTIR) spectra of mHF-Lac and mHF-CA. (<b>C</b>) Protein conformation in gelatin films crosslinked with lactose or citric acid. (<b>D</b>) Scanning electron microscopy (SEM) analysis of mHF-Lac and mHF-CA cross-section.</p> "> Figure 4
<p>Hydrofilms characterisation. (<b>A</b>) Swelling curve. The percentage of water uptake regarding dry weight of the hydrofilms at different time points. ***<span class="html-italic">p</span> < 0.001 among mHF-Lac, bilayer hydrofilms (bHF and bHF+Chit) and monolayer hydrofilms crosslinked with citric acid (mHF-CA and mHF-CA+Chit). (<b>B</b>) Water vapour transmission rate (WVTR). Graphical representation of the WVTR of the hydrofilms ***<span class="html-italic">p</span> < 0.001 comparing mHF-Lac with bHF and bHF+Chit. Results are given as mean ± SD. (<b>C</b>) Cytotoxicity assay. Cell viability after incubating fibroblasts with the release medium of hydrofilms. *<span class="html-italic">p</span> < 0.05 comparing dialysed and humected formulations. Results are shown as mean ± SD.</p> "> Figure 5
<p>Ex vivo assay wound healing results. (<b>A</b>) LDH assay of the ex vivo assay. The results were represented as the viability of the three groups on different time points. *<span class="html-italic">p</span> < 0.05 comparing the control group and the group treated with bHF+Chit, on day 4; ***<span class="html-italic">p</span> > 0.001 comparing each group with the other two, on day 8. (<b>B</b>) Representative image of a tissue section stained with H&E on day 0. The scale bar indicates 500 µm. (<b>C</b>) Histological images of tissue sections of each group on day 8, processed with H&E. The scale bar indicates 500 µm. (<b>D</b>) Percentage of wound closure on day 8. Results are shown as the mean ± standard error of the mean. Results are shown as the mean ± standard error of the mean.</p> "> Figure 6
<p>(<b>A</b>) Representative images of tissue sections stained against PCNA. (<b>B</b>) Representation of PCNA positive cells percentage regarding to baseline. (<b>C</b>) Representative images of tissue sections stained against α-SMA. (<b>D</b>) Representation of quantitative analysis of α-smooth muscle actin (α-SMA) stained area. (<b>E</b>) Representative images of tissue sections stained against cytokeratin 14. (<b>F</b>) Representation of quantitative analysis of cytokeratin-14 stained area. (<b>G</b>) Representative images of tissue sections stained against cytokeratin 10. (<b>H</b>) Representation of quantitative analysis of cytokeratin-10 stained area. **<span class="html-italic">p</span> > 0.001 comparing the group treated with the mHF-Lac and the other two groups on day 8. Scale bar on figures A, C, E and G indicates 200 µm. Results on images B,D,F and H are shown as the mean ± standard error of the mean.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hydrofilms Production
2.2. Fourier Transform Infrared (FTIR) Spectroscopy
2.3. Scanning Electron Microscopy (SEM)
2.4. Water Uptake
2.5. Hydrolytic Degradation
2.6. Water Vapour Transmission Rate (WVTR)
2.7. Cytotoxicity Study
2.8. Ex Vivo Assay
2.8.1. Ex Vivo Assay Procedure
2.8.2. Lactate Deshydrogenase (LDH) Assay
2.8.3. Tissue Processing
2.9. Statistical Analysis
3. Results
3.1. Film Structure
3.2. Water Uptake
3.3. Hydrolytic Degradation
3.4. WVTR
3.5. Cytotoxicity Assay
3.6. Ex Vivo Assay
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Franco, R.A.; Min, Y.; Yang, H.; Lee, B. Fabrication and Biocompatibility of Novel Bilayer Scaffold for Skin Tissue Engineering Applications. J. Biomater. Appl. 2013, 27, 605–615. [Google Scholar] [CrossRef] [PubMed]
- Zilberman, M.; Egozi, D.; Shemesh, M.; Keren, A.; Mazor, E.; Baranes-Zeevi, M.; Goldstein, N.; Berdicevsky, I.; Gilhar, A.; Ullmann, Y. Hybrid Wound Dressings with Controlled Release of Antibiotics: Structure-Release Profile Effects and in Vivo Study in a Guinea Pig Burn Model. Acta Biomater. 2015, 22, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Shan, X.; Zhao, X.; Zha, H.; Chen, X.; Wang, J.; Wang, X.; Cai, C.; Li, G.; Hao, J.; et al. Spongy Bilayer Dressing Composed of chitosan–Ag Nanoparticles and chitosan–Bletilla Striata Polysaccharide for Wound Healing Applications. Carbohydr. Polym. 2017, 157, 1538–1547. [Google Scholar] [CrossRef] [PubMed]
- Malafaya, P.B.; Silva, G.A.; Reis, R.L. Natural–origin Polymers as Carriers and Scaffolds for Biomolecules and Cell Delivery in Tissue Engineering Applications. Adv. Drug Deliv. Rev. 2007, 59, 207–233. [Google Scholar] [CrossRef] [PubMed]
- Mogoşanu, G.D.; Grumezescu, A.M. Natural and Synthetic Polymers for Wounds and Burns Dressing. Int. J. Pharm. 2014, 463, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Elzoghby, A.O. Gelatin-Based Nanoparticles as Drug and Gene Delivery Systems: Reviewing Three Decades of Research. J. Control. Release 2013, 172, 1075–1091. [Google Scholar] [CrossRef]
- Wang, H.; Boerman, O.C.; Sariibrahimoglu, K.; Li, Y.; Jansen, J.A.; Leeuwenburgh, S.C.G. Comparison of Micro- Vs. Nanostructured Colloidal Gelatin Gels for Sustained Delivery of Osteogenic Proteins: Bone Morphogenetic Protein-2 and Alkaline Phosphatase. Biomaterials 2012, 33, 8695–8703. [Google Scholar] [CrossRef] [PubMed]
- Eisenbud, D.; Hunter, H.; Kessler, L.; Zulkowski, K. Hydrogel Wound Dressings: Where do we Stand in 2003? Ostomy Wound Manag. 2003, 49, 52–57. [Google Scholar]
- Foox, M.; Zilberman, M. Drug Delivery from Gelatin-Based Systems. Expert Opin. Drug Deliv. 2015, 12, 1547–1563. [Google Scholar] [CrossRef]
- Reddy, N.; Reddy, R.; Jiang, Q. Crosslinking Biopolymers for Biomedical Applications. Trends Biotechnol. 2015, 33, 362–369. [Google Scholar] [CrossRef]
- Chiono, V.; Pulieri, E.; Vozzi, G.; Ciardelli, G.; Ahluwalia, A.; Giusti, P. Genipin-Crosslinked Chitosan/Gelatin Blends for Biomedical Applications. J. Mater. Sci. Mater. Med. 2008, 19, 889–898. [Google Scholar] [CrossRef] [PubMed]
- Etxabide, A.; Ribeiro, R.D.C.; Guerrero, P.; Ferreira, A.M.; Stafford, G.P.; Dalgarno, K.; de la Caba, K.; Gentile, P. Lactose-crosslinked Fish Gelatin-based Porous Scaffolds Embedded with Tetrahydrocurcumin for Cartilage Regeneration. Int. J. Biol. Macromol. 2018, 117, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Uranga, J.; Leceta, I.; Etxabide, A.; Guerrero, P.; de la Caba, K. Cross-linking of Fish Gelatins to Develop Sustainable Films with Enhanced Properties. Eur. Polym. J. 2016, 78, 82–90. [Google Scholar] [CrossRef]
- Dai, T.; Tanaka, M.; Huang, Y.Y.; Hamblin, M.R. Chitosan Preparations for Wounds and Burns: Antimicrobial and Wound-Healing Effects. Expert Rev. Anti Infect. Ther. 2011, 9, 857–879. [Google Scholar] [CrossRef] [PubMed]
- Dreifke, M.B.; Jayasuriya, A.C.; Jayasuriya, A.A. Current Wound Healing Procedures and Potential Care. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 48, 651–662. [Google Scholar] [CrossRef] [PubMed]
- Patrulea, V.; Ostafe, V.; Borchard, G.; Jordan, O. Chitosan as a Starting Material for Wound Healing Applications. Eur. J. Pharm. Biopharm. 2015, 97, 417–426. [Google Scholar] [CrossRef]
- Mathes, S.H.; Ruffner, H.; Graf-Hausner, U. The use of Skin Models in Drug Development. Adv. Drug Deliv. Rev. 2014, 69–70, 81–102. [Google Scholar] [CrossRef]
- Pfuhler, S.; Fautz, R.; Ouedraogo, G.; Latil, A.; Kenny, J.; Moore, C.; Diembeck, W.; Hewitt, N.J.; Reisinger, K.; Barroso, J. The Cosmetics Europe Strategy for Animal-Free Genotoxicity Testing: Project Status Up-Date. Toxicol. In Vitro 2014, 28, 18–23. [Google Scholar] [CrossRef]
- Riahi, R.; Yang, Y.; Zhang, D.D.; Wong, P.K. Advances in Wound-Healing Assays for Probing Collective Cell Migration. J. Lab. Autom. 2012, 17, 59–65. [Google Scholar] [CrossRef]
- Norrby, K. In Vivo Models of Angiogenesis. J. Cell. Mol. Med. 2006, 10, 588–612. [Google Scholar] [CrossRef]
- Hewitt, N.J.; Edwards, R.J.; Fritsche, E.; Goebel, C.; Aeby, P.; Scheel, J.; Reisinger, K.; Ouédraogo, G.; Duche, D.; Eilstein, J.; et al. Use of Human in vitro Skin Models for Accurate and Ethical Risk Assessment: Metabolic Considerations. Toxicol. Sci. 2013, 133, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Butler, P.D.; Ly, D.P.; Longaker, M.T.; Yang, G.P. Use of Organotypic Coculture to Study Keloid Biology. Am. J. Surg. 2008, 195, 144–148. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.Q.; Engrav, L.H.; Tamura, R.N.; Cole, J.A.; Muangman, P.; Carrougher, G.J.; Gibran, N.S. Further Similarities between Cutaneous Scarring in the Female, Red Duroc Pig and Human Hypertrophic Scarring. Burns 2004, 30, 518–530. [Google Scholar] [CrossRef] [PubMed]
- Ud-Din, S.; Bayat, A. Non-Animal Models of Wound Healing in Cutaneous Repair: In Silico, in vitro, ex vivo, and in Vivo Models of Wounds and Scars in Human Skin. Wound Repair Regen. 2017, 25, 164–176. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Hong, S.J.; Jia, S.; Zhao, Y.; Galiano, R.D.; Mustoe, T.A. Application of a Partial-Thickness Human Ex vivo Skin Culture Model in Cutaneous Wound Healing Study. Lab. Investig. 2012, 92, 584–599. [Google Scholar] [CrossRef] [PubMed]
- Etxabide, A.; Vairo, C.; Santos-Vizcaino, E.; Guerrero, P.; Pedraz, J.L.; Igartua, M.; de la Caba, K.; Hernandez, R.M. Ultra Thin Hydro-Films Based on Lactose-Crosslinked Fish Gelatin for Wound Healing Applications. Int. J. Pharm. 2017, 530, 455–467. [Google Scholar] [CrossRef] [PubMed]
- Hodgkinson, T.; Yuan, X.; Bayat, A. Electrospun Silk Fibroin Fiber Diameter Influences in vitro Dermal Fibroblast Behavior and Promotes Healing of Ex vivo Wound Models. J. Tissue Eng. 2014, 5, 204173141455166. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-Garcia, J.; Sebastian, A.; Alonso-Rasgado, T.; Bayat, A. Optimization of an Ex vivo Wound Healing Model in the Adult Human Skin: Functional Evaluation using Photodynamic Therapy. Wound Repair Regen. 2015, 23, 685–702. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Lin, B.; Hu, H.; Lin, C.; Jin, W.; Zhang, F.; Zhu, Y.; Lu, C.; Wei, X.; Chen, R. NGF accelerates Cutaneous Wound Healing by Promoting the Migration of Dermal Fibroblasts Via the PI3K/Akt-Rac1-JNK and ERK Pathways. BioMed Res. Int. 2014, 2014, 547187. [Google Scholar] [CrossRef]
- Almeida, B.M.D.; Nascimento, M.F.D.; Pereira-Filho, R.N.; Melo, G.C.D.; Santos, J.C.D.; Oliveira, C.R.D.; Gomes, M.Z.; Lima, S.O.; Albuquerque-Júnior, R.L.C.D. Immunohistochemical Profile of Stromal Constituents and Lymphoid Cells Over the Course of Wound Healing in Murine Model. Acta Cir. Bras. 2014, 29, 596–602. [Google Scholar] [CrossRef]
- Moll, R.; Divo, M.; Langbein, L. The Human Keratins: Biology and Pathology. Histochem. Cell. Biol. 2008, 129, 705–733. [Google Scholar] [CrossRef]
- Usui, M.L.; Mansbridge, J.N.; Carter, W.G.; Fujita, M.; Olerud, J.E. Keratinocyte Migration, Proliferation, and Differentiation in Chronic Ulcers from Patients with Diabetes and Normal Wounds. J. Histochem. Cytochem. 2008, 56, 687–696. [Google Scholar] [CrossRef] [PubMed]
- Etxabide, A.; Urdanpilleta, M.; Guerrero, P.; de la Caba, K. Effects of Cross-Linking in Nanostructure and Physicochemical Properties of Fish Gelatins for Bio-Applications. React. Funct. Polym. 2015, 94, 55–62. [Google Scholar] [CrossRef]
- Howling, G.I.; Dettmar, P.W.; Goddard, P.A.; Hampson, F.C.; Dornish, M.; Wood, E.J. The Effect of Chitin and Chitosan on the Proliferation of Human Skin Fibroblasts and Keratinocytes in vitro. Biomaterials 2001, 22, 2959–2966. [Google Scholar] [CrossRef]
- Azad, A.K.; Sermsintham, N.; Chandrkrachang, S.; Stevens, W.F. Chitosan Membrane as a Wound-healing Dressing: Characterization and Clinical Application. J. Biomed. Mater. Res. B Appl. Biomater. 2004, 69, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Baxter, R.M.; Dai, T.; Kimball, J.; Wang, E.; Hamblin, M.R.; Wiesmann, W.P.; McCarthy, S.J.; Baker, S.M. Chitosan Dressing Promotes Healing in Third Degree Burns in Mice: Gene Expression Analysis shows Biphasic Effects for Rapid Tissue Regeneration and Decreased Fibrotic Signaling. J. Biomed. Mater. Res. A 2013, 101, 340–348. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Xiao, Z.; Long, H.; Ma, K.; Zhang, J.; Ren, X.; Zhang, J. Assessment of the Characteristics and Biocompatibility of Gelatin Sponge Scaffolds Prepared by various Crosslinking Methods. Sci. Rep. 2018, 8, 1616. [Google Scholar] [CrossRef]
- Saarai, A.; Kasparkova, V.; Sedlacek, T.; Saha, P. On the Development and Characterisation of Crosslinked Sodium Alginate/Gelatine Hydrogels. J. Mech. Behav. Biomed. Mater. 2013, 18, 152–166. [Google Scholar] [CrossRef]
- Etxabide, A.; Urdanpilleta, M.; Gómez-Arriaran, I.; de la Caba, K.; Guerrero, P. Effect of pH and Lactose on Cross-linking Extension and Structure of Fish Gelatin Films. React. Funct. Polym. 2017, 117, 140–146. [Google Scholar] [CrossRef]
- Etxabide, A.; Uranga, J.; Guerrero, P.; de la Caba, K. Improvement of Barrier Properties of Fish Gelatin Films Promoted By gelatin Glycation with Lactose at High Temperatures. LWT Food Sci. Technol. 2015, 63, 315–321. [Google Scholar] [CrossRef]
- Tu, Y.; Zhou, M.; Guo, Z.; Li, Y.; Hou, Y.; Wang, D.; Zhang, L. Preparation and Characterization of Thermosensitive Artificial Skin with a Sandwich Structure. Mater. Lett. 2015, 147, 4–7. [Google Scholar] [CrossRef]
- Mayet, N.; Choonara, Y.E.; Kumar, P.; Tomar, L.K.; Tyagi, C.; Du Toit, L.C.; Pillay, V. A Comprehensive Review of Advanced Biopolymeric Wound Healing Systems. J. Pharm. Sci. 2014, 103, 2211–2230. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Sharma, S.; Dhiman, A. Design of Antibiotic Containing Hydrogel Wound Dressings: Biomedical Properties and Histological Study of Wound Healing. Int. J. Pharm. 2013, 457, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Morillon, V.; Debeaufort, F.; Blond, G.; Capelle, M.; Voilley, A. Factors Affecting the Moisture Permeability of Lipid-Based Edible Films: A Review. Crit. Rev. Food Sci. Nutr. 2002, 42, 67–89. [Google Scholar] [CrossRef] [PubMed]
- Russell, W.M.; Burch, R.L. The Principles of Humane Experimental Technique, 1st ed.; Methuen: London, UK, 1959. [Google Scholar]
- Hodgkinson, T.; Bayat, A. In vitro and Ex vivo Analysis of Hyaluronan Supplementation of Integra® Dermal Template on Human Dermal Fibroblasts and Keratinocytes. J. Appl. Biomater. Funct. Mater. 2016, 14, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Hodgkinson, T.; Bayat, A. Ex vivo Evaluation of Acellular and Cellular Collagen-Glycosaminoglycan Flowable Matrices. Biomed. Mater. 2015, 10, 041001. [Google Scholar] [CrossRef] [PubMed]
- Bonferoni, M.C.; Riva, F.; Invernizzi, A.; Dellera, E.; Sandri, G.; Rossi, S.; Marrubini, G.; Bruni, G.; Vigani, B.; Caramella, C.; et al. Alpha Tocopherol Loaded Chitosan Oleate Nanoemulsions for Wound Healing. Evaluation on Cell Lines and Ex vivo Human Biopsies, and Stabilization in Spray Dried Trojan Microparticles. Eur. J. Pharm. Biopharm. 2018, 123, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Rossi, S.; Mori, M.; Vigani, B.; Bonferoni, M.C.; Sandri, G.; Riva, F.; Caramella, C.; Ferrari, F. A Novel Dressing for the Combined Delivery of Platelet Lysate and Vancomycin Hydrochloride to Chronic Skin Ulcers: Hyaluronic Acid Particles in Alginate Matrices. Eur. J. Pharm. Sci. 2018, 118, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Ojeh, N.; Stojadinovic, O.; Pastar, I.; Sawaya, A.; Yin, N.; Tomic-Canic, M. The Effects of Caffeine on Wound Healing. Int. Wound J. 2016, 13, 605–613. [Google Scholar] [CrossRef] [PubMed]
- Nicoletti, G.; Saler, M.; Villani, L.; Rumolo, A.; Tresoldi, M.M.; Faga, A. Platelet Rich Plasma Enhancement of Skin Regeneration in an ex-vivo Human Experimental Model. Front. Bioeng. Biotechnol. 2019, 7. [Google Scholar] [CrossRef]
- Lindholm, C.; Searle, R. Wound management for the 21st century: Combining effectiveness and efficiency. Int. Wound J. 2016, 13, 5–15. [Google Scholar] [CrossRef] [PubMed]
Name | Mono Bilayer Hydrofilm | Crosslinking Agent | Chitosan Addition | |
---|---|---|---|---|
Upper Layer | Lower Layer | |||
mHF-Lac | Monolayer | Lactose | No | |
mHF-CA | Monolayer | Citric acid | No | |
mHF-CA+Chit | Monolayer | Citric acid | Yes | |
bHF | Bilayer | Lactose | Citric acid | No |
bHF+Chit | Bilayer | Lactose | Citric acid | Yes |
Patient Number | Gender | Age (Years) | Anatomical Source of Skin |
---|---|---|---|
1 | Female | 50 | Abdomen |
2 | Male | 60 | Abdomen |
3 | Female | 49 | Breast |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Orue, I.; Santos-Vizcaino, E.; Etxabide, A.; Uranga, J.; Bayat, A.; Guerrero, P.; Igartua, M.; de la Caba, K.; Hernandez, R.M. Development of Bioinspired Gelatin and Gelatin/Chitosan Bilayer Hydrofilms for Wound Healing. Pharmaceutics 2019, 11, 314. https://doi.org/10.3390/pharmaceutics11070314
Garcia-Orue I, Santos-Vizcaino E, Etxabide A, Uranga J, Bayat A, Guerrero P, Igartua M, de la Caba K, Hernandez RM. Development of Bioinspired Gelatin and Gelatin/Chitosan Bilayer Hydrofilms for Wound Healing. Pharmaceutics. 2019; 11(7):314. https://doi.org/10.3390/pharmaceutics11070314
Chicago/Turabian StyleGarcia-Orue, Itxaso, Edorta Santos-Vizcaino, Alaitz Etxabide, Jone Uranga, Ardeshir Bayat, Pedro Guerrero, Manoli Igartua, Koro de la Caba, and Rosa Maria Hernandez. 2019. "Development of Bioinspired Gelatin and Gelatin/Chitosan Bilayer Hydrofilms for Wound Healing" Pharmaceutics 11, no. 7: 314. https://doi.org/10.3390/pharmaceutics11070314
APA StyleGarcia-Orue, I., Santos-Vizcaino, E., Etxabide, A., Uranga, J., Bayat, A., Guerrero, P., Igartua, M., de la Caba, K., & Hernandez, R. M. (2019). Development of Bioinspired Gelatin and Gelatin/Chitosan Bilayer Hydrofilms for Wound Healing. Pharmaceutics, 11(7), 314. https://doi.org/10.3390/pharmaceutics11070314