The Effects of Oral Semaglutide on Hepatic Fibrosis in Subjects with Type 2 Diabetes in Real-World Clinical Practice: A Post Hoc Analysis of the Sapporo-Oral SEMA Study
<p>A flow diagram of the subanalysis. From the original cohort, an overall cohort was created by excluding cases treated with injectable GLP-1RAs, with low ALT, or missing FIB-4 index measurements. A high-risk group was selected from this population with a higher risk for liver fibrosis progression, and the remaining subjects were defined as a low-risk group. GLP-1RA, glucagon-like peptide-1 receptor agonist; ALT, alanine aminotransferase; FIB-4, fibrosis-4.</p> "> Figure 2
<p>Changes in FIB-4 index after oral semaglutide treatment using treatment regimen. (<b>a</b>) Analyses of overall cohort, (<b>b</b>) high-risk group, and (<b>c</b>) low-risk group. Bars represent median changes from each baseline (95% confidence interval). * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, and *** <span class="html-italic">p</span> < 0.001 vs. baseline. FIB-4, fibrosis-4; OHA, oral hypoglycemic agent.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Study Population
2.2. Changes in Metabolic Parameters After Oral Semaglutide Induction
2.3. Effects of Oral Semaglutide on Indices for Liver Steatosis and Fibrosis
3. Discussion
4. Materials and Methods
4.1. Study Design and Participants
4.2. Evaluation Method of Liver Steatosis and Fibrosis Indices Using Surrogate Markers
4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. J. Hepatol. 2023, 79, 1542–1556. [Google Scholar] [CrossRef] [PubMed]
- Lomonaco, R.; Godinez Leiva, E.; Bril, F.; Shrestha, S.; Mansour, L.; Budd, J.; Portillo Romero, J.; Schmidt, S.; Chang, K.L.; Samraj, G.; et al. Advanced Liver Fibrosis Is Common in Patients With Type 2 Diabetes Followed in the Outpatient Setting: The Need for Systematic Screening. Diabetes Care 2021, 44, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Kim, N.; Yang, J.D. Hepatocellular carcinoma risk prediction and early detection in patients with metabolic dysfunction associated steatotic liver disease. Transl. Gastroenterol. Hepatol. 2024, 9, 67. [Google Scholar] [CrossRef] [PubMed]
- Bessho, R.; Kashiwagi, K.; Ikura, A.; Yamataka, K.; Inaishi, J.; Takaishi, H.; Kanai, T. A significant risk of metabolic dysfunction-associated fatty liver disease plus diabetes on subclinical atherosclerosis. PLoS ONE 2022, 17, e0269265. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Liu, D.; Yang, T.; Zhou, Z.; Li, D.; Zhao, Z.; Zhang, X.; Wang, L.; Li, L. Increased risk of vascular complications in patients with type 2 diabetes and fatty liver disease. BMC Endocr. Disord. 2024, 24, 235. [Google Scholar] [CrossRef] [PubMed]
- Khalifa, A.; Rockey, D.C. The utility of liver biopsy in 2020. Curr. Opin. Gastroenterol. 2020, 36, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Miwa, T.; Tajirika, S.; Imamura, N.; Adachi, M.; Horita, R.; Hanai, T.; Ng, C.H.; Siddiqui, M.S.; Fukao, T.; Shimizu, M.; et al. Usefulness of health checkup-based indices in identifying metabolic dysfunction-associated steatotic liver disease. JGH Open 2024, 8, e13110. [Google Scholar] [CrossRef] [PubMed]
- Mozes, F.E.; Lee, J.A.; Vali, Y.; Alzoubi, O.; Staufer, K.; Trauner, M.; Paternostro, R.; Stauber, R.E.; Holleboom, A.G.; van Dijk, A.M.; et al. Performance of non-invasive tests and histology for the prediction of clinical outcomes in patients with non-alcoholic fatty liver disease: An individual participant data meta-analysis. Lancet Gastroenterol. Hepatol. 2023, 8, 704–713. [Google Scholar] [CrossRef]
- Nomoto, H.; Oba-Yamamoto, C.; Takahashi, Y.; Takeuchi, J.; Nagai, S.; Yokoyama, H.; Taneda, S.; Kurihara, Y.; Aoki, S.; Kameda, H.; et al. Effects of Switching from Liraglutide or Dulaglutide to Subcutaneous Semaglutide on Glucose Metabolism and Treatment Satisfaction in Patients with Type 2 Diabetes: Protocol for a Multicenter, Prospective, Randomized, Open-Label, Blinded-Endpoint, Parallel-Group Comparison Study (The SWITCH-SEMA 1 Study). Diabetes Ther. 2021, 12, 955–964. [Google Scholar] [CrossRef]
- Kawanaka, M.; Fujii, H.; Iwaki, M.; Hayashi, H.; Toyoda, H.; Oeda, S.; Hyogo, H.; Morishita, A.; Munekage, K.; Kawata, K.; et al. Importance of ALT levels of >30 in patients with MASLD: Nara Declaration 2023. Kanzo 2024, 65, 186–191. [Google Scholar] [CrossRef]
- Brunt, E.M.; Kleiner, D.E.; Wilson, L.A.; Belt, P.; Neuschwander-Tetri, B.A.; Network, N.C.R. Nonalcoholic fatty liver disease (NAFLD) activity score and the histopathologic diagnosis in NAFLD: Distinct clinicopathologic meanings. Hepatology 2011, 53, 810–820. [Google Scholar] [CrossRef]
- Zhou, X.D.; Cai, J.; Targher, G.; Byrne, C.D.; Shapiro, M.D.; Sung, K.C.; Somers, V.K.; Chahal, C.A.A.; George, J.; Chen, L.L.; et al. Metabolic dysfunction-associated fatty liver disease and implications for cardiovascular risk and disease prevention. Cardiovasc. Diabetol. 2022, 21, 270. [Google Scholar] [CrossRef] [PubMed]
- Belfort, R.; Harrison, S.A.; Brown, K.; Darland, C.; Finch, J.; Hardies, J.; Balas, B.; Gastaldelli, A.; Tio, F.; Pulcini, J.; et al. A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. N. Engl. J. Med. 2006, 355, 2297–2307. [Google Scholar] [CrossRef] [PubMed]
- Ciardullo, S.; Vergani, M.; Perseghin, G. Nonalcoholic Fatty Liver Disease in Patients with Type 2 Diabetes: Screening, Diagnosis, and Treatment. J. Clin. Med. 2023, 12, 5597. [Google Scholar] [CrossRef] [PubMed]
- ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Cusi, K.; Hilliard, M.E.; Isaacs, D.; et al. 4. Comprehensive Medical Evaluation and Assessment of Comorbidities: Standards of Care in Diabetes—2023. Diabetes Care 2023, 46, S49–S67. [Google Scholar] [CrossRef]
- Zinman, B.; Wanner, C.; Lachin, J.M.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.E.; Woerle, H.J.; et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N. Engl. J. Med. 2015, 373, 2117–2128. [Google Scholar] [CrossRef] [PubMed]
- Scheen, A.J. Beneficial effects of SGLT2 inhibitors on fatty liver in type 2 diabetes: A common comorbidity associated with severe complications. Diabetes Metab. 2019, 45, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Seino, Y.; Yabe, D. Glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1: Incretin actions beyond the pancreas. J. Diabetes Investig. 2013, 4, 108–130. [Google Scholar] [CrossRef] [PubMed]
- Marso, S.P.; Daniels, G.H.; Brown-Frandsen, K.; Kristensen, P.; Mann, J.F.; Nauck, M.A.; Nissen, S.E.; Pocock, S.; Poulter, N.R.; Ravn, L.S.; et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 311–322. [Google Scholar] [CrossRef] [PubMed]
- Buckley, S.T.; Bækdal, T.A.; Vegge, A.; Maarbjerg, S.J.; Pyke, C.; Ahnfelt-Rønne, J.; Madsen, K.G.; Schéele, S.G.; Alanentalo, T.; Kirk, R.K.; et al. Transcellular stomach absorption of a derivatized glucagon-like peptide-1 receptor agonist. Sci. Transl. Med. 2018, 10, eaar7047. [Google Scholar] [CrossRef] [PubMed]
- Pratley, R.; Amod, A.; Hoff, S.T.; Kadowaki, T.; Lingvay, I.; Nauck, M.; Pedersen, K.B.; Saugstrup, T.; Meier, J.J. Oral semaglutide versus subcutaneous liraglutide and placebo in type 2 diabetes (PIONEER 4): A randomised, double-blind, phase 3a trial. Lancet 2019, 394, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Furusawa, S.; Nomoto, H.; Oba-Yamamoto, C.; Takeuchi, J.; Ito, M.; Kurihara, H.; Aoki, S.; Miya, A.; Kameda, H.; Nakamura, A.; et al. Real-world clinical evidence of oral semaglutide on metabolic abnormalities in subjects with type 2 diabetes: A multicenter retrospective observational study (the Sapporo-Oral SEMA study). Endocr. J. 2024, 71, 603–616. [Google Scholar] [CrossRef]
- Armstrong, M.J.; Hull, D.; Guo, K.; Barton, D.; Hazlehurst, J.M.; Gathercole, L.L.; Nasiri, M.; Yu, J.; Gough, S.C.; Newsome, P.N.; et al. Glucagon-like peptide 1 decreases lipotoxicity in non-alcoholic steatohepatitis. J. Hepatol. 2016, 64, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Newsome, P.N.; Buchholtz, K.; Cusi, K.; Linder, M.; Okanoue, T.; Ratziu, V.; Sanyal, A.J.; Sejling, A.S.; Harrison, S.A. A Placebo-Controlled Trial of Subcutaneous Semaglutide in Nonalcoholic Steatohepatitis. N. Engl. J. Med. 2021, 384, 1113–1124. [Google Scholar] [CrossRef] [PubMed]
- Nomoto, H.; Takahashi, Y.; Takano, Y.; Yokoyama, H.; Tsuchida, K.; Nagai, S.; Miya, A.; Kameda, H.; Cho, K.Y.; Nakamura, A.; et al. Effect of Switching to Once-Weekly Semaglutide on Non-Alcoholic Fatty Liver Disease: The SWITCH-SEMA 1 Subanalysis. Pharmaceutics 2023, 15, 2163. [Google Scholar] [CrossRef] [PubMed]
- Nakano, M.; Kawaguchi, M.; Kawaguchi, T.; Yoshiji, H. Profiles associated with significant hepatic fibrosis consisting of alanine aminotransferase >30 U/L, exercise habits, and metabolic dysfunction-associated steatotic liver disease. Hepatol. Res. 2024, 54, 655–666. [Google Scholar] [CrossRef] [PubMed]
- Murayama, K.; Okada, M.; Tanaka, K.; Inadomi, C.; Yoshioka, W.; Kubotsu, Y.; Yada, T.; Isoda, H.; Kuwashiro, T.; Oeda, S.; et al. Prediction of Nonalcoholic Fatty Liver Disease Using Noninvasive and Non-Imaging Procedures in Japanese Health Checkup Examinees. Diagnostics 2021, 11, 132. [Google Scholar] [CrossRef]
- Hammerich, L.; Tacke, F. Hepatic inflammatory responses in liver fibrosis. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 633–646. [Google Scholar] [CrossRef] [PubMed]
- Yanay, O.; Bailey, A.L.; Kernan, K.; Zimmerman, J.J.; Osborne, W.R. Effects of exendin-4, a glucagon like peptide-1 receptor agonist, on neutrophil count and inflammatory cytokines in a rat model of endotoxemia. J. Inflamm. Res. 2015, 8, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Zhan, Y.; Wang, Y. Semaglutide May Ameliorate Fibrosis and Inhibit Epithelial-Mesenchymal Transition in Intrauterine Adhesion Models. Int. J. Mol. Sci. 2024, 25, 6196. [Google Scholar] [CrossRef]
- Masson, W.; Lobo, M.; Nogueira, J.P.; Rodriguez-Granillo, A.M.; Barbagelata, L.E.; Siniawski, D. Anti-inflammatory effect of semaglutide: Updated systematic review and meta-analysis. Front. Cardiovasc. Med. 2024, 11, 1379189. [Google Scholar] [CrossRef] [PubMed]
- Bray, J.J.H.; Foster-Davies, H.; Salem, A.; Hoole, A.L.; Obaid, D.R.; Halcox, J.P.J.; Stephens, J.W. Glucagon-like peptide-1 receptor agonists improve biomarkers of inflammation and oxidative stress: A systematic review and meta-analysis of randomised controlled trials. Diabetes Obes. Metab. 2021, 23, 1806–1822. [Google Scholar] [CrossRef]
- Cernea, S. NAFLD Fibrosis Progression and Type 2 Diabetes: The Hepatic-Metabolic Interplay. Life 2024, 14, 272. [Google Scholar] [CrossRef]
- Wu, L.K.; Liu, Y.C.; Shi, L.L.; Lu, K.D. Glucagon-like peptide-1 receptor agonists inhibit hepatic stellate cell activation by blocking the p38 MAPK signaling pathway. Genet. Mol. Res. 2015, 14, 19087–19093. [Google Scholar] [CrossRef]
- Colosimo, S.; Tan, G.D.; Petroni, M.L.; Marchesini, G.; Tomlinson, J.W. Improved glycaemic control in patients with type 2 diabetes has a beneficial impact on NAFLD, independent of change in BMI or glucose lowering agent. Nutr. Metab. Cardiovasc. Dis. 2023, 33, 640–648. [Google Scholar] [CrossRef]
- Della Pepa, G.; Lupoli, R.; Masulli, M.; Boccia, R.; De Angelis, R.; Gianfrancesco, S.; Piccolo, R.; Rainone, C.; Rivellese, A.A.; Annuzzi, G.; et al. Blood glucose control and metabolic dysfunction-associated steatotic liver disease in people with type 1 diabetes. J. Endocrinol. Investig. 2024, 47, 2371–2378. [Google Scholar] [CrossRef]
- Colosimo, S.; Miller, H.; Koutoukidis, D.A.; Marjot, T.; Tan, G.D.; Harman, D.J.; Aithal, G.P.; Manousou, P.; Forlano, R.; Parker, R.; et al. Glycated haemoglobin is a major predictor of disease severity in patients with NAFLD. Diabetes Res. Clin. Pract. 2024, 217, 111820. [Google Scholar] [CrossRef] [PubMed]
- Paradis, V.; Perlemuter, G.; Bonvoust, F.; Dargere, D.; Parfait, B.; Vidaud, M.; Conti, M.; Huet, S.; Ba, N.; Buffet, C.; et al. High glucose and hyperinsulinemia stimulate connective tissue growth factor expression: A potential mechanism involved in progression to fibrosis in nonalcoholic steatohepatitis. Hepatology 2001, 34, 738–744. [Google Scholar] [CrossRef] [PubMed]
- Dunphy, J.L.; Taylor, R.G.; Fuller, P.J. Tissue distribution of rat glucagon receptor and GLP-1 receptor gene expression. Mol. Cell. Endocrinol. 1998, 141, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Pyke, C.; Heller, R.S.; Kirk, R.K.; Ørskov, C.; Reedtz-Runge, S.; Kaastrup, P.; Hvelplund, A.; Bardram, L.; Calatayud, D.; Knudsen, L.B. GLP-1 receptor localization in monkey and human tissue: Novel distribution revealed with extensively validated monoclonal antibody. Endocrinology 2014, 155, 1280–1290. [Google Scholar] [CrossRef] [PubMed]
- McPherson, S.; Hardy, T.; Dufour, J.F.; Petta, S.; Romero-Gomez, M.; Allison, M.; Oliveira, C.P.; Francque, S.; Van Gaal, L.; Schattenberg, J.M.; et al. Age as a Confounding Factor for the Accurate Non-Invasive Diagnosis of Advanced NAFLD Fibrosis. Am. J. Gastroenterol. 2017, 112, 740–751. [Google Scholar] [CrossRef]
- Maino, C.; Vernuccio, F.; Cannella, R.; Cristoferi, L.; Franco, P.N.; Carbone, M.; Cortese, F.; Faletti, R.; De Bernardi, E.; Inchingolo, R.; et al. Non-invasive imaging biomarkers in chronic liver disease. Eur. J. Radiol. 2024, 181, 111749. [Google Scholar] [CrossRef] [PubMed]
- Sarkar Das, T.; Meng, X.; Abdallah, M.; Bilal, M.; Sarwar, R.; Shaukat, A. An Assessment of the Feasibility, Patient Acceptance, and Performance of Point-of-Care Transient Elastography for Metabolic-Dysfunction-Associated Steatotic Liver Disease (MASLD): A Systematic Review and Meta-Analysis. Diagnostics 2024, 14, 2478. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, D.; Kim, H.J.; Lee, C.H.; Yang, J.I.; Kim, W.; Kim, Y.J.; Yoon, J.H.; Cho, S.H.; Sung, M.W.; et al. Hepatic steatosis index: A simple screening tool reflecting nonalcoholic fatty liver disease. Dig. Liver Dis. 2010, 42, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Sterling, R.K.; Lissen, E.; Clumeck, N.; Sola, R.; Correa, M.C.; Montaner, J.; Sulkowski, M.S.; Torriani, F.J.; Dieterich, D.T.; Thomas, D.L.; et al. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology 2006, 43, 1317–1325. [Google Scholar] [CrossRef] [PubMed]
Variables | Overall (n = 169) | High-Risk Group (n = 67) | Low-Risk Group (n = 102) | p-Values (High Risk vs. Low Risk) |
---|---|---|---|---|
Age (years) | 53.0 ± 12.7 | 59.3 ± 10.9 | 48.8 ± 12.1 | <0.001 |
Female sex (n, %) | 69 (40.8) | 35 (52.2) | 34 (33.3) | 0.017 |
Duration of diabetes, n (%) | 0.555 | |||
<5 years | 55 (32.5) | 18 (26.9) | 37 (36.3) | |
5 to 10 years | 34 (20.1) | 15 (22.4) | 19 (18.6) | |
10 to 15 years | 32 (18.9) | 15 (22.4) | 17 (16.7) | |
15≤ years | 48 (28.4) | 19 (28.4) | 29 (28.4) | |
HbA1c (%) | 7.8 ± 1.1 | 7.7 ± 1.0 | 7.9 ± 1.2 | 0.313 |
Body weight (kg) | 86.2 ± 21.6 | 82.8 ± 21.0 | 88.5 ± 21.8 | 0.093 |
Body mass index (kg/m2) | 31.4 ± 7.0 | 30.9 ± 6.5 | 31.7 ± 7.3 | 0.477 |
Number of antihyperglycemic agents | 2.6 ± 1.2 | 2.5 ± 1.3 | 2.6 ± 1.1 | 0.802 |
Types of antihyperglycemic agents, n (%) | ||||
DPP-4 inhibitors | 128 (75.7) | 50 (74.6) | 78 (76.5) | 0.855 |
Metformin | 122 (72.2) | 47 (70.1) | 75 (73.5) | 0.726 |
SGLT2 inhibitors | 118 (69.8) | 47 (70.1) | 71 (69.6) | 1.000 |
Sulfonylureas | 29 (17.2) | 12 (17.9) | 17 (16.7) | 0.838 |
Glinides | 16 (9.5) | 7 (10.4) | 9 (8.8) | 0.791 |
Alfa-glycosidase inhibitors | 12 (7.1) | 2 (3.0) | 10 (9.8) | 0.128 |
Thiazolidinediones | 6 (3.6) | 3 (4.5) | 3 (2.9) | 0.682 |
Insulin injection | 5 (3.0) | 3 (4.5) | 2 (2.0) | 0.386 |
Variables | Overall (n = 169) | ||
---|---|---|---|
Baseline | Changes | p-Values | |
Body weight (kg) † | 86.2 ± 21.6 | −3.0 (−3.5, −2.4) | <0.001 |
BMI (kg/m2) † | 31.4 ± 7.0 | −1.1 (−1.3, −0.9) | <0.001 |
SBP (mmHg) †† | 133.5 ± 16.9 | −6.2 (−8.8, −3.6) | <0.001 |
DBP (mmHg) †† | 81.2 ± 11.9 | −1.9 (−3.4, −0.4) | 0.015 |
HbA1c (%) † | 7.8 ± 1.1 | −0.9 (−1.0, −0.7) | <0.001 |
AST (U/L) | 35.0 (27.0–50.5) | −4.0 (−7.0, −3.0) | <0.001 |
ALT (U/L) | 49.0 (37.0–71.5) | −8.0 (−11.0, 5.0) | <0.001 |
γ-GTP (U/L) | 54.0 (34.0–83.5) | −8.0 (−10.0, −6.0) | <0.001 |
eGFR (mL/min/1.73 m2) | 83.6 ± 21.8 | −3.0 (−4.4, −1.6) | <0.001 |
UACR (mg/g·Cre) ††† | 22.1 (8.4–55.1) | −3.7 (−5.7, −1.0) | <0.001 |
HDL-C (mg/dL) † | 54.1 ± 13.5 | 0.3 (−1.0, 1.5) | 0.662 |
LDL-C (mg/dL) †† | 97.0 ± 25.3 | −5.9 (−9.4, −2.3) | 0.001 |
Triglyceride (mg/dL) | 145 (106–223) | −8.0 (−16.0, −2.0) | 0.010 |
High-Risk Group (n = 67) | Low-Risk Group (n = 102) | p-Values Between Groups | |||
---|---|---|---|---|---|
Baseline | Changes | Baseline | Changes | ||
Body weight (kg) †,‡‡ | 82.8 ± 21.0 | −3.2 (−4.2, −2.2) *** | 88.5 ± 21.8 | −2.8 (−3.5, −2.1) *** | 0.537 |
BMI (kg/m2) †,‡‡ | 30.9 ± 6.5 | −1.2 (−1.6, −0.8) *** | 31.7 ± 7.3 | −1.0 (−1.3, −0.8) *** | 0.396 |
SBP (mmHg) †††,‡‡ | 133.3 ± 18.2 | −6.8 (−11.2, −2.4) ** | 133.6 ± 16.2 | −5.8 (−9.1, −2.5) *** | 0.700 |
DBP (mmHg) †††,‡‡ | 78.7 ± 13.1 | −0.4 (−2.7, 1.9) | 82.9 ± 10.8 | −2.8 (−4.8, −0.8) ** | 0.125 |
HbA1c (%) ‡ | 7.7 ± 1.0 | −0.9 (−1.1, −0.7) *** | 7.9 ± 1.2 | −0.9 (−1.1, −0.7) *** | 0.820 |
AST (U/L) | 45.0 (35.0–61.0) | −9.0 (−13.0, −5.0) *** | 30.0 (25.0–38.5) | −3.0 (−4.0, −2.0) *** | 0.026 |
ALT (U/L) | 49.0 (39.0–73.0) | −9.0 (−16.0, −5.0) *** | 47.5 (36.0–66.3) | −6.0 (−11.0, −4.0) *** | 0.191 |
γ-GTP (U/L) | 66.0 (39.0–113.0) | −10.0 (−15.0, −7.0) *** | 48.0 (30.8–73.5) | −6.0 (−10.0, −4.0) *** | 0.250 |
eGFR (mL/min/1.73 m2) ‡ | 78.3 ± 20.9 | −3.2 (−5.9, −0.4) * | 86.7 ± 21.7 | −3.2 (−4.5, −1.4) *** | 0.880 |
UACR (mg/g·Cre) ††††,‡‡‡ | 27.7 (9.4–79.4) | −4.4 (−6.1, −1.0) * | 18.9 (8.3–54.5) | −3.2 (−6.7, −0.5) ** | 0.982 |
HDL-C (mg/dL) ‡ | 56.3 ± 14.4 | 1.4 (−0.9, 3.6) | 52.6 ± 12.8 | −0.4 (−1.9, 1.1) | 0.170 |
LDL-C (mg/dL) ††,‡‡ | 89.7 ± 26.9 | −5.7 (−10.3, −1.0) * | 101.7 ± 23.0 | −6.0 (−11.1, −0.9) * | 0.925 |
Triglyceride (mg/dL) | 138 (96–205) | −5.0 (−14.0, 7.0) | 150 (111–229) | −12.0 (−21.0, −2.0) * | 0.428 |
Variables | Hepatic Steatosis Index | FIB-4 Index | ||||
---|---|---|---|---|---|---|
Baseline | 6 Months | p-Values | Baseline | 6 Months | p-Values | |
Overall | ||||||
Total (n = 169) | 46.1 ± 8.3 | 44.6 ± 8.8 | <0.001 | 1.04 (0.78–1.55) | 0.96 (0.69–0.96) | <0.001 |
Add-on (n = 38) | 47.7 ± 7.7 | 45.7 ± 8.3 | 0.002 | 1.03 (0.73–1.48) | 1.01 (0.70–1.30) | 0.023 |
Switch from other OHAs (n = 131) | 45.7 ± 8.4 | 44.3 ± 9.0 | <0.001 | 1.05 (0.80–1.58) | 0.96 (0.67–1.47) | <0.001 |
High-risk group | ||||||
Total (n = 67) | 43.7 ± 7.1 | 42.4 ± 7.1 | 0.004 | 1.91 (1.39–2.69) | 1.56 (1.21–2.24) | <0.001 |
Add-on (n = 16) | 48.4 ± 8.3 | 45.7 ± 8.1 | 0.029 | 1.67 (1.38–2.05) | 1.25 (1.08–1.64) | 0.013 |
Switch from other OHAs (n = 51) | 42.1 ± 6.0 | 41.3 ± 6.4 | 0.063 | 1.94 (1.42–2.83) | 1.82 (1.30–2.52) | 0.008 |
Low-risk group | ||||||
Total (n = 102) | 47.8 ± 8.6 | 46.1 ± 9.6 | <0.001 | 0.86 (0.64–1.01) | 0.76 (0.57–0.94) | <0.001 |
Add-on (n = 22) | 47.2 ± 7.4 | 45.7 ± 8.7 | 0.032 | 0.86 (0.68–1.01) | 0.81 (0.66–1.02) | 0899 |
Switch from other OHAs (n = 80) | 47.9 ± 8.9 | 46.2 ± 9.8 | <0.001 | 0.86 (0.61–1.00) | 0.74 (0.56–0.92) | <0.001 |
Variables | Changes in HSI | Changes in FIB-4 Index | ||
---|---|---|---|---|
ρ | p-Values | ρ | p-Values | |
ΔBody mass index | 0.443 | <0.001 | 0.122 | 0.119 |
ΔHbA1c | 0.274 | <0.001 | 0.089 | 0.250 |
ΔAST | 0.032 | 0.680 | <0.001 | 0.734 |
ΔALT | 0.523 | <0.001 | 0.304 | <0.001 |
Δγ-GTP | 0.117 | 0.134 | 0.314 | <0.001 |
ΔTriglyceride | 0.325 | <0.001 | −0.032 | 0.684 |
ΔHDL cholesterol | −0.023 | 0.769 | −0.149 | 0.054 |
ΔLDL cholesterol | 0.102 | 0.198 | 0.054 | 0.489 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kitsunai, H.; Shinozaki, Y.; Furusawa, S.; Kitao, N.; Ito, M.; Kurihara, H.; Oba-Yamamoto, C.; Takeuchi, J.; Nakamura, A.; Takiyama, Y.; et al. The Effects of Oral Semaglutide on Hepatic Fibrosis in Subjects with Type 2 Diabetes in Real-World Clinical Practice: A Post Hoc Analysis of the Sapporo-Oral SEMA Study. Pharmaceuticals 2025, 18, 129. https://doi.org/10.3390/ph18010129
Kitsunai H, Shinozaki Y, Furusawa S, Kitao N, Ito M, Kurihara H, Oba-Yamamoto C, Takeuchi J, Nakamura A, Takiyama Y, et al. The Effects of Oral Semaglutide on Hepatic Fibrosis in Subjects with Type 2 Diabetes in Real-World Clinical Practice: A Post Hoc Analysis of the Sapporo-Oral SEMA Study. Pharmaceuticals. 2025; 18(1):129. https://doi.org/10.3390/ph18010129
Chicago/Turabian StyleKitsunai, Hiroya, Yuka Shinozaki, Sho Furusawa, Naoyuki Kitao, Miki Ito, Hiroyoshi Kurihara, Chiho Oba-Yamamoto, Jun Takeuchi, Akinobu Nakamura, Yumi Takiyama, and et al. 2025. "The Effects of Oral Semaglutide on Hepatic Fibrosis in Subjects with Type 2 Diabetes in Real-World Clinical Practice: A Post Hoc Analysis of the Sapporo-Oral SEMA Study" Pharmaceuticals 18, no. 1: 129. https://doi.org/10.3390/ph18010129
APA StyleKitsunai, H., Shinozaki, Y., Furusawa, S., Kitao, N., Ito, M., Kurihara, H., Oba-Yamamoto, C., Takeuchi, J., Nakamura, A., Takiyama, Y., & Nomoto, H. (2025). The Effects of Oral Semaglutide on Hepatic Fibrosis in Subjects with Type 2 Diabetes in Real-World Clinical Practice: A Post Hoc Analysis of the Sapporo-Oral SEMA Study. Pharmaceuticals, 18(1), 129. https://doi.org/10.3390/ph18010129