The Effect of Biologic Agents on Steatotic Liver Disease in Patients with Inflammatory Bowel Disease: A Prospective, Open-Label Comparative Trial
<p>Study flowchart following the CONSORT template.</p> "> Figure 2
<p>Box plots representing FLI, HSI, FIB-4, NFS, LS (kPa), and CAP (dB/m) values at baseline (cyan color) and endpoint (blue black color). CAP, controlled attenuation parameter; FLI, fatty liver index; FIB-4, fibrosis-4 index; HSI, hepatic steatosis index.</p> "> Figure 3
<p>Box plots representing waist circumference (cm), adiponectin (μg/mL), TNF (pg/mL), leptin (ng/mL), PIIINP (μg/mL), TIMP-1 (ng/mL) at baseline (cyan color) and endpoint (blue black color). PIIINP, N-terminal propeptide of procollagen type III; TIMP-1.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Description of the Groups
2.2. Primary Outcome
2.3. Secondary Outcomes
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Population
4.3. Methods
4.4. Outcomes and Definitions
4.5. Sample Size Calculation
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Algaba, A.; Guerra, I.; Ricart, E.; Iglesias, E.; Mañosa, M.; Gisbert, J.P.; Guardiola, J.; Mínguez, M.; Castro, B.; de Francisco, R.; et al. Extraintestinal Manifestations in Patients with Inflammatory Bowel Disease: Study Based on the ENEIDA Registry. Dig. Dis. Sci. 2021, 66, 2014–2023. [Google Scholar] [CrossRef] [PubMed]
- Gizard, E.; Ford, A.C.; Bronowicki, J.P.; Peyrin-Biroulet, L. Systematic Review: The Epidemiology of the Hepatobiliary Manifestations in Patients with Inflammatory Bowel Disease. Aliment. Pharmacol. Ther. 2014, 40, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Restellini, S.; Chazouillères, O.; Frossard, J.L. Hepatic Manifestations of Inflammatory Bowel Diseases. Liver Int. 2017, 37, 475–489. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, F.; Liu, S.; Zhu, S.; Zhang, S.; Wu, J.; Wu, S. Long-term Risk of Cardiovascular Disease Associated with MASLD and Different Cardiometabolic Risk Factors in IBD Patients: A Prospective Cohort Study. Liver Int. 2024, 44, 2315–2328. [Google Scholar] [CrossRef]
- Zou, Z.Y.; Shen, B.; Fan, J.G. Systematic Review with Meta-Analysis: Epidemiology of Nonalcoholic Fatty Liver Disease in Patients with Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2019, 25, 1764–1772. [Google Scholar] [CrossRef]
- Abenavoli, L.; Spagnuolo, R.; Scarlata, G.G.M.; Scarpellini, E.; Boccuto, L.; Luzza, F. Ultrasound Prevalence and Clinical Features of Nonalcoholic Fatty Liver Disease in Patients with Inflammatory Bowel Diseases: A Real-Life Cross-Sectional Study. Medicina 2023, 59, 1935. [Google Scholar] [CrossRef]
- Papaefthymiou, A.; Potamianos, S.; Goulas, A.; Doulberis, M.; Kountouras, J.; Polyzos, S.A. Inflammatory Bowel Disease-Associated Fatty Liver Disease: The Potential Effect of Biologic Agents. J. Crohns Colitis 2022, 16, 852–862. [Google Scholar] [CrossRef] [PubMed]
- Adams, L.C.; Lübbe, F.; Bressem, K.; Wagner, M.; Hamm, B.; Makowski, M.R. Non-Alcoholic Fatty Liver Disease in Underweight Patients with Inflammatory Bowel Disease: A Case-Control Study. PLoS ONE 2018, 13, e0206450. [Google Scholar] [CrossRef]
- Bessissow, T.; Le, N.H.; Rollet, K.; Afif, W.; Bitton, A.; Sebastiani, G. Incidence and Predictors of Nonalcoholic Fatty Liver Disease by Serum Biomarkers in Patients with Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2016, 22, 1937–1944. [Google Scholar] [CrossRef]
- Likhitsup, A.; Dundulis, J.; Ansari, S.; Patibandla, S.; Hutton, C.; Kennedy, K.; Helzberg, J.H.; Chhabra, R. High Prevalence of Non-Alcoholic Fatty Liver Disease in Patients with Inflammatory Bowel Disease Receiving Anti-Tumor Necrosis Factor Therapy. Ann. Gastroenterol. 2019, 32, 463–468. [Google Scholar] [CrossRef]
- Li, D.; Lu, C.; Yu, C. High Incidence of Non-Alcoholic Fatty Liver Disease in Patients with Crohn’s Disease but Not Ulcerative Colitis. Int. J. Clin. Exp. Pathol. 2017, 10, 10633–10639. [Google Scholar] [PubMed]
- Vachliotis, I.D.; Polyzos, S.A. The Role of Tumor Necrosis Factor-Alpha in the Pathogenesis and Treatment of Nonalcoholic Fatty Liver Disease. Curr. Obes. Rep. 2023, 12, 191–206. [Google Scholar] [CrossRef] [PubMed]
- Abu-Shanab, A.; Quigley, E.M.M. The Role of the Gut Microbiota in Nonalcoholic Fatty Liver Disease. Nat. Rev. Gastroenterol. Hepatol. 2010, 7, 691–701. [Google Scholar] [CrossRef] [PubMed]
- Bischoff, S.C.; Barbara, G.; Buurman, W.; Ockhuizen, T.; Schulzke, J.D.; Serino, M.; Tilg, H.; Watson, A.; Wells, J.M. Intestinal Permeability—A New Target for Disease Prevention and Therapy. BMC Gastroenterol. 2014, 14, 189. [Google Scholar] [CrossRef]
- Acharya, C.; Sahingur, S.E.; Bajaj, J.S. Microbiota, Cirrhosis, and the Emerging Oral-Gut-Liver Axis. JCI Insight 2017, 2, e94416. [Google Scholar] [CrossRef]
- Gibiino, G.; Sartini, A.; Gitto, S.; Binda, C.; Sbrancia, M.; Coluccio, C.; Sambri, V.; Fabbri, C. The Other Side of Malnutrition in Inflammatory Bowel Disease (IBD): Non-Alcoholic Fatty Liver Disease. Nutrients 2021, 13, 2772. [Google Scholar] [CrossRef]
- Magrì, S.; Paduano, D.; Chicco, F.; Cingolani, A.; Farris, C.; Delogu, G.; Tumbarello, F.; Lai, M.; Melis, A.; Casula, L.; et al. Nonalcoholic Fatty Liver Disease in Patients with Inflammatory Bowel Disease: Beyond the Natural History. World J. Gastroenterol. 2019, 25, 5676–5686. [Google Scholar] [CrossRef]
- Principi, M.; Iannone, A.; Losurdo, G.; Mangia, M.; Shahini, E.; Albano, F.; Rizzi, S.F.; La Fortezza, R.F.; Lovero, R.; Contaldo, A.; et al. Nonalcoholic Fatty Liver Disease in Inflammatory Bowel Disease: Prevalence and Risk Factors. Inflamm. Bowel Dis. 2018, 24, 1589–1596. [Google Scholar] [CrossRef]
- Saroli Palumbo, C.; Restellini, S.; Chao, C.Y.; Aruljothy, A.; Lemieux, C.; Wild, G.; Afif, W.; Lakatos, P.L.; Bitton, A.; Cocciolillo, S.; et al. Screening for Nonalcoholic Fatty Liver Disease in Inflammatory Bowel Diseases: A Cohort Study Using Transient Elastography. Inflamm. Bowel Dis. 2019, 25, 124–133. [Google Scholar] [CrossRef]
- Yen, H.H.; Su, P.Y.; Huang, S.P.; Wu, L.; Hsu, T.C.; Zeng, Y.H.; Chen, Y.Y. Evaluation of Non-Alcoholic Fatty Liver Disease in Patients with Inflammatory Bowel Disease Using Controlled Attenuation Parameter Technology: A Taiwanese Retrospective Cohort Study. PLoS ONE 2021, 16, e0252286. [Google Scholar] [CrossRef]
- Kakino, S.; Ohki, T.; Nakayama, H.; Yuan, X.; Otabe, S.; Hashinaga, T.; Wada, N.; Kurita, Y.; Tanaka, K.; Hara, K.; et al. Pivotal Role of TNF-α in the Development and Progression of Nonalcoholic Fatty Liver Disease in a Murine Model. Horm. Metab. Res. 2018, 50, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, P.; Magro, F.; Martel, F. Metabolic Inflammation in Inflammatory Bowel Disease: Crosstalk between Adipose Tissue and Bowel. Inflamm. Bowel Dis. 2015, 21, 453–467. [Google Scholar] [CrossRef] [PubMed]
- Genaro, L.M.; Gomes, L.E.M.; de Freitas Franceschini, A.P.M.; Ceccato, H.D.; de Jesus, R.N.; Lima, A.P.; Nagasako, C.K.; Fagundes, J.J.; Ayrizono, M.d.L.S.; Leal, R.F. Anti-TNF Therapy and Immunogenicity in Inflammatory Bowel Diseases: A Translational Approach. Am. J. Trans. Res. 2021, 13, 13916–13930. [Google Scholar]
- Silverberg, M.S.; Satsangi, J.; Ahmad, T.; Arnott, I.D.; Bernstein, C.N.; Brant, S.R.; Caprilli, R.; Colombel, J.-F.; Gasche, C.; Geboes, K.; et al. Toward an Integrated Clinical, Molecular and Serological Classification of Inflammatory Bowel Disease: Report of a Working Party of the 2005 Montreal World Congress of Gastroenterology. Can. J. Gastroenterol. 2005, 19, 5A–36A. [Google Scholar] [CrossRef]
- Maruotti, N.; d’Onofrio, F.; Cantatore, F.P. Metabolic Syndrome and Chronic Arthritis: Effects of Anti-TNF-α Therapy. Clin. Exp. Med. 2015, 15, 433–438. [Google Scholar] [CrossRef]
- Costa, L.; Caso, F.; Atteno, M.; Del Puente, A.; Darda, M.A.; Caso, P.; Ortolan, A.; Fiocco, U.; Ramonda, R.; Punzi, L.; et al. Impact of 24-Month Treatment with Etanercept, Adalimumab, or Methotrexate on Metabolic Syndrome Components in a Cohort of 210 Psoriatic Arthritis Patients. Clin. Rheumatol. 2014, 33, 833–839. [Google Scholar] [CrossRef]
- Sourianarayanane, A.; Garg, G.; Smith, T.H.; Butt, M.I.; McCullough, A.J.; Shen, B. Risk Factors of Non-Alcoholic Fatty Liver Disease in Patients with Inflammatory Bowel Disease. J. Crohns Colitis 2013, 7, e279–e285. [Google Scholar] [CrossRef]
- Drescher, H.K.; Schippers, A.; Clahsen, T.; Sahin, H.; Noels, H.; Hornef, M.; Wagner, N.; Trautwein, C.; Streetz, K.L.; Kroy, D.C. Β7-Integrin and MAdCAM-1 Play Opposing Roles during the Development of Non-Alcoholic Steatohepatitis. J. Hepatol. 2017, 66, 1251–1264. [Google Scholar] [CrossRef]
- Lynch, K.D.; Chapman, R.W.; Keshav, S.; Montano-Loza, A.J.; Mason, A.L.; Kremer, A.E.; Vetter, M.; de Krijger, M.; Ponsioen, C.Y.; Trivedi, P.; et al. Effects of Vedolizumab in Patients With Primary Sclerosing Cholangitis and Inflammatory Bowel Diseases. Clin. Gastroenterol. Hepatol. 2020, 18, 179–187.e6. [Google Scholar] [CrossRef]
- Hoffmann, P.; Jung, V.; Gauss, A.; Behnisch, R. Prevalence and Risk Factors of Nonalcoholic Fatty Liver Disease in Patients with Inflammatory Bowel Diseases: A Cross-Sectional and Longitudinal Analysis. World J. Gastroenterol. 2020, 26, 7367–7381. [Google Scholar] [CrossRef]
- Kang, M.K.; Kim, K.O.; Kim, M.C.; Park, J.G.; Jang, B.I. Sarcopenia Is a New Risk Factor of Nonalcoholic Fatty Liver Disease in Patients with Inflammatory Bowel Disease. Dig. Dis. 2020, 38, 507–514. [Google Scholar] [CrossRef]
- Sartini, A.; Gitto, S.; Bianchini, M.; Verga, M.C.; Di Girolamo, M.; Bertani, A.; Del Buono, M.; Schepis, F.; Lei, B.; De Maria, N.; et al. Non-Alcoholic Fatty Liver Disease Phenotypes in Patients with Inflammatory Bowel Disease Article. Cell Death Dis. 2018, 9, 87. [Google Scholar] [CrossRef]
- Koutroubakis, I.E.; Oustamanolakis, P.; Malliaraki, N.; Karmiris, K.; Chalkiadakis, I.; Ganotakis, E.; Karkavitsas, N.; Kouroumalis, E.A. Effects of Tumor Necrosis Factor Alpha Inhibition with Infliximab on Lipid Levels and Insulin Resistance in Patients with Inflammatory Bowel Disease. Eur. J. Gastroenterol. Hepatol. 2009, 21, 283–288. [Google Scholar] [CrossRef] [PubMed]
- McGowan, C.E.; Jones, P.; Long, M.D.; Barritt IV, A.S. Changing Shape of Disease: Nonalcoholic Fatty Liver Disease in Crohn’s Disease—A Case Series and Review of the Literature. Inflamm. Bowel Dis. 2012, 18, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Potoupni, V.; Georgiadou, M.; Chatzigriva, E.; Polychronidou, G.; Markou, E.; Zapantis Gakis, C.; Filimidou, I.; Karagianni, M.; Anastasilakis, D.; Evripidou, K.; et al. Circulating Tumor Necrosis Factor-α Levels in Non-Alcoholic Fatty Liver Disease: A Systematic Review and a Meta-Analysis. J. Gastroenterol. Hepatol. 2021, 36, 3002–3014. [Google Scholar] [CrossRef]
- Polyzos, S.A.; Toulis, K.A.; Goulis, D.G.; Zavos, C.; Kountouras, J. Serum Total Adiponectin in Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Metabolism 2011, 60, 313–326. [Google Scholar] [CrossRef] [PubMed]
- Polyzos, S.A.; Aronis, K.N.; Kountouras, J.; Raptis, D.D.; Vasiloglou, M.F.; Mantzoros, C.S. Circulating Leptin in Non-Alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Diabetologia 2016, 59, 30–43. [Google Scholar] [CrossRef]
- Gudowska, M.; Gruszewska, E.; Panasiuk, A.; Cylwik, B.; Swiderska, M.; Flisiak, R.; Szmitkowski, M.; Chrostek, L. High Serum N-Terminal Propeptide of Procollagen Type III Concentration Is Associated with Liver Diseases. Gastroenterol. Rev. 2017, 3, 203–207. [Google Scholar] [CrossRef]
- Osawa, Y.; Hoshi, M.; Yasuda, I.; Saibara, T.; Moriwaki, H.; Kozawa, O. Tumor Necrosis Factor-α Promotes Cholestasis-Induced Liver Fibrosis in the Mouse through Tissue Inhibitor of Metalloproteinase-1 Production in Hepatic Stellate Cells. PLoS ONE 2013, 8, e65251. [Google Scholar] [CrossRef]
- Dooley, S.; ten Dijke, P. TGF-β in Progression of Liver Disease. Cell Tissue Res. 2012, 347, 245–256. [Google Scholar] [CrossRef]
- European Medicines Agency (EMA). ICH E6 (R2) Good Clinical Practice—Scientific Guideline. Available online: https://www.ema.europa.eu/en/ich-e6-r2-good-clinical-practice-scientific-guideline (accessed on 24 August 2024).
- World Medical Association Declaration of Helsinki. Ethical Principles for Scientific Requirements and Research Protocols. Bull. World Health Organ. 2013, 79, 373. [Google Scholar]
- Torres, J.; Bonovas, S.; Doherty, G.; Kucharzik, T.; Gisbert, J.P.; Raine, T.; Adamina, M.; Armuzzi, A.; Bachmann, O.; Bager, P.; et al. ECCO Guidelines on Therapeutics in Crohn’s Disease: Medical Treatment. J. Crohns Colitis 2020, 14, 4–22. [Google Scholar] [CrossRef] [PubMed]
- Raine, T.; Bonovas, S.; Burisch, J.; Kucharzik, T.; Adamina, M.; Annese, V.; Bachmann, O.; Bettenworth, D.; Chaparro, M.; Czuber-Dochan, W.; et al. ECCO Guidelines on Therapeutics in Ulcerative Colitis: Medical Treatment. J. Crohns Colitis 2022, 16, 2–17. [Google Scholar] [CrossRef]
- Bischoff, S.C.; Escher, J.; Hébuterne, X.; Kłęk, S.; Krznaric, Z.; Schneider, S.; Shamir, R.; Stardelova, K.; Wierdsma, N.; Wiskin, A.E.; et al. ESPEN Practical Guideline: Clinical Nutrition in Inflammatory Bowel Disease. Clin. Nutr. 2020, 39, 632–653. [Google Scholar] [CrossRef]
- Satsangi, J.; Silverberg, M.S.; Vermeire, S.; Colombel, J.F. The Montreal Classification of Inflammatory Bowel Disease: Controversies, Consensus, and Implications. Gut 2006, 55, 749–753. [Google Scholar] [CrossRef]
- Best, W.; Becktel, J.; Singleton, J.; Kern, F., Jr. Development of a Crohn’s Disease Activity Index. National Cooperative Crohn’s Disease Study. Gastroenterology 1976, 70, 439–444. [Google Scholar] [CrossRef]
- Daperno, M.; D’Haens, G.; Van Assche, G.; Baert, F.; Bulois, P.; Maunoury, V.; Sostegni, R.; Rocca, R.; Pera, A.; Gevers, A. Development and Validation of a New, Simplified Endoscopic Activity Score for Crohn’s Disease: The SES-CD. Gastrointest. Endosc. 2004, 60, 505–512. [Google Scholar] [CrossRef] [PubMed]
- Hamaguchi, M.; Kojima, T.; Itoh, Y.; Harano, Y.; Fujii, K.; Nakajima, T.; Kato, T.; Takeda, N.; Okuda, J.; Ida, K.; et al. The Severity of Ultrasonographic Findings in Nonalcoholic Fatty Liver Disease Reflects the Metabolic Syndrome and Visceral Fat Accumulation. Am. J. Gastroenterol. 2007, 102, 2708–2715. [Google Scholar] [CrossRef]
- Bedogni, G.; Bellentani, S.; Miglioli, L.; Masutti, F.; Passalacqua, M.; Castiglione, A.; Tiribelli, C. The Fatty Liver Index: A Simple and Accurate Predictor of Hepatic Steatosis in the General Population. BMC Gastroenterol. 2006, 6, 33. [Google Scholar] [CrossRef]
- Angulo, P.; Hui, J.M.; Marchesini, G.; Bugianesi, E.; George, J.; Farrell, G.C.; Enders, F.; Saksena, S.; Burt, A.D.; Bida, J.P.; et al. The NAFLD Fibrosis Score: A Noninvasive System That Identifies Liver Fibrosis in Patients with NAFLD. Hepatology 2007, 45, 846–854. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis Model Assessment: Insulin Resistance and β-Cell Function from Fasting Plasma Glucose and Insulin Concentrations in Man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed]
- McPherson, S.; Stewart, S.F.; Henderson, E.; Burt, A.D.; Day, C.P. Simple Non-Invasive Fibrosis Scoring Systems Can Reliably Exclude Advanced Fibrosis in Patients with Non-Alcoholic Fatty Liver Disease. Gut 2010, 59, 1265–1269. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Kim, D.; Kim, H.J.; Lee, C.H.; Yang, J.I.; Kim, W.; Kim, Y.J.; Yoon, J.H.; Cho, S.H.; Sung, M.W.; et al. Hepatic Steatosis Index: A Simple Screening Tool Reflecting Nonalcoholic Fatty Liver Disease. Dig. Liver Dis. 2010, 42, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Erdfelder, E.; FAul, F.; Buchner, A.; Lang, A.G. Statistical Power Analyses Using G*Power 3.1: Tests for Correlation and Regression Analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef]
Controls (n = 26) | Infliximab (n = 26) | Vedolizumab (n = 14) | p-Value for Trend | ||
---|---|---|---|---|---|
Demographics | Sex (Women) | 11 (42.3%) | 8 (30.8%) | 6 (42.9%) | 0.630 |
Age (Years) | 35.9 ± 15.3 | 38.0 ± 16.2 | 51.4 ± 17.9 a,b | 0.027 | |
Smoking (Current) | 1 (3.8%) | 10 (38.5%) | 3 (21.4%) | 0.011 | |
BMI (kg/m2) | 24.9 ± 4.2 | 23.4 ± 4.9 | 26.5 ± 4.3 | 0.111 | |
Waist circumference (cm) | 87.0 ± 13.8 | 99.1 ± 15.4 a | 94.9 ± 19.9 | 0.025 | |
IBD diagnosis | Crohn’s disease | 14 (53.8%) | 12 (46.2%) | 7 (50.0%) | 0.857 |
Disease activity | Disease duration (years) | 6.9 ± 8.6 | 6.0 ± 8.4 | 11.6 ± 11.8 | 0.084 |
Active disease * | 10 (40.0%) | 21 (80.8%) | 5 (35.7%) | 0.003 | |
CDAI | 47.8 ± 140.8 | 165.4 ± 62.8 a | 80.4 ± 60.1 | 0.024 | |
Mayo score | 5.1 ± 3.7 | 9.64 ± 1.6 a | 6.9 ± 3.1 | 0.002 | |
Metabolic comorbidities | Arterial hypertension; N (%) | 2 (7.7%) | 1 (3.8%) | 3 (21.4%) | 0.173 |
Type 2 diabetes mellitus; N (%) | 1 (3.8%) | 0 (0.0%) | 2 (14.3%) | 0.115 | |
Cardiovascular disease; N (%) | 0 (0.0%) | 1 (3.8%) | 0 (0.0%) | 0.458 | |
Metabolic syndrome; N (%) | 2 (7.7%) | 1 (3.8%) | 3 (21.4%) | 0.173 | |
Hamaguchi score | Steatosis; N (%) | 6 (23.1%) | 7 (26.9%) | 6 (46.2%) | 0.310 |
Transient elastography; steatosis | CAP (dB/m) | 254.9 ± 69.1 | 235.4 ± 68.5 | 255.2 ± 52.1 | 0.587 |
Non-invasive hepatic steatosis indices | FLI < 30; N (%) | 12 (46.2%) | 16 (64.0%) | 5 (38.5%) | 0.507 |
HSI < 30; N (%) | 8 (30.8%) | 13 (50.0%) | 4 (28.6%) | 0.069 | |
SWE; liver stiffness | F0; N (%) | 22 (88.0%) | 25 (96.2%) | 12 (92.3%) | 0.172 |
F1; N (%) | 3 (12.0%) | 1 (3.8%) | 0 (0.0%) | ||
F4; N (%) | 0 (0.0%) | 0 (0.0%) | 1 (7.7%) | ||
Transient elastography; liver stiffness | F0; N (%) | 20 (83.3%) | 23 (92.0%) | 13 (100.0%) | 0.144 |
F1; N (%) | 4 (16.7%) | 0 (0.0%) | 0 (0.0%) | ||
F2; N (%) | 0 (0.0%) | 1 (4.0%) | 0 (0.0%) | ||
F3; N (%) | 0 (0.0%) | 1 (4.0%) | 0 (0.0%) | ||
Non-invasive hepatic fibrosis indices | FIB-4 < 1.3; N (%) | 25 (96.2%) | 24 (92.3%) | 9 (64.3%) | 0.009 |
NFS < −1.455; N (%) | 25 (96.2%) | 24 (92.3%) | 10 (71.4%) | 0.044 |
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 | Model 8 | Model 9 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Odds Ratio | 95% CI | Odds Ratio | 95% CI | Odds Ratio | 95% CI | Odds Ratio | 95% CI | Odds Ratio | 95% CI | Odds Ratio | 95% CI | Odds Ratio | 95% CI | Odds Ratio | 95% CI | Odds Ratio | 95% CI | |
Infliximab 1 | 1.23 | 0.35–4.32 | 1.44 | 0.37–5.73 | 1.58 | 0.37–6.72 | 1.48 | 0.34–6.39 | 1.44 | 0.33–6.39 | 1.38 | 0.31–6.09 | 1.51 | 0.35–6.59 | 1.47 | 0.34–6.39 | 1.42 | 0.30–6.75 |
Vedolizumab 1 | 2.86 | 0.69–11.84 | 2.73 | 0.65–11.47 | 2.42 | 0.52–11.35 | 2.07 | 0.41–10.37 | 2.04 | 0.40–10.29 | 1.64 | 0.31–8.73 | 1.76 | 0.24–9.24 | 2.19 | 0.43–11.25 | 2.04 | 0.40–10.36 |
Moderate–severe disease activity 2 | 0.59 | 0.18–2.00 | 0.65 | 0.18–2.34 | 0.68 | 0.19–2.44 | 0.68 | 0.18–2.52 | 0.66 | 0.18--2.42 | 0.62 | 0.17–2.28 | 0.67 | 0.18–2.41 | 0.67 | 0.18–2.44 | ||
Disease duration | 1.09 | 1.02–1.16 | 1.08 | 0.99–1.16 | 1.07 | 0.99–1.16 | 1.08 | 0.99–1.15 | 1.08 | 1.00–1.16 | 1.08 | 0.99–1.16 | 1.08 | 0.99–1.16 | ||||
Age | 1.02 | 0.97–1.06 | 1.04 | 0.97–1.06 | 1.02 | 0.98–1.07 | 1.01 | 0.97–1.06 | 1.01 | 0.97–1.06 | 1.01 | 0.97–1.06 | ||||||
Adiponectin | 0.99 | 0.86–1.13 | ||||||||||||||||
TNF | 1.00 | 0.99–1.01 | ||||||||||||||||
Leptin | 1.07 | 0.89–1.29 | ||||||||||||||||
PIIINP | 0.98 | 0.89–1.08 | ||||||||||||||||
TIMP-1 | 1.00 | 0.98–1.02 |
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 | Model 8 | Model 9 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Odds Ratio | 95% CI | Odds Ratio | 95% CI | Odds Ratio | 95% CI | Odds Ratio | 95% CI | Odds Ratio | 95% CI | Odds Ratio | 95% CI | Odds Ratio | 95% CI | Odds Ratio | 95% CI | Odds Ratio | 95% CI | |
Infliximab 1 | 1.27 | 0.25–6.38 | 2.45 | 0.44–13.79 | 2.57 | 0.44–15.03 | 2.57 | 0.44–15.00 | 2.61 | 0.44–15.49 | 2.44 | 0.41–14.56 | 2.61 | 0.44–15.42 | 2.71 | 0.43–16.89 | 3.23 | 0.48–21.72 |
Vedolizumab 1 | 1.91 | 0.33–11.08 | 2.10 | 0.36–12.37 | 1.61 | 0.25–10.34 | 1.58 | 0.34–10.45 | 1.59 | 0.24–10.71 | 1.29 | 0.19–8.67 | 1.58 | 0.24–10.51 | 1.57 | 0.22–11.34 | 2.07 | 0.26–16.44 |
Moderate–severe disease activity 2 | 0.27 | 0.03–2.69 | 0.26 | 0.03–2.79 | 0.26 | 0.02–2.78 | 0.26 | 0.02–2.76 | 0.26 | 0.02–2.92 | 0.24 | 0.02–2.90 | 0.20 | 0.02–2.39 | 0.27 | 0.02–3.05 | ||
Disease duration | 1.04 | 0.97–1.12 | 1.04 | 0.96–1.13 | 1.04 | 0.96–1.13 | 1.04 | 0.95–1.14 | 1.04 | 0.95–1.14 | 1.04 | 0.95–1.14 | 1.04 | 0.96–1.14 | ||||
Age | 1.00 | 0.95–1.06 | 1.00 | 0.95–1.06 | 1.01 | 0.96–1.07 | 1.01 | 0.95–1.06 | 0.99 | 0.94–1.06 | 1.00 | 0.95–1.06 | ||||||
Adiponectin | 1.01 | 0.89–1.14 | ||||||||||||||||
TNF | 1.00 | 0.99–1.01 | ||||||||||||||||
Leptin | 0.98 | 0.81–1.20 | ||||||||||||||||
PIIINP | 0.88 | 0.69–1.11 | ||||||||||||||||
TIMP-1 | 0.99 | 0.96–1.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papaefthymiou, A.; Sarrou, S.; Pateras, K.; Vachliotis, I.D.; Agrotis, G.; Sgantzou, I.-K.; Perifanos, G.; Kapsoritakis, A.; Speletas, M.; Vlychou, M.; et al. The Effect of Biologic Agents on Steatotic Liver Disease in Patients with Inflammatory Bowel Disease: A Prospective, Open-Label Comparative Trial. Pharmaceuticals 2024, 17, 1432. https://doi.org/10.3390/ph17111432
Papaefthymiou A, Sarrou S, Pateras K, Vachliotis ID, Agrotis G, Sgantzou I-K, Perifanos G, Kapsoritakis A, Speletas M, Vlychou M, et al. The Effect of Biologic Agents on Steatotic Liver Disease in Patients with Inflammatory Bowel Disease: A Prospective, Open-Label Comparative Trial. Pharmaceuticals. 2024; 17(11):1432. https://doi.org/10.3390/ph17111432
Chicago/Turabian StylePapaefthymiou, Apostolis, Styliani Sarrou, Konstantinos Pateras, Ilias D. Vachliotis, Georgios Agrotis, Ioanna-Konstantina Sgantzou, Georgios Perifanos, Andreas Kapsoritakis, Matthaios Speletas, Marianna Vlychou, and et al. 2024. "The Effect of Biologic Agents on Steatotic Liver Disease in Patients with Inflammatory Bowel Disease: A Prospective, Open-Label Comparative Trial" Pharmaceuticals 17, no. 11: 1432. https://doi.org/10.3390/ph17111432
APA StylePapaefthymiou, A., Sarrou, S., Pateras, K., Vachliotis, I. D., Agrotis, G., Sgantzou, I.-K., Perifanos, G., Kapsoritakis, A., Speletas, M., Vlychou, M., Dalekos, G. N., Potamianos, S., Goulas, A., Kountouras, J., & Polyzos, S. A. (2024). The Effect of Biologic Agents on Steatotic Liver Disease in Patients with Inflammatory Bowel Disease: A Prospective, Open-Label Comparative Trial. Pharmaceuticals, 17(11), 1432. https://doi.org/10.3390/ph17111432