The Role of Pathogens in Bumblebee Decline: A Review
<p>Factors affecting bumblebees’ health (references in the text).</p> "> Figure 2
<p>Flowchart of the literature search and screening process in this study.</p> "> Figure 3
<p>Distribution and prevalence of bumblebee pathogens (points represent the country-level prevalence of pathogens, not the exact locations of pathogens).</p> "> Figure 4
<p><span class="html-italic">Bombus terrestris</span>: (<b>A</b>) healthy colony, (<b>B</b>) healthy fourth instar larva, (<b>C</b>) healthy adult, (<b>D</b>–<b>F</b>) <span class="html-italic">Ascosphaera apis</span> chalkbrood-infected fourth instar larvae, (<b>G</b>–<b>I</b>) deformed wing virus infected adults; scale bars = 50 mm (<b>B</b>,<b>D</b>–<b>F</b>), 5 mm (<b>C</b>,<b>G</b>–<b>H</b>) (sources: Zhang et al. [<a href="#B78-pathogens-14-00094" class="html-bibr">78</a>] (<b>A</b>), Pereira et al. [<a href="#B16-pathogens-14-00094" class="html-bibr">16</a>] (<b>B</b>,<b>D</b>–<b>F</b>), and Cilia et al. [<a href="#B15-pathogens-14-00094" class="html-bibr">15</a>] (<b>C</b>,<b>G</b>–<b>I</b>)).</p> "> Figure 5
<p>Interaction between environmental changes and pathogen dynamics, and their impacts on bumblebees.</p> ">
Abstract
:1. Introduction
2. Methodology
3. Important Bumblebee Pathogens
3.1. Overview of Bumblebee Pathogens
3.1.1. Viruses
Bumblebee Species | BQCV | DWV | SBV | ABPV | AmFV | CBPV | KBV | LSV | ToBRFV | IAPV |
---|---|---|---|---|---|---|---|---|---|---|
B. armeniacus | √ | |||||||||
B. atratus | √ | √ | √ | √ | √ | |||||
B. bimaculatus | √ | √ | ||||||||
B. bohemicus | √ | |||||||||
B. braccatus | √ | √ | ||||||||
B. breviceps | √ | |||||||||
B. convexus | √ | |||||||||
B. cryptarum | √ | √ | ||||||||
B. cullumanus | √ | |||||||||
B. dahlbomii | √ | √ | √ | √ | ||||||
B. ephippiatus | √ | √ | ||||||||
B. friseanus | √ | |||||||||
B. funebris | √ | |||||||||
B. jonellus | √ | |||||||||
B. hortorum | √ | √ | √ | √ | ||||||
B. humilis | √ | √ | ||||||||
B. huntii | √ | |||||||||
B. ignitus | √ | |||||||||
B. impatiens | √ | √ | √ | √ | √ | √ | ||||
B. impetuosus | √ | |||||||||
B. keriensis | √ | √ | ||||||||
B. ladakhensis | √ | |||||||||
B. lantschouensis | √ | |||||||||
B. lapidarius | √ | √ | √ | √ | ||||||
B. lepidus | √ | |||||||||
B. longipes | √ | |||||||||
B. lucorum | √ | √ | √ | |||||||
B. monticola | √ | √ | ||||||||
B. opifex | √ | |||||||||
B. pascuorum | √ | √ | √ | √ | √ | |||||
B. patagiatus | √ | |||||||||
B. pauloensis | √ | √ | √ | √ | √ | |||||
B. pratorum | √ | √ | ||||||||
B. pyrosoma | √ | √ | ||||||||
B. ruderatus | √ | √ | √ | √ | √ | |||||
B. rufofasciatus | √ | |||||||||
B. sichelii | √ | |||||||||
B. soroeensis | √ | √ | ||||||||
B. steindachneri | √ | |||||||||
B. subterraneus | √ | |||||||||
B. supremus | √ | |||||||||
B. sushkini | √ | |||||||||
B. sylvarum | √ | √ | √ | |||||||
B. ternarius | √ | √ | √ | √ | ||||||
B. terrestris | √ | √ | √ | √ | √ | √ | √ | √ | ||
B. terricola | √ | √ | ||||||||
B. trifasciatus | √ | |||||||||
B. turkestanicus | √ | |||||||||
B. vagans | √ | √ | √ | √ | ||||||
B. waltoni | √ | √ |
3.1.2. Fungi and Protists
3.1.3. Bacteria
Bumblebee Species | Protists | Fungi | Bacteria | |||||||
---|---|---|---|---|---|---|---|---|---|---|
CB | AB | LP | VB | VA | VC | TP | AA | SA | SM | |
B. armeniacus | √ | √ | ||||||||
B. atratus | √ | √ | √ | √ | √ | |||||
B. auricomus | √ | |||||||||
B. bellicosus | √ | |||||||||
B. bifarius | √ | √ | ||||||||
B. bimaculatus | √ | √ | ||||||||
B. braccatus | √ | √ | ||||||||
B. breviceps | √ | √ | √ | √ | ||||||
B. californicus | √ | |||||||||
B. caliginosus | √ | |||||||||
B. centralis | √ | √ | ||||||||
B. citrinus | √ | |||||||||
B. convexus | √ | √ | ||||||||
B. cryptarum | √ | √ | √ | |||||||
B. cullumanus | √ | √ | ||||||||
B. dahlbomii | √ | √ | √ | |||||||
B. fernaldae | √ | |||||||||
B. fervidus | √ | √ | ||||||||
B. flavifrons | √ | √ | ||||||||
B. frigidus | √ | √ | ||||||||
B. friseanus | √ | √ | √ | |||||||
B. funebris | √ | |||||||||
B. griseocollis | √ | √ | ||||||||
B. haemorrhoidalis | √ | √ | ||||||||
B. hortorum | √ | √ | √ | |||||||
B. humilis | √ | |||||||||
B. huntii | √ | √ | ||||||||
B. ignitus | √ | √ | ||||||||
B. impetuosus | √ | √ | ||||||||
B. impatiens | √ | √ | √ | |||||||
B. insularis | √ | |||||||||
B. keriensis | √ | √ | ||||||||
B. lantschouensis | √ | √ | ||||||||
B. lapidarius | √ | √ | √ | √ | ||||||
B. lepidus | √ | √ | ||||||||
B. longipes | √ | √ | ||||||||
B. lucorum | √ | √ | √ | |||||||
B. melanopygus | √ | √ | ||||||||
B. mixtus | √ | √ | ||||||||
B. montivagus | √ | √ | ||||||||
B. morio | √ | |||||||||
B. nevadensis | √ | |||||||||
B. occidentalis | √ | √ | ||||||||
B. opifex | √ | √ | √ | |||||||
B. pascuorum | √ | √ | √ | √ | √ | √ | ||||
B. patagiatus | √ | √ | √ | √ | ||||||
B. pauloensis | √ | √ | ||||||||
B. pensylvanicus | √ | √ | ||||||||
B. perplexus | √ | |||||||||
B. pratorum | √ | √ | √ | √ | ||||||
B. pyrosoma | √ | √ | ||||||||
B. remotus | √ | |||||||||
B. ruderatus | √ | √ | √ | √ | ||||||
B. rufocinctus | √ | √ | ||||||||
B. rufofasciatus | √ | √ | √ | |||||||
B. sibiricus | √ | |||||||||
B. sitkensis | √ | |||||||||
B. soroeensis | √ | √ | ||||||||
B. subterraneus | √ | √ | ||||||||
B. suckleyi | √ | |||||||||
B. sushkini | √ | √ | ||||||||
B. sylvarum | √ | √ | ||||||||
B. sylvicola | √ | |||||||||
B. ternarius | √ | |||||||||
B. terrestris | √ | √ | √ | √ | √ | √ | √ | |||
B. terricola | √ | √ | √ | √ | ||||||
B. trifasciatus | √ | √ | ||||||||
B. turkestanicus | √ | √ | ||||||||
B. vagans | √ | |||||||||
B. vandykei | √ | |||||||||
B. vosnesenskii | √ | √ | √ | |||||||
B. waltoni | √ | √ | √ |
3.2. Impacts of Pathogens
Pathogen Type | Impact on Bumblebees | References |
---|---|---|
Viruses | Wing malformations, affects foraging behavior, impairs navigational capacity, and paralysis | [15,157,158,159] |
Fungi | Reduced production of viable sperm, infected queens produce fewer offspring, disturbed colony size, decreased lifespan of all stages, causes digestive problems, and impacts immunity | [16,46,161] |
Protists | Affects the bumblebee gut, reducing fitness and foraging efficiency, reduced fecundity and lifespan, and decreased body fat | [47,168] |
3.3. Interaction Between Pathogens and Environmental Change
4. Conservation and Management Strategies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Williams, P.H. The bumblebees of the Himalaya An Identification Guide; RBINS Scientific Publication Unit: Belgium, Brussel, 2022; Volume 21, p. 202. [Google Scholar]
- Williams, P.H.; Cameron, S.A.; Hines, H.M.; Cederberg, B.; Rasmont, P. A simplified subgeneric classification of the bumblebees (genus Bombus). Apidologie 2008, 39, 46–74. [Google Scholar] [CrossRef]
- Kubo, R.; Ugajin, A.; Ono, M. Molecular phylogenetic analysis of mermithid nematodes (Mermithida: Mermithidae) discovered from Japanese bumblebee (Hymenoptera: Bombinae) and behavioral observation of an infected bumblebee. Appl. Entomol. Zool. 2016, 51, 549–554. [Google Scholar] [CrossRef]
- Goulson, D. Bumblebees: Their Behaviour and Ecology; Oxford University Press: Oxford, NY, USA, 2003. [Google Scholar]
- Michener, C.D. The Social Behavior of the Bees: A Comparative Study, 2nd ed.; Harvard University Press: Cambridge, UK, 1974. [Google Scholar]
- Stelzer, R.J.; Chittka, L.; Carlton, M.; Ings, T.C. Winter active bumblebees (Bombus terrestris) achieve high foraging rates in urban Britain. PLoS ONE 2010, 5, e9559. [Google Scholar] [CrossRef] [PubMed]
- Goulson, D. Bumblebees: Behaviour, Ecology, and Conservation, 2nd ed.; Oxford University Press: New York, NY, USA, 2010; p. 317. [Google Scholar]
- Plowright, R.; Laverty, T. The ecology and sociobiology of bumble bees. Annu. Rev. Entomol. 1984, 29, 175–199. [Google Scholar] [CrossRef]
- Potts, S.G.; Imperatriz-Fonseca, V.; Ngo, H.T.; Aizen, M.A.; Biesmeijer, J.C.; Breeze, T.D.; Dicks, L.V.; Garibaldi, L.A.; Hill, R.; Settele, J. Safe guarding pollinators and their values to human well-being. Nature 2016, 540, 220–229. [Google Scholar] [CrossRef]
- Vallejo-Marín, M. How and why do bees buzz? Implications for buzz pollination. J. Exp. Bot. 2022, 73, 1080–1092. [Google Scholar] [CrossRef]
- Velthuis, H.H.; Van Doorn, A. A century of advances in bumblebee domestication and the economic and environmental aspects of its commercialization for pollination. Apidologie 2006, 37, 421–451. [Google Scholar] [CrossRef]
- Li, J.; Wu, J.; Cai, W.; Peng, W.; An, J.; Huang, J. Comparison of the colony development of two native bumblebee species Bombus ignitus and Bombus lucorum as candidates for commercial pollination in China. J. Apic. Res. 2008, 47, 22–26. [Google Scholar] [CrossRef]
- Sinpoo, C.; Disayathanoowat, T.; Williams, P.H.; Chantawannakul, P. Prevalence of infection by the microsporidian Nosema spp. in native bumblebees (Bombus spp.) in northern Thailand. PLoS ONE 2019, 14, e0213171. [Google Scholar] [CrossRef]
- Gallai, N.; Salles, J.-M.; Settele, J.; Vaissière, B.E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 2009, 68, 810–821. [Google Scholar] [CrossRef]
- Cilia, G.; Zavatta, L.; Ranalli, R.; Nanetti, A.; Bortolotti, L. Replicative Deformed Wing Virus found in the head of adults from symptomatic commercial bumblebee (Bombus terrestris) colonies. Vet. Sci. 2021, 8, 117. [Google Scholar] [CrossRef] [PubMed]
- Pereira, K.d.S.; Meeus, I.; Smagghe, G. Honey bee-collected pollen is a potential source of Ascosphaera apis infection in managed bumble bees. Sci. Rep. 2019, 9, 4241. [Google Scholar] [CrossRef] [PubMed]
- Sachman-Ruiz, B.; Narváez-Padilla, V.; Reynaud, E. Commercial Bombus impatiens as reservoirs of emerging infectious diseases in central México. Biol. Invasions 2015, 17, 2043–2053. [Google Scholar] [CrossRef]
- Cameron, S.A.; Lozier, J.D.; Strange, J.P.; Koch, J.B.; Cordes, N.; Solter, L.F.; Griswold, T.L. Patterns of widespread decline in North American bumble bees. Proc. Natl. Acad. Sci. USA 2011, 108, 662–667. [Google Scholar] [CrossRef]
- Williams, P.H.; Osborne, J.L. Bumblebee vulnerability and conservation world-wide. Apidologie 2009, 40, 367–387. [Google Scholar] [CrossRef]
- Klein, A.-M.; Vaissière, B.E.; Cane, J.H.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Tscharntke, T. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci. 2007, 274, 303–313. [Google Scholar] [CrossRef]
- Tsvetkov, N.; MacPhail, V.J.; Colla, S.R.; Zayed, A. Conservation genomics reveals pesticide and pathogen exposure in the declining bumble bee Bombus terricola. Mol. Ecol. 2021, 30, 4220–4230. [Google Scholar] [CrossRef]
- Colla, S.R.; Packer, L. Evidence for decline in eastern North American bumblebees (Hymenoptera: Apidae), with special focus on Bombus affinis Cresson. Biodivers. Conserv. 2008, 17, 1379–1391. [Google Scholar] [CrossRef]
- Jacobson, M.M.; Tucker, E.M.; Mathiasson, M.E.; Rehan, S.M. Decline of bumble bees in northeastern North America, with special focus on Bombus terricola. Biol. Conserv. 2018, 217, 437–445. [Google Scholar] [CrossRef]
- Grixti, J.C.; Wong, L.T.; Cameron, S.A.; Favret, C. Decline of bumble bees (Bombus) in the North American Midwest. Biol. Conserv. 2009, 142, 75–84. [Google Scholar] [CrossRef]
- Aizen, M.A.; Smith-Ramírez, C.; Morales, C.L.; Vieli, L.; Sáez, A.; Barahona-Segovia, R.M.; Arbetman, M.P.; Montalva, J.; Garibaldi, L.A.; Inouye, D.W. Coordinated species importation policies are needed to reduce serious invasions globally: The case of alien bumblebees in South America. J. Appl. Ecol. 2019, 56, 100–106. [Google Scholar] [CrossRef]
- Morales, C.L.; Arbetman, M.P.; Cameron, S.A.; Aizen, M.A. Rapid ecological replacement of a native bumble bee by invasive species. Front. Ecol. Environ. 2013, 11, 529–534. [Google Scholar] [CrossRef]
- Bommarco, R.; Lundin, O.; Smith, H.G.; Rundlöf, M. Drastic historic shifts in bumble-bee community composition in Sweden. Proc. R. Soc. B Biol. Sci. 2012, 279, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Rasmont, P.; Franzen, M.; Lecocq, T.; Harpke, A.; Roberts, S.P.; Biesmeijer, J.C.; Castro, L.; Cederberg, B.; Dvorak, L.; Fitzpatrick, U. Climatic Risk and Distribution Atlas of European Bumblebees; Pensoft Publishers: Sofia, Bulgaria, 2015; Volume 10. [Google Scholar]
- Xie, Z.; Williams, P.H.; Tang, Y. The effect of grazing on bumblebees in the high rangelands of the eastern Tibetan Plateau of Sichuan. J. Insect Conserv. 2008, 12, 695–703. [Google Scholar] [CrossRef]
- Sharma, H.K.; Kalia, L.; Sharma, R.; Thakur, M.; Prasad, H.; Devi, M.; Thakur, P.; Sharma, D.; Rana, K. Seasonal incidence, epidemiology and establishment of different pests and disease in laboratory reared Bombus haemorrhoidalis Smith. Int. J. Trop. Insect Sci. 2021, 41, 2555–2564. [Google Scholar] [CrossRef]
- Soroye, P.; Newbold, T.; Kerr, J. Climate change contributes to widespread declines among bumble bees across continents. Science 2020, 367, 685–688. [Google Scholar] [CrossRef]
- Su, R.; Dai, W.; Yang, Y.; Wang, X.; Gao, R.; He, M.; Zhao, C.; Mu, J. Introduced honey bees increase host plant abundance but decrease native bumble bee species richness and abundance. Ecosphere 2022, 13, e4085. [Google Scholar] [CrossRef]
- Votavová, A.; Trněný, O.; Staveníková, J.; Dybová, M.; Brus, J.; Komzáková, O. Prevalence and distribution of three bumblebee pathogens from the Czech Republic. Insects 2022, 13, 1121. [Google Scholar] [CrossRef]
- Cameron, S.A.; Lim, H.C.; Lozier, J.D.; Duennes, M.A.; Thorp, R. Test of the invasive pathogen hypothesis of bumble bee decline in North America. Proc. Natl. Acad. Sci. USA 2016, 113, 4386–4391. [Google Scholar] [CrossRef]
- Huang, W.-F.; Skyrm, K.; Ruiter, R.; Solter, L. Disease management in commercial bumble bee mass rearing, using production methods, multiplex PCR detection techniques, and regulatory assessment. J. Apic. Res. 2015, 54, 516–524. [Google Scholar] [CrossRef]
- Brito, I.L.; Gurry, T.; Zhao, S.; Huang, K.; Young, S.K.; Shea, T.P.; Naisilisili, W.; Jenkins, A.P.; Jupiter, S.D.; Gevers, D. Transmission of human-associated microbiota along family and social networks. Nat. Microbiol. 2019, 4, 964–971. [Google Scholar] [CrossRef] [PubMed]
- Otterstatter, M.C.; Thomson, J.D. Does pathogen spillover from commercially reared bumble bees threaten wild pollinators? PLoS ONE 2008, 3, e2771. [Google Scholar] [CrossRef] [PubMed]
- Graystock, P.; Goulson, D.; Hughes, W.O. Parasites in bloom: Flowers aid dispersal and transmission of pollinator parasites within and between bee species. Proc. R. Soc. B Biol. Sci. 2015, 282, 20151371. [Google Scholar] [CrossRef] [PubMed]
- Salvarrey, S.; Antúnez, K.; Arredondo, D.; Plischuk, S.; Revainera, P.; Maggi, M.; Invernizzi, C. Parasites and RNA viruses in wild and laboratory reared bumble bees Bombus pauloensis (Hymenoptera: Apidae) from Uruguay. PLoS ONE 2021, 16, e0249842. [Google Scholar] [CrossRef]
- Fürst, M.; McMahon, D.P.; Osborne, J.; Paxton, R.; Brown, M. Disease associations between honeybees and bumblebees as a threat to wild pollinators. Nature 2014, 506, 364–366. [Google Scholar] [CrossRef]
- Singh, R.; Levitt, A.L.; Rajotte, E.G.; Holmes, E.C.; Ostiguy, N.; Vanengelsdorp, D.; Lipkin, W.I.; Depamphilis, C.W.; Toth, A.L.; Cox-Foster, D.L. RNA viruses in hymenopteran pollinators: Evidence of inter-taxa virus transmission via pollen and potential impact on non-Apis hymenopteran species. PLoS ONE 2010, 5, e14357. [Google Scholar] [CrossRef]
- Genersch, E.; Yue, C.; Fries, I.; de Miranda, J.R. Detection of Deformed wing virus, a honey bee viral pathogen, in bumble bees (Bombus terrestris and Bombus pascuorum) with wing deformities. J. Invertebr. Pathol. 2006, 91, 61–63. [Google Scholar] [CrossRef]
- Levitt, A.L.; Singh, R.; Cox-Foster, D.L.; Rajotte, E.; Hoover, K.; Ostiguy, N.; Holmes, E.C. Cross-species transmission of honey bee viruses in associated arthropods. Virus Res. 2013, 176, 232–240. [Google Scholar] [CrossRef]
- Plischuk, S.; Fernández de Landa, G.; Revainera, P.; Quintana, S.; Pocco, M.E.; Cigliano, M.M.; Lange, C.E. Parasites and pathogens associated with native bumble bees (Hymenoptera: Apidae: Bombus spp.) from highlands in Bolivia and Peru. Stud. Neotrop. Fauna Environ. 2021, 56, 93–98. [Google Scholar] [CrossRef]
- Siviter, H.; Folly, A.J.; Brown, M.J.; Leadbeater, E. Individual and combined impacts of sulfoxaflor and Nosema bombi on bumblebee (Bombus terrestris) larval growth. Proc. R. Soc. B 2020, 287, 20200935. [Google Scholar] [CrossRef]
- Otti, O.; Schmid-Hempel, P. A field experiment on the effect of Nosema bombi in colonies of the bumblebee Bombus terrestris. Ecol. Entomol. 2008, 33, 577–582. [Google Scholar] [CrossRef]
- Gegear, R.J.; Otterstatter, M.C.; Thomson, J.D. Bumble-bee foragers infected by a gut parasite have an impaired ability to utilize floral information. Proc. R. Soc. B Biol. Sci. 2006, 273, 1073–1078. [Google Scholar] [CrossRef] [PubMed]
- Gusachenko, O.N.; Woodford, L.; Balbirnie-Cumming, K.; Ryabov, E.V.; Evans, D.J. Evidence for and against deformed wing virus spillover from honey bees to bumble bees: A reverse genetic analysis. Sci. Rep. 2020, 10, 16847. [Google Scholar] [CrossRef] [PubMed]
- Maxfield-Taylor, S.A.; Mujic, A.B.; Rao, S. First detection of the larval chalkbrood disease pathogen Ascosphaera apis (Ascomycota: Eurotiomycetes: Ascosphaerales) in adult bumble bees. PLoS ONE 2015, 10, e0124868. [Google Scholar] [CrossRef] [PubMed]
- Fünfhaus, A.; Ebeling, J.; Genersch, E. Bacterial pathogens of bees. Curr. Opin. Insect Sci. 2018, 26, 89–96. [Google Scholar] [CrossRef]
- Toplak, I.; Šimenc, L.; Pislak Ocepek, M.; Bevk, D. Determination of genetically identical strains of four honeybee viruses in bumblebee positive samples. Viruses 2020, 12, 1310. [Google Scholar] [CrossRef]
- Zhang, X.; He, S.; Evans, J.; Pettis, J.; Yin, G.; Chen, Y. New evidence that deformed wing virus and black queen cell virus are multi-host pathogens. J. Invertebr. Pathol. 2012, 109, 156–159. [Google Scholar] [CrossRef]
- McMenamin, A.J.; Flenniken, M.L. Recently identified bee viruses and their impact on bee pollinators. Curr. Opin. Insect Sci. 2018, 26, 120–129. [Google Scholar] [CrossRef]
- Remnant, E.J.; Shi, M.; Buchmann, G.; Blacquière, T.; Holmes, E.C.; Beekman, M.; Ashe, A. A diverse range of novel RNA viruses in geographically distinct honey bee populations. J. Virol. 2017, 91, e00158-17. [Google Scholar] [CrossRef]
- Colla, S.R.; Otterstatter, M.C.; Gegear, R.J.; Thomson, J.D. Plight of the bumble bee: Pathogen spillover from commercial to wild populations. Biol. Conserv. 2006, 129, 461–467. [Google Scholar] [CrossRef]
- De Miranda, J.R.; Genersch, E. Deformed wing virus. J. Invertebr. Pathol. 2010, 103, 48–61. [Google Scholar] [CrossRef]
- Genersch, E.; Aubert, M. Emerging and re-emerging viruses of the honey bee (Apis mellifera L.). Vet. Res. 2010, 41, 54. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.J.; Brettell, L.E. Deformed wing virus in honeybees and other insects. Annu. Rev. Virol. 2019, 6, 49–69. [Google Scholar] [CrossRef] [PubMed]
- Mordecai, G.J.; Wilfert, L.; Martin, S.J.; Jones, I.M.; Schroeder, D.C. Diversity in a honey bee pathogen: First report of a third master variant of the Deformed Wing Virus quasispecies. ISME J. 2016, 10, 1264–1273. [Google Scholar] [CrossRef] [PubMed]
- McMahon, D.P.; Natsopoulou, M.E.; Doublet, V.; Fürst, M.; Weging, S.; Brown, M.J.; Gogol-Döring, A.; Paxton, R.J. Elevated virulence of an emerging viral genotype as a driver of honeybee loss. Proc. R. Soc. B Biol. Sci. 2016, 283, 20160811. [Google Scholar] [CrossRef] [PubMed]
- Paxton, R.J.; Schäfer, M.O.; Nazzi, F.; Zanni, V.; Annoscia, D.; Marroni, F.; Bigot, D.; Laws-Quinn, E.R.; Panziera, D.; Jenkins, C. Epidemiology of a major honey bee pathogen, deformed wing virus: Potential worldwide replacement of genotype A by genotype B. Int. J. Parasitol. Parasites Wildl. 2022, 18, 157–171. [Google Scholar] [CrossRef]
- Smeele, Z.E.; Baty, J.W.; Lester, P.J. Effects of Deformed Wing Virus-Targeting dsRNA on Viral Loads in Bees Parasitised and Non-Parasitised by Varroa destructor. Viruses 2023, 15, 2259. [Google Scholar] [CrossRef]
- Schüler, V.; Liu, Y.-C.; Gisder, S.; Horchler, L.; Groth, D.; Genersch, E. Significant, but not biologically relevant: Nosema ceranae infections and winter losses of honey bee colonies. Commun. Biol. 2023, 6, 229. [Google Scholar] [CrossRef]
- Gamboa, V.; Ravoet, J.; Brunain, M.; Smagghe, G.; Meeus, I.; Figueroa, J.; Riaño, D.; de Graaf, D.C. Bee pathogens found in Bombus atratus from Colombia: A case study. J. Invertebr. Pathol. 2015, 129, 36–39. [Google Scholar] [CrossRef]
- Reynaldi, F.J.; Sguazza, G.H.; Albicoro, F.J.; Pecoraro, M.R.; Galosi, C.M. First molecular detection of co-infection of honey bee viruses in asymptomatic Bombus atratus in South America. Braz. J. Biol. 2013, 73, 797–800. [Google Scholar] [CrossRef]
- Tapia-González, J.M.; Morfin, N.; Macías-Macías, J.O.; De la Mora, A.; Tapia-Rivera, J.C.; Ayala, R.; Contreras-Escareño, F.; Gashout, H.A.; Guzman-Novoa, E. Evidence of presence and replication of honey bee viruses among wild bee pollinators in subtropical environments. J. Invertebr. Pathol. 2019, 168, 107256. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Peng, W.; Wu, J.; Strange, J.P.; Boncristiani, H.; Chen, Y. Cross-species infection of deformed wing virus poses a new threat to pollinator conservation. J. Econ. Entomol. 2011, 104, 732–739. [Google Scholar] [CrossRef] [PubMed]
- Tehel, A.; Brown, M.J.; Paxton, R.J. Impact of managed honey bee viruses on wild bees. Curr. Opin. Virol. 2016, 19, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Dalmon, A.; Diévart, V.; Thomasson, M.; Fouque, R.; Vaissière, B.E.; Guilbaud, L.; Le Conte, Y.; Henry, M. Possible spillover of pathogens between bee communities foraging on the same floral resource. Insects 2021, 12, 122. [Google Scholar] [CrossRef]
- Jabal-Uriel, C.; Martín-Hernández, R.; Ornosa, C.; Higes, M.; Berriatua, E.; De la Rua, P. First data on the prevalence and distribution of pathogens in bumblebees (Bombus terrestris and Bombus pascuorum) from Spain. Span. J. Agric. Res. 2017, 15, e05SC01. [Google Scholar] [CrossRef]
- Evison, S.E.; Roberts, K.E.; Laurenson, L.; Pietravalle, S.; Hui, J.; Biesmeijer, J.C.; Smith, J.E.; Budge, G.; Hughes, W.O. Pervasiveness of parasites in pollinators. PLoS ONE 2012, 7, e30641. [Google Scholar] [CrossRef]
- Arismendi, N.; Riveros, G.; Zapata, N.; Smagghe, G.; González, C.; Vargas, M. Occurrence of bee viruses and pathogens associated with emerging infectious diseases in native and non-native bumble bees in southern Chile. Biol. Invasions 2021, 23, 1175–1189. [Google Scholar] [CrossRef]
- Burnham, P.A.; Alger, S.A.; Case, B.; Boncristiani, H.; Hébert-Dufresne, L.; Brody, A.K. Flowers as dirty doorknobs: Deformed wing virus transmitted between Apis mellifera and Bombus impatiens through shared flowers. J. Appl. Ecol. 2021, 58, 2065–2074. [Google Scholar] [CrossRef]
- Chen, Y.; Pettis, J.S.; Collins, A.; Feldlaufer, M.F. Prevalence and transmission of honeybee viruses. Appl. Environ. Microbiol. 2006, 72, 606–611. [Google Scholar] [CrossRef]
- Chen, Y.; Evans, J.; Feldlaufer, M. Horizontal and vertical transmission of viruses in the honey bee, Apis mellifera. J. Invertebr. Pathol. 2006, 92, 152–159. [Google Scholar] [CrossRef]
- Yue, C.; Schröder, M.; Gisder, S.; Genersch, E. Vertical-transmission routes for deformed wing virus of honeybees (Apis mellifera). J. Gen. Virol. 2007, 88, 2329–2336. [Google Scholar] [CrossRef] [PubMed]
- Volykhina, V. Deformed wing virus in Apis mellifera L.: Prevalence, morphology, and pathogenicity. Agric. Biol. 2015, 50, 409–419. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, Z.; Huang, J.; Yuan, X.; Ding, G.; An, J. Queen traits and colony size of four bumblebee species of China. Insectes Sociaux 2018, 65, 537–547. [Google Scholar] [CrossRef]
- Spurny, R.; Přidal, A.; Pálková, L.; Kiem, H.K.T.; de Miranda, J.R.; Plevka, P. Virion structure of black queen cell virus, a common honeybee pathogen. J. Virol. 2017, 91, e02100-16. [Google Scholar] [CrossRef]
- Mayo, M. Virus taxonomy-Houston. Arch. Virol. 2002, 147, 1071–1076. [Google Scholar] [CrossRef]
- McMahon, D.P.; Fürst, M.A.; Caspar, J.; Theodorou, P.; Brown, M.J.; Paxton, R.J. A sting in the spit: Widespread cross-infection of multiple RNA viruses across wild and managed bees. J. Anim. Ecol. 2015, 84, 615–624. [Google Scholar] [CrossRef]
- Alger, S.A.; Burnham, P.A.; Boncristiani, H.F.; Brody, A.K. RNA virus spillover from managed honeybees (Apis mellifera) to wild bumblebees (Bombus spp.). PLoS ONE 2019, 14, e0217822. [Google Scholar] [CrossRef]
- Mullapudi, E.; Přidal, A.; Pálková, L.; de Miranda, J.R.; Plevka, P. Virion structure of Israeli acute bee paralysis virus. J. Virol. 2016, 90, 8150–8159. [Google Scholar] [CrossRef]
- Maori, E.; Lavi, S.; Mozes-Koch, R.; Gantman, Y.; Peretz, Y.; Edelbaum, O.; Tanne, E.; Sela, I. Isolation and characterization of Israeli acute paralysis virus, a dicistrovirus affecting honeybees in Israel: Evidence for diversity due to intra-and inter-species recombination. J. Gen. Virol. 2007, 88, 3428–3438. [Google Scholar] [CrossRef]
- Meeus, I.; de Miranda, J.R.; de Graaf, D.C.; Wäckers, F.; Smagghe, G. Effect of oral infection with Kashmir bee virus and Israeli acute paralysis virus on bumblebee (Bombus terrestris) reproductive success. J. Invertebr. Pathol. 2014, 121, 64–69. [Google Scholar] [CrossRef]
- Wei, R.; Cao, L.; Feng, Y.; Chen, Y.; Chen, G.; Zheng, H. Sacbrood virus: A growing threat to honeybees and wild pollinators. Viruses 2022, 14, 1871. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.-T.; Yoo, M.-S.; Truong, A.-T.; Youn, S.Y.; Kim, D.-H.; Lee, S.-J.; Yoon, S.-S.; Cho, Y.S. Prevalence and genome features of lake sinai virus isolated from Apis mellifera in the Republic of Korea. PLoS ONE 2024, 19, e0299558. [Google Scholar] [CrossRef]
- Chen, N.; Wang, C.; Yoshimura, M.; Yeh, Y.; Guan, H.; Chuankhayan, P.; Lin, C.; Lin, P.; Huang, Y.; Wakatsuki, S.; et al. Structures of honeybee-infecting Lake Sinai virus reveal domain functions and capsid assembly with dynamic motions. Nat. Commun. 2023, 14, 545. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Z.; Guo, Y.; Yang, H.; Li, X.; Guo, Y.; Zeng, H.; Wu, Y.; Yao, J.; Li, J. Occurrence of black queen cell virus in wild bumble bee communities in China. J. Econ. Entomol. 2024, 117, 705–713. [Google Scholar] [CrossRef] [PubMed]
- Gratton, E.M.; McNeil Jr, D.J.; Grozinger, C.M.; Hines, H.M. Local habitat type influences bumble bee pathogen loads and bee species distributions. Environ. Entomol. 2023, 52, 491–501. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, G.; Ding, G.; Huang, J.; Zhang, H.; Vidal, M.C.; Corlett, R.T.; Liu, C.; An, J. Interspecific Host Variation and Biotic Interactions Drive Pathogen Community Assembly in Chinese Bumblebees. Insects 2023, 14, 887. [Google Scholar] [CrossRef] [PubMed]
- Pislak Ocepek, M.; Toplak, I.; Zajc, U.; Bevk, D. The pathogens spillover and incidence correlation in bumblebees and honeybees in Slovenia. Pathogens 2021, 10, 884. [Google Scholar] [CrossRef]
- McNeil, D.J.; McCormick, E.; Heimann, A.C.; Kammerer, M.; Douglas, M.R.; Goslee, S.C.; Grozinger, C.M.; Hines, H.M. Bumble bees in landscapes with abundant floral resources have lower pathogen loads. Sci. Rep. 2020, 10, 22306. [Google Scholar] [CrossRef]
- Schoonvaere, K.; Smagghe, G.; Francis, F.; de Graaf, D.C. Study of the metatranscriptome of eight social and solitary wild bee species reveals novel viruses and bee parasites. Front. Microbiol. 2018, 9, 177. [Google Scholar] [CrossRef]
- Choi, N.R.; Jung, C.; Lee, D.-W. Optimization of detection of black queen cell virus from Bombus terrestris via real-time PCR. J. Asia-Pac. Entomol. 2015, 18, 9–12. [Google Scholar] [CrossRef]
- Peng, W.; Li, J.; Boncristiani, H.; Strange, J.P.; Hamilton, M.; Chen, Y. Host range expansion of honey bee black queen cell virus in the bumble bee, Bombus huntii. Apidologie 2011, 42, 650–658. [Google Scholar] [CrossRef]
- Gratton, E.M.; McNeil, D.J.; Sawyer, R.; Martinello, A.; Grozinger, C.M.; Hines, H.M. The role of landscape factors in shaping bumble bee pathogen loads across regions of the eastern Nearctic. Insect Conserv. Divers. 2024, 17, 1098–1112. [Google Scholar] [CrossRef]
- Wham, B.E.; McCormick, E.C.; Carr, C.M.; Bracci, N.R.; Heimann, A.C.; Egner, T.J.; Schneider, M.J.; Hines, H.M. Comparison of seasonal viral prevalence supports honey bees as potential spring pathogen reservoirs for bumble bees. Ecosphere 2024, 15, e4883. [Google Scholar] [CrossRef]
- Dobelmann, J.; Manley, R.; Wilfert, L. Caught in the act: The invasion of a viral vector changes viral prevalence and titre in native honeybees and bumblebees. Biol. Lett. 2024, 20, 20230600. [Google Scholar] [CrossRef]
- Streicher, T.; Brinker, P.; Tragust, S.; Paxton, R.J. Host Barriers Limit Viral Spread in a Spillover Host: A Study of Deformed Wing Virus in the Bumblebee Bombus terrestris. Viruses 2024, 16, 607. [Google Scholar] [CrossRef]
- Tehel, A.; Streicher, T.; Tragust, S.; Paxton, R.J. Experimental cross species transmission of a major viral pathogen in bees is predominantly from honeybees to bumblebees. Proc. R. Soc. B 2022, 289, 20212255. [Google Scholar] [CrossRef]
- Manley, R.; Temperton, B.; Doyle, T.; Gates, D.; Hedges, S.; Boots, M.; Wilfert, L. Knock-on community impacts of a novel vector: Spillover of emerging DWV-B from Varroa-infested honeybees to wild bumblebees. Ecol. Lett. 2019, 22, 1306–1315. [Google Scholar] [CrossRef]
- Flaminio, S.; Nanetti, A.; Bortolotti, L.; Cilia, G. Replicative DWV type A in Bombus terrestris in Pantelleria island (Sicily, Italy). J. Asia-Pac. Entomol. 2023, 26, 102123. [Google Scholar] [CrossRef]
- Graystock, P.; Goulson, D.; Hughes, W.O. The relationship between managed bees and the prevalence of parasites in bumblebees. PeerJ 2014, 2, e522. [Google Scholar] [CrossRef]
- Graystock, P.; Yates, K.; Evison, S.E.; Darvill, B.; Goulson, D.; Hughes, W.O. The Trojan hives: Pollinator pathogens, imported and distributed in bumblebee colonies. J. Appl. Ecol. 2013, 50, 1207–1215. [Google Scholar] [CrossRef]
- Pascall, D.J.; Tinsley, M.C.; Clark, B.L.; Obbard, D.J.; Wilfert, L. Predictors of virus prevalence and diversity across a wild bumblebee community. bioRxiv 2021. [Google Scholar] [CrossRef]
- Pascall, D.J.; Tinsley, M.C.; Clark, B.L.; Obbard, D.J.; Wilfert, L. Virus prevalence and genetic diversity across a wild bumblebee community. Front. Microbiol. 2021, 12, 650747. [Google Scholar] [CrossRef] [PubMed]
- Fernandez de Landa, G.; Revainera, P.D.; Alberoni, D.; Nicolli, A.R.; Fernandez de Landa, M.; Zumpano, F.; Brasesco, C.; Reynaldi, F.J.; Quintana, S.; Petrigh, R. A first approach in the correlation of pathogens load affecting Bombus pauloensis to the land use in Buenos Aires Province. J. Apic. Res. 2024, 63, 297–305. [Google Scholar] [CrossRef]
- Parmentier, L.; Smagghe, G.; de Graaf, D.C.; Meeus, I. Varroa destructor Macula-like virus, Lake Sinai virus and other new RNA viruses in wild bumblebee hosts (Bombus pascuorum, Bombus lapidarius and Bombus pratorum). J. Invertebr. Pathol. 2016, 134, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Levitzky, N.; Smith, E.; Lachman, O.; Luria, N.; Mizrahi, Y.; Bakelman, H.; Sela, N.; Laskar, O.; Milrot, E.; Dombrovsky, A. The bumblebee Bombus terrestris carries a primary inoculum of Tomato brown rugose fruit virus contributing to disease spread in tomatoes. PLoS ONE 2019, 14, e0210871. [Google Scholar] [CrossRef]
- McIvor, C.A.; Malone, L.A. Nosema bombi, a microsporidian pathogen of the bumble bee Bombus terrestris (L.). N. Z. J. Zool. 1995, 22, 25–31. [Google Scholar] [CrossRef]
- Tokarev, Y.S.; Huang, W.-F.; Solter, L.F.; Malysh, J.M.; Becnel, J.J.; Vossbrinck, C.R. A formal redefinition of the genera Nosema and Vairimorpha (Microsporidia: Nosematidae) and reassignment of species based on molecular phylogenetics. J. Invertebr. Pathol. 2020, 169, 107279. [Google Scholar] [CrossRef]
- Gillespie, S. Factors affecting parasite prevalence among wild bumblebees. Ecol. Entomol. 2010, 35, 737–747. [Google Scholar] [CrossRef]
- Huth-Schwarz, A.; Settele, J.; Moritz, R.F.; Kraus, F.B. Factors influencing Nosema bombi infections in natural populations of Bombus terrestris (Hymenoptera: Apidae). J. Invertebr. Pathol. 2012, 110, 48–53. [Google Scholar] [CrossRef]
- Rutrecht, S.; Klee, J.; Brown, M. Horizontal transmission success of Nosema bombi to its adult bumble bee hosts: Effects of dosage, spore source and host age. Parasitology 2007, 134, 1719–1726. [Google Scholar] [CrossRef]
- Imhoof, B.; Schmid-Hempel, P. Colony success of the bumble bee, Bombus terrestris, in relation to infections by two protozoan parasites, Crithidia bombi and Nosema bombi. Insectes Sociaux 1999, 46, 233–238. [Google Scholar] [CrossRef]
- Forsgren, E.; Fries, I. Comparative virulence of Nosema ceranae and Nosema apis in individual European honey bees. Vet. Parasitol. 2010, 170, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Gisder, S.; Horchler, L.; Pieper, F.; Schüler, V.; Šima, P.; Genersch, E. Rapid gastrointestinal passage may protect Bombus terrestris from becoming a true host for Nosema ceranae. Appl. Environ. Microbiol. 2020, 86, e00629-20. [Google Scholar] [CrossRef]
- Fries, I.; Feng, F.; da Silva, A.; Slemenda, S.B.; Pieniazek, N.J. Nosema ceranae n. sp. (Microspora, Nosematidae), morphological and molecular characterization of a microsporidian parasite of the Asian honey bee Apis cerana (Hymenoptera, Apidae). Eur. J. Protistol. 1996, 32, 356–365. [Google Scholar] [CrossRef]
- Klee, J.; Besana, A.M.; Genersch, E.; Gisder, S.; Nanetti, A.; Tam, D.Q.; Chinh, T.X.; Puerta, F.; Ruz, J.M.; Kryger, P. Widespread dispersal of the microsporidian Nosema ceranae, an emergent pathogen of the western honey bee, Apis mellifera. J. Invertebr. Pathol. 2007, 96, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Botías, C.; Jones, J.C.; Pamminger, T.; Bartomeus, I.; Hughes, W.O.; Goulson, D. Multiple stressors interact to impair the performance of bumblebee Bombus terrestris colonies. J. Anim. Ecol. 2021, 90, 415–431. [Google Scholar] [CrossRef]
- Li, J.; Chen, W.; Wu, J.; Peng, W.; An, J.; Schmid-Hempel, P.; Schmid-Hempel, R. Diversity of Nosema associated with bumblebees (Bombus spp.) from China. Int. J. Parasitol. 2012, 42, 49–61. [Google Scholar] [CrossRef]
- Plischuk, S.; Sanscrainte, N.D.; Becnel, J.J.; Estep, A.S.; Lange, C.E. Tubulinosema pampeana sp. n. (Microsporidia, Tubulinosematidae), a pathogen of the South American bumble bee Bombus atratus. J. Invertebr. Pathol. 2015, 126, 31–42. [Google Scholar] [CrossRef]
- Plischuk, S.; Salvarrey, S.; Arbulo, N.; Santos, E.; Skevington, J.H.; Kelso, S.; Revainera, P.D.; Maggi, M.D.; Invernizzi, C.; Lange, C.E. Pathogens, parasites, and parasitoids associated with bumble bees (Bombus spp.) from Uruguay. Apidologie 2017, 48, 298–310. [Google Scholar] [CrossRef]
- Morse, R.A.; Flottum, K. Honey Bee Pests, Predators and Diseases; Medina AI Root Company: Medina, OH, USA, 1997; pp. 79–110. [Google Scholar]
- Wynns, A.A.; Jensen, A.B.; Eilenberg, J. Ascosphaera callicarpa, a new species of bee-loving fungus, with a key to the genus for Europe. PLoS ONE 2013, 8, e73419. [Google Scholar] [CrossRef]
- Maharramov, J.; Meeus, I.; Maebe, K.; Arbetman, M.; Morales, C.; Graystock, P.; Hughes, W.O.; Plischuk, S.; Lange, C.E.; De Graaf, D.C. Genetic variability of the neogregarine Apicystis bombi, an etiological agent of an emergent bumblebee disease. PLoS ONE 2013, 8, e81475. [Google Scholar] [CrossRef] [PubMed]
- Rutrecht, S.T.; Brown, M.J. Within colony dynamics of Nosema bombi infections: Disease establishment, epidemiology and potential vertical transmission. Apidologie 2008, 39, 504–514. [Google Scholar] [CrossRef]
- Otterstatter, M.C.; Thomson, J.D. Contact networks and transmission of an intestinal pathogen in bumble bee (Bombus impatiens) colonies. Oecologia 2007, 154, 411–421. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.M.; Brown, M.J. Parasites and genetic diversity in an invasive bumblebee. J. Anim. Ecol. 2014, 83, 1428–1440. [Google Scholar] [CrossRef]
- Graystock, P.; Meeus, I.; Smagghe, G.; Goulson, D.; Hughes, W.O. The effects of single and mixed infections of Apicystis bombi and deformed wing virus in Bombus terrestris. Parasitology 2016, 143, 358–365. [Google Scholar] [CrossRef]
- Graystock, P.; Jones, J.; Pamminger, T.; Parkinson, J.; Norman, V.; Blane, E.; Rothstein, L.; Wäckers, F.; Goulson, D.; Hughes, W. Hygienic food to reduce pathogen risk to bumblebees. J. Invertebr. Pathol. 2016, 136, 68–73. [Google Scholar] [CrossRef]
- Figueroa, L.; Sadd, B.; Tripodi, A.; Strange, J.; Colla, S.; Adams, L.; Duennes, M.; Evans, E.; Lehmann, D.; Moylett, H. Endosymbionts that threaten commercially raised and wild bumble bees (Bombus spp.). J. Pollinat. Ecol. 2023, 33, 14–36. [Google Scholar] [CrossRef]
- Meeus, I.; Vercruysse, V.; Smagghe, G. Molecular detection of Spiroplasma apis and Spiroplasma melliferum in bees. J. Invertebr. Pathol. 2012, 109, 172–174. [Google Scholar] [CrossRef]
- Sevim, A.; Akpınar, R.; Öztürk, S.H.; Yılmaz, F.; Kayaboynu, Ü.; Sevim, E.; Ese, H.; Karataş, Ü.; Buldağ, M.; Umur, Ş. PCR-Based Screening of Pathogens in Bombus terrestris Populations of Turkey. Acta Parasitol. 2024, 69, 275–282. [Google Scholar] [CrossRef]
- Giacomini, J.J.; Adler, L.S.; Reading, B.J.; Irwin, R.E. Differential bumble bee gene expression associated with pathogen infection and pollen diet. BMC Genom. 2023, 24, 157. [Google Scholar] [CrossRef]
- Ivers, N.A.; Jha, S. Biogeography, climate, and land use create a mosaic of parasite risk in native bumble bees. Sci. Total Environ. 2023, 868, 161545. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.D.; Fountain, M.T.; Brown, M.J. The potential for parasite spill-back from commercial bumblebee colonies: A neglected threat to wild bees? J. Insect Conserv. 2021, 25, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Van Wyk, J.I.; Amponsah, E.R.; Ng, W.H.; Adler, L.S. Big bees spread disease: Body size mediates transmission of a bumble bee pathogen. Ecology 2021, 102, e03429. [Google Scholar] [CrossRef]
- Goulson, D.; O’Cconnor, S.; Park, K.J. The impacts of predators and parasites on wild bumblebee colonies. Ecol. Entomol. 2018, 43, 168–181. [Google Scholar] [CrossRef]
- Bosmans, L.; Pozo, M.; Verreth, C.; Crauwels, S.; Wilberts, L.; Sobhy, I.; Wäckers, F.; Jacquemyn, H.; Lievens, B. Habitat-specific variation in gut microbial communities and pathogen prevalence in bumblebee queens (Bombus terrestris). PLoS ONE 2018, 13, e0204612. [Google Scholar] [CrossRef]
- Hicks, B.; Pilgrim, B.; Perry, E.; Marshall, H. Observations of native bumble bees inside of commercial colonies of Bombus impatiens (Hymenoptera: Apidae) and the potential for pathogen spillover. Can. Entomol. 2018, 150, 520–531. [Google Scholar] [CrossRef]
- Popp, M.; Erler, S.; Lattorff, H.M.G. Seasonal variability of prevalence and occurrence of multiple infections shape the population structure of Crithidia bombi, an intestinal parasite of bumblebees (Bombus spp.). Microbiol. Open 2012, 1, 362–372. [Google Scholar] [CrossRef]
- Cordes, N.; Huang, W.-F.; Strange, J.P.; Cameron, S.A.; Griswold, T.L.; Lozier, J.D.; Solter, L.F. Interspecific geographic distribution and variation of the pathogens Nosema bombi and Crithidia species in United States bumble bee populations. J. Invertebr. Pathol. 2012, 109, 209–216. [Google Scholar] [CrossRef]
- Kissinger, C.N.; Cameron, S.A.; Thorp, R.W.; White, B.; Solter, L.F. Survey of bumble bee (Bombus) pathogens and parasites in Illinois and selected areas of northern California and southern Oregon. J. Invertebr. Pathol. 2011, 107, 220–224. [Google Scholar] [CrossRef]
- Rutrecht, S.T.; Brown, M.J. The life-history impact and implications of multiple parasites for bumble bee queens. Int. J. Parasitol. 2008, 38, 799–808. [Google Scholar] [CrossRef]
- Otterstatter, M.; Thomson, J. Within-host dynamics of an intestinal pathogen of bumble bees. Parasitology 2006, 133, 749–761. [Google Scholar] [CrossRef] [PubMed]
- Meeus, I.; De Graaf, D.; Jans, K.; Smagghe, G. Multiplex PCR detection of slowly-evolving trypanosomatids and neogregarines in bumblebees using broad-range primers. J. Appl. Microbiol. 2010, 109, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Plischuk, S.; Lange, C.E. On the occurrence of the neogregarine Apicystis bombi (Apicomplexa) in South America: An unassembled puzzle. Biol. Invasions 2024, 26, 2015–2035. [Google Scholar] [CrossRef]
- Michalczyk, M.; Sokół, R. Detection of Lotmaria passim and Crithidia mellificae in selected bumblebee species. Pathogens 2022, 11, 1053. [Google Scholar] [CrossRef] [PubMed]
- Martinez, A.; Calhoun, A.C.; Sadd, B.M. Investigating the influence of diet diversity on infection outcomes in a bumble bee (Bombus impatiens) and microsporidian (Nosema bombi) host-pathogen system. Front. Insect Sci. 2023, 3, 1207058. [Google Scholar] [CrossRef]
- Babin, A.; Schurr, F.; Rivière, M.-P.; Chauzat, M.-P.; Dubois, E. Specific detection and quantification of three microsporidia infecting bees, Nosema apis, Nosema ceranae, and Nosema bombi, using probe-based real-time PCR. Eur. J. Protistol. 2022, 86, 125935. [Google Scholar] [CrossRef]
- Tripodi, A.D.; Cibils-Stewart, X.; McCornack, B.P.; Szalanski, A.L. Nosema bombi (Microsporidia: Nosematidae) and trypanosomatid prevalence in spring bumble bee queens (Hymenoptera: Apidae: Bombus) in Kansas. J. Kans. Entomol. Soc. 2014, 87, 225–233. [Google Scholar] [CrossRef]
- Murray, T.E.; Coffey, M.F.; Kehoe, E.; Horgan, F.G. Pathogen prevalence in commercially reared bumble bees and evidence of spillover in conspecific populations. Biol. Conserv. 2013, 159, 269–276. [Google Scholar] [CrossRef]
- Graystock, P.; Yates, K.; Darvill, B.; Goulson, D.; Hughes, W.O. Emerging dangers: Deadly effects of an emergent parasite in a new pollinator host. J. Invertebr. Pathol. 2013, 114, 114–119. [Google Scholar] [CrossRef]
- Plischuk, S.; Martín-Hernández, R.; Prieto, L.; Lucía, M.; Botías, C.; Meana, A.; Abrahamovich, A.H.; Lange, C.; Higes, M. South American native bumblebees (Hymenoptera: Apidae) infected by Nosema ceranae (Microsporidia), an emerging pathogen of honeybees (Apis mellifera). Environ. Microbiol. Rep. 2009, 1, 131–135. [Google Scholar] [CrossRef]
- Steinhauer, N.; Kulhanek, K.; Antúnez, K.; Human, H.; Chantawannakul, P.; Chauzat, M.-P. Drivers of colony losses. Curr. Opin. Insect Sci. 2018, 26, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Chen, Y.; Zhang, S.; Chen, S.; Li, W.; Yan, L.; Shi, L.; Wu, L.; Sohr, A.; Su, S. Viral infection affects sucrose responsiveness and homing ability of forager honey bees, Apis mellifera L. PLoS ONE 2013, 8, e77354. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Meeus, I.; Smagghe, G. Israeli acute paralysis virus associated paralysis symptoms, viral tissue distribution and Dicer-2 induction in bumblebee workers (Bombus terrestris). J. Gen. Virol. 2016, 97, 1981–1989. [Google Scholar] [CrossRef] [PubMed]
- Niu, J.; Cappelle, K.; de Miranda, J.R.; Smagghe, G.; Meeus, I. Analysis of reference gene stability after Israeli acute paralysis virus infection in bumblebees Bombus terrestris. J. Invertebr. Pathol. 2014, 115, 76–79. [Google Scholar] [CrossRef]
- Otti, O.; Schmid-Hempel, P. Nosema bombi: A pollinator parasite with detrimental fitness effects. J. Invertebr. Pathol. 2007, 96, 118–124. [Google Scholar] [CrossRef]
- Williams, P.H.; An, J.; Brown, M.J.; Carolan, J.C.; Goulson, D.; Huang, J.; Ito, M. Cryptic bumblebee species: Consequences for conservation and the trade in greenhouse pollinators. PLoS ONE 2012, 7, e32992. [Google Scholar] [CrossRef]
- Williams, P.H.; Byvaltsev, A.; Sheffield, C.; Rasmont, P. Bombus cullumanus—An extinct European bumblebee species? Apidologie 2013, 44, 121–132. [Google Scholar] [CrossRef]
- Chagas, D.B.; Monteiro, F.L.; Barcelos, L.d.S.; Frühauf, M.I.; Ribeiro, L.C.; Lima, M.d.; Hübner, S.d.O.; Fischer, G. Black queen cell virus and Nosema ceranae coinfection in Africanized honey bees from southern Brazil. Pesqui. Veterinária Bras. 2020, 40, 892–897. [Google Scholar] [CrossRef]
- Evans, J.D.; Chen, Y. Colony collapse disorder and honey bee health. In Honey Bee Medicine for the Veterinary Practitioner; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2021; pp. 229–234. [Google Scholar]
- Fauser, A.; Sandrock, C.; Neumann, P.; Sadd, B.M. Neonicotinoids override a parasite exposure impact on hibernation success of a key bumblebee pollinator. Ecol. Entomol. 2017, 42, 306–314. [Google Scholar] [CrossRef]
- Brown, M.J.; Schmid-Hempel, R.; Schmid-Hempel, P. Strong context-dependent virulence in a host–parasite system: Reconciling genetic evidence with theory. J. Anim. Ecol. 2003, 72, 994–1002. [Google Scholar] [CrossRef]
- Arrese, E.L.; Soulages, J.L. Insect fat body: Energy, metabolism, and regulation. Annu. Rev. Entomol. 2010, 55, 207–225. [Google Scholar] [CrossRef] [PubMed]
- Cameron, S.A.; Sadd, B.M. Global trends in bumble bee health. Annu. Rev. Entomol. 2020, 65, 209–232. [Google Scholar] [CrossRef] [PubMed]
- Goulson, D.; Nicholls, E.; Botías, C.; Rotheray, E.L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Sci. Xpress 2015, 347, 1255957. [Google Scholar] [CrossRef] [PubMed]
- Al Naggar, Y.; Baer, B. Consequences of a short time exposure to a sublethal dose of Flupyradifurone (Sivanto) pesticide early in life on survival and immunity in the honeybee (Apis mellifera). Sci. Rep. 2019, 9, 19753. [Google Scholar] [CrossRef]
- Alberoni, D.; Favaro, R.; Baffoni, L.; Angeli, S.; Di Gioia, D. Neonicotinoids in the agroecosystem: In-field long-term assessment on honeybee colony strength and microbiome. Sci. Total Environ. 2021, 762, 144116. [Google Scholar] [CrossRef]
- Aufauvre, J.; Biron, D.G.; Vidau, C.; Fontbonne, R.; Roudel, M.; Diogon, M.; Viguès, B.; Belzunces, L.P.; Delbac, F.; Blot, N. Parasite-insecticide interactions: A case study of Nosema ceranae and fipronil synergy on honeybee. Sci. Rep. 2012, 2, 326. [Google Scholar] [CrossRef]
- Alaux, C.; Brunet, J.L.; Dussaubat, C.; Mondet, F.; Tchamitchan, S.; Cousin, M.; Brillard, J.; Baldy, A.; Belzunces, L.P.; Le Conte, Y. Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera). Environ. Microbiol. 2010, 12, 774–782. [Google Scholar] [CrossRef]
- Pettis, J.S.; Vanengelsdorp, D.; Johnson, J.; Dively, G. Pesticide exposure in honey bees results in increased levels of the gut pathogen Nosema. Naturwissenschaften 2012, 99, 153–158. [Google Scholar] [CrossRef]
- Wu, J.Y.; Smart, M.D.; Anelli, C.M.; Sheppard, W.S. Honey bees (Apis mellifera) reared in brood combs containing high levels of pesticide residues exhibit increased susceptibility to Nosema (Microsporidia) infection. J. Invertebr. Pathol. 2012, 109, 326–329. [Google Scholar] [CrossRef]
- Vasiliev, D.; Greenwood, S. The role of climate change in pollinator decline across the Northern Hemisphere is underestimated. Sci. Total Environ. 2021, 775, 145788. [Google Scholar] [CrossRef]
- Maebe, K.; Hart, A.F.; Marshall, L.; Vandamme, P.; Vereecken, N.J.; Michez, D.; Smagghe, G. Bumblebee resilience to climate change, through plastic and adaptive responses. Glob. Chang. Biol. 2021, 27, 4223–4237. [Google Scholar] [CrossRef] [PubMed]
- Burdon, J.; Chilvers, G. Host density as a factor in plant disease ecology. Annu. Rev. Phytopathol. 1982, 20, 143–166. [Google Scholar] [CrossRef]
- Manlik, O.; Mundra, S.; Schmid-Hempel, R.; Schmid-Hempel, P. Impact of climate change on parasite infection of an important pollinator depends on host genotypes. Glob. Chang. Biol. 2023, 29, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Meeus, I.; Pisman, M.; Smagghe, G.; Piot, N. Interaction effects of different drivers of wild bee decline and their influence on host–pathogen dynamics. Curr. Opin. Insect Sci. 2018, 26, 136–141. [Google Scholar] [CrossRef]
- Piot, N.; Meeus, I.; Kleijn, D.; Scheper, J.; Linders, T.; Smagghe, G. Establishment of wildflower fields in poor quality landscapes enhances micro-parasite prevalence in wild bumble bees. Oecologia 2019, 189, 149–158. [Google Scholar] [CrossRef]
- Alaux, C.; Ducloz, F.; Crauser, D.; Le Conte, Y. Diet effects on honeybee immunocompetence. Biol. Lett. 2010, 6, 562–565. [Google Scholar] [CrossRef]
- Brunner, F.S.; Schmid-Hempel, P.; Barribeau, S.M. Protein-poor diet reduces host-specific immune gene expression in Bombus terrestris. Proc. R. Soc. B: Biol. Sci. 2014, 281, 20140128. [Google Scholar] [CrossRef]
- Annoscia, D.; Zanni, V.; Galbraith, D.; Quirici, A.; Grozinger, C.; Bortolomeazzi, R.; Nazzi, F. Elucidating the mechanisms underlying the beneficial health effects of dietary pollen on honey bees (Apis mellifera) infested by Varroa mite ectoparasites. Sci. Rep. 2017, 7, 6258. [Google Scholar] [CrossRef]
- Goulson, D.; Hughes, W.O. Mitigating the anthropogenic spread of bee parasites to protect wild pollinators. Biol. Conserv. 2015, 191, 10–19. [Google Scholar] [CrossRef]
- Pywell, R.; Warman, E.; Hulmes, L.; Hulmes, S.; Nuttall, P.; Sparks, T.; Critchley, C.; Sherwood, A. Effectiveness of new agri-environment schemes in providing foraging resources for bumblebees in intensively farmed landscapes. Biol. Conserv. 2006, 129, 192–206. [Google Scholar] [CrossRef]
- Giacomini, J.J.; Leslie, J.; Tarpy, D.R.; Palmer-Young, E.C.; Irwin, R.E.; Adler, L.S. Medicinal value of sunflower pollen against bee pathogens. Sci. Rep. 2018, 8, 14394. [Google Scholar] [CrossRef] [PubMed]
- LoCascio, G.M.; Aguirre, L.; Irwin, R.E.; Adler, L.S. Pollen from multiple sunflower cultivars and species reduces a common bumblebee gut pathogen. R. Soc. Open Sci. 2019, 6, 190279. [Google Scholar] [CrossRef] [PubMed]
- Mullin, C.A.; Frazier, M.; Frazier, J.L.; Ashcraft, S.; Simonds, R.; VanEngelsdorp, D.; Pettis, J.S. High levels of miticides and agrochemicals in North American apiaries: Implications for honey bee health. PLoS ONE 2010, 5, e9754. [Google Scholar] [CrossRef] [PubMed]
- Lee-Mäder, E.; Spivak, M.; Evans, E. Managing Alternative Pollinators: A Handbook for Beekeepers, Growers, and Conservationists (NRAES 186); Natural Resource, Agriculture, and Engineering Service (NRAES): Ithaca, NY, USA, 2010; p. 162. [Google Scholar]
- Spivak, M.; Mader, E.; Vaughan, M.; Euliss, N.H., Jr. The plight of the bees. Environ. Sci. Technol. 2011, 45, 34–38. [Google Scholar] [CrossRef]
- Trust, B.C. Bumblebee Conservation Trust. 2024. Available online: https://www.bumblebeeconservation.org/ (accessed on 9 December 2024).
- Lye, G.; Park, K.; Osborne, J.; Holland, J.; Goulson, D. Assessing the value of Rural Stewardship schemes for providing foraging resources and nesting habitat for bumblebee queens (Hymenoptera: Apidae). Biol. Conserv. 2009, 142, 2023–2032. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Bashir, N.H.; Li, Q.; Liu, C.; Naeem, M.; Wang, H.; Gao, W.; Corlett, R.T.; Liu, C.; Vidal, M.C. The Role of Pathogens in Bumblebee Decline: A Review. Pathogens 2025, 14, 94. https://doi.org/10.3390/pathogens14010094
Chen H, Bashir NH, Li Q, Liu C, Naeem M, Wang H, Gao W, Corlett RT, Liu C, Vidal MC. The Role of Pathogens in Bumblebee Decline: A Review. Pathogens. 2025; 14(1):94. https://doi.org/10.3390/pathogens14010094
Chicago/Turabian StyleChen, Huanhuan, Nawaz Haider Bashir, Qiang Li, Chao Liu, Muhammad Naeem, Haohan Wang, Wenrong Gao, Richard T. Corlett, Cong Liu, and Mayra C. Vidal. 2025. "The Role of Pathogens in Bumblebee Decline: A Review" Pathogens 14, no. 1: 94. https://doi.org/10.3390/pathogens14010094
APA StyleChen, H., Bashir, N. H., Li, Q., Liu, C., Naeem, M., Wang, H., Gao, W., Corlett, R. T., Liu, C., & Vidal, M. C. (2025). The Role of Pathogens in Bumblebee Decline: A Review. Pathogens, 14(1), 94. https://doi.org/10.3390/pathogens14010094