Synergistic Effect of CNT and N-Doped Graphene Foam on Improving the Corrosion Resistance of Zn Reinforced Epoxy Composite Coatings
<p>(<b>a</b>) Tafel curves and (<b>b</b>) Bode plots of neat ZRE and hybrid filler-modified ZRE coatings.</p> "> Figure 2
<p>Tafel curves of nanocarbon-modified ZRE-coated Q235 samples.</p> "> Figure 3
<p>The dependence of |Z|<sub>0.01Hz</sub> of neat ZRE and 01_3DNG-CNT ZRE coatings on the immersion time.</p> "> Figure 4
<p>Tafel curves of neat ZRE and 01_3DNG-CNT ZRE coatings after 300 h immersion in 3.5 wt% NaCl solution.</p> "> Figure 5
<p>(<b>a</b>) Nyquist plots of 01_3DNG-CNT ZRE coating on Q235 sample immersed in NaCl solution at 25 h, 100 h and 300 h and (<b>b</b>) schematic diagrams of equivalent analog circuits for EIS analysis of the hybrid nanocarbon-modified ZRE.</p> "> Figure 6
<p>Images of scratched area of neat ZRE soaked in 3.5 wt% NaCl solution for 12 h: (<b>a</b>) SEM image and inset digital photo; the element mapping of (<b>b</b>) Fe, (<b>c</b>) O, (<b>d</b>) Zn, (<b>e</b>) Cl and (<b>f</b>) C.</p> "> Figure 7
<p>Images of scratched area of the hybrid filler-modified ZRE-coated steel sample soaked in 3.5 wt% NaCl solution for 12 h: (<b>a</b>) SEM image and inset digital photo and the element mapping of (<b>b</b>) Fe, (<b>c</b>) O, (<b>d</b>) Zn, (<b>e</b>) Cl and (<b>f</b>) C.</p> "> Figure 8
<p>Schematic diagram of the anti-corrosive mechanism of 3DNG-CNT ZRE coating on steel in simulated seawater.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Carbon Nanomaterial-Modified ZRE Coatings
2.2. Characterization Methods
3. Results and Discussion
3.1. Anti-Corrosion Performance of Hybrid Carbon-Modified ZRE Coatings
3.2. Long-Term Immersion Test of Hybrid Filler-Modified Coatings
3.3. The Cathodic Protection Behavior of the Hybrid Filler-Modified Coating
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Golovin, V.A.; Tyurina, S.A. Current trends in the modification of zinc-filled polymer coatings. Int. J. Corros. Scale Inhib. 2020, 9, 372–393. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, Y.; Sun, Y.; Zhao, W.; Wang, L. 2D Nanomaterials Reinforced Organic Coatings for Marine Corrosion Protection: State of the Art, Challenges, and Future Prospectives. Adv. Mater. 2024, 36, 2470293. [Google Scholar] [CrossRef]
- Cho, S.; Chiu, T.M.; Castaneda, H. Electrical and electrochemical behavior of a zinc-rich epoxy coating system with carbon nanotubes as a diode-like material. Electrochim. Acta 2019, 316, 189–201. [Google Scholar] [CrossRef]
- Shen, W.; Feng, L.; Liu, X.; Luo, H.; Liu, Z.; Tong, P.; Zhang, W. Multiwall carbon nanotubes-reinforced epoxy hybrid coatings with high electrical conductivity and corrosion resistance prepared via electrostatic spraying. Prog. Org. Coat. 2016, 90, 139–146. [Google Scholar] [CrossRef]
- Zhang, F.; Yang, K.; Liu, G.; Chen, Y.; Wang, M.; Li, S.; Li, R. Recent advances on graphene: Synthesis, properties and applications. Compos. Part A Appl. Sci. Manuf. 2022, 160, 107051. [Google Scholar] [CrossRef]
- Zou, J.; Guan, J.; Wang, X.; Du, X. Corrosion and wear resistance improvements in NiCu alloys through flame-grown honeycomb carbon and CVD of graphene coatings. Surf. Coat. Technol. 2023, 473, 130040. [Google Scholar] [CrossRef]
- Song, S.; Fan, X.; Yan, H.; Cai, M.; Huang, Y.; He, C.; Zhu, M. Facile fabrication of continuous graphene nanolayer in epoxy coating towards efficient corrosion/wear protection. Compos. Commun. 2023, 37, 101437. [Google Scholar] [CrossRef]
- Cui, G.; Bi, Z.; Zhang, R.; Liu, J.; Yu, X.; Li, Z. A comprehensive review on graphene-based anti-corrosive coatings. Chem. Eng. J. 2019, 373, 104–121. [Google Scholar] [CrossRef]
- Guan, J.; Wang, X.; Zou, J.; Yang, J.; Du, X. Significant promotion of the anti-corrosive performance of epoxy zinc-containing coating via in situ reduction of graphene oxide and simultaneous graft it with polyamide curing agent. Diam. Relat. Mater. 2023, 138, 110221. [Google Scholar] [CrossRef]
- Navarchian, A.H.; Joulazadeh, M.; Karimi, F. Investigation of corrosion protection performance of epoxy coatings modified by polyaniline/clay nanocomposites on steel surfaces. Prog. Org. Coat. 2014, 77, 347–353. [Google Scholar] [CrossRef]
- Shen, L.; Li, Y.; Zhao, W.; Miao, L.; Xie, W.; Lu, H.; Wang, K. Corrosion Protection of Graphene-Modified Zinc-Rich Epoxy Coatings in Dilute NaCl Solution. ACS Appl. Nano Mater. 2019, 2, 180–190. [Google Scholar] [CrossRef]
- Zhu, X.; Yan, Q.; Cheng, L.; Wu, H.; Zhao, H.; Wang, L. Self-alignment of cationic graphene oxide nanosheets for anticorrosive reinforcement of epoxy coatings. Chem. Eng. J. 2020, 389, 124435. [Google Scholar] [CrossRef]
- Huang, S.; Kong, G.; Yang, B.; Zhang, S.; Che, C. Effects of graphene on the corrosion evolution of zinc particles in waterborne epoxy zinc-containing coatings. Prog. Org. Coat. 2020, 140, 105531. [Google Scholar] [CrossRef]
- Teng, S.; Gao, Y.; Cao, F.; Kong, D.; Zheng, X.; Ma, X.; Zhi, L. Zinc-reduced graphene oxide for enhanced corrosion protection of zinc-rich epoxy coatings. Prog. Org. Coat. 2018, 123, 185–189. [Google Scholar] [CrossRef]
- Ramezanzadeh, B.; Moghadam, M.H.M.; Shohani, N.; Mandavian, M. Effects of highly crystalline and conductive polyaniline/graphene oxide composites on the corrosion protection performance of a zinc-rich epoxy coating. Chem. Eng. J. 2017, 320, 363–375. [Google Scholar] [CrossRef]
- Zhou, S.; Wu, Y.; Zhao, W.; Yu, J.; Jiang, F.; Wu, Y.; Ma, L. Designing reduced graphene oxide/zinc rich epoxy composite coatings for improving the anticorrosion performance of carbon steel substrate. Mater. Des. 2019, 169, 107694. [Google Scholar] [CrossRef]
- Lei, Y.; Liu, Y.; Liu, Q.; Xu, Z.; You, B.; Mo, X.; Wu, L.; Man, H.; Ma, W.; Wang, H. Nacre-mimetic Strategy to Fabricate Waterborne FrGO/ZREoxy Coatings with Dual Corrosion Protection. ACS Appl. Mater. Interfaces 2023, 15, 28570–28580. [Google Scholar] [CrossRef]
- Zhan, Y.; Chen, Y.; Dong, H.; Li, Y.; Sun, A.; Chen, X.; Yang, X.; Zhu, F.; Jia, H. In situ growth of flower-like ZnO onto graphene oxide for the synergistically enhanced anti-corrosion ability of epoxy coating. Ceram. Int. 2024, 50, 5914–5926. [Google Scholar] [CrossRef]
- Guan, J.; Du, X. Improving the anti-corrosive performance of epoxy/zinc composite coatings with N-doped 3D reduced graphene oxide. Prog. Org. Coat. 2024, 186, 107959. [Google Scholar] [CrossRef]
- Du, X.; Liu, H.Y.; Mai, Y.-W. Ultrafast Synthesis of Multifunctional N-Doped Graphene Foam in an Ethanol Flame. ACS Nano 2016, 10, 453–462. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, H.; Du, X.; Zhang, Y.; Zhou, H.; Yuan, H.; Liu, H.-Y.; Mai, Y.-W. Facile fabrication of large 3D graphene filler modified epoxy composites with improved thermal conduction and tribological performance. Carbon 2018, 139, 1168–1177. [Google Scholar] [CrossRef]
- Wei, L.; Liu, X.; Gao, Y.; Lv, X.; Hu, N.; Chen, M. Synergistic strengthening effect of titanium matrix composites reinforced by graphene oxide and carbon nanotubes. Mater. Des. 2021, 197, 109261. [Google Scholar] [CrossRef]
- Tang, Z.-H.; Wang, D.-Y.; Li, Y.-Q.; Huang, P.; Fu, S.-Y. Modeling the synergistic electrical percolation effect of carbon nanotube/graphene/polymer composites. Compos. Sci. Technol. 2022, 225, 109496. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, H.; Du, X.; Mo, Y.; Yuan, H.; Liu, H.-Y. Hybrid three-dimensional graphene fillers and graphite platelets to improve the thermal conductivity and wear performance of epoxy composites. Compos. Part A 2019, 123, 270–277. [Google Scholar] [CrossRef]
- Wan, S.; Chen, H.; Cai, G.; Liao, B.; Guo, X. Functionalization of h-BN by the exfoliation and modification of carbon dots for enhancing corrosion resistance of waterborne epoxy coating. Prog. Org. Coat. 2022, 165, 106757. [Google Scholar] [CrossRef]
- Xu, C.-A.; Liang, W.; Ni, C.; Li, X.; Shi, X.; Chu, Z.; Hu, Y.; Yang, Z. Silicone and nano-diamond modified graphene oxide anticorrosive coating. Surf. Coat. Technol. 2024, 479, 130584. [Google Scholar] [CrossRef]
- Tian, Y.; Bi, Z.; Cui, G. Study on the Corrosion Resistance of Graphene Oxide-Based Epoxy Zinc-Rich Coatings. Polymers 2021, 13, 1657. [Google Scholar] [CrossRef]
- Yun, T.H.; Park, J.H.; Kim, J.-S.; Park, J.M. Effect of the surface modification of zinc powders with organosilanes on the corrosion resistance of a zinc pigmented organic coating. Prog. Org. Coat. 2014, 77, 1780–1788. [Google Scholar] [CrossRef]
- Mouanga, M.; Berçot, P.; Rauch, J.Y. Comparison of corrosion behaviour of zinc in NaCl and in NaOH solutions. Part I: Corrosion layer characterization. Corros. Sci. 2010, 52, 3984–3992. [Google Scholar] [CrossRef]
- Qin, Z.; Su, Y.; Bai, Y.; Lu, H.; Peng, T.; Zhong, H.; Chen, T.; Du, X. Improving the Corrosion Resistance of Zn-Rich Epoxy Coating with Three-Dimensional Porous Graphene. Polymers 2023, 15, 4302. [Google Scholar] [CrossRef]
- Liu, S.; Jing, Y.; Zhang, T.; Zhang, J.; Xu, F.; Song, Q.; Ye, Q.; Liu, S.; Liu, W. Excellent tribological and anti-corrosion performances enabled by novel hollow graphite carbon nanosphere with controlled release of corrosion inhibitor. Chem. Eng. J. 2021, 412, 128648. [Google Scholar] [CrossRef]
- Kamaruzzaman, W.M.I.W.M.; Fekeri, M.F.M.; Nasir, N.A.M.; Hamidi, N.A.S.M.; Baharom, M.Z.; Adnan, A.; Shaifudin, M.S.; Abdullah, W.R.W.; Wan Nik, W.M.N.; Suhailin, F.H.; et al. Anticorrosive and microbial inhibition performance of a coating loaded with Andrographis paniculata on stainless steel in seawater. Molecules 2021, 26, 3379. [Google Scholar] [CrossRef] [PubMed]
- Udoh, I.I.; Shi, H.; Daniel, E.F.; Li, J.; Gu, S.; Liu, F.; Han, E.-H. Active anticorrosion and self-healing coatings: A review with focus on multi-action smart coating strategies. J. Mater. Sci. Technol. 2022, 116, 224–237. [Google Scholar] [CrossRef]
Samples | Icorr (A·cm−2) | Ecorr (V) | RL (Ω·cm2) |
---|---|---|---|
neat ZRE | 6.11 × 10−6 | −0.646 | 5.67×103 |
02_3DNG-CNT ZRE | 3.07 × 10−12 | −0.290 | 1.39×1011 |
02_3DNG ZRE | 9.63 × 10−10 | −0.885 | 5.09×107 |
02_CNT ZRE | 6.11 × 10−6 | −1.196 | 6.47×103 |
Samples | Icorr (A·cm−2) | Ecorr (V) | RL (Ω·cm2) |
---|---|---|---|
005_3DNG-CNT ZRE | 1.08 × 10−10 | −0.357 | 4.03 × 109 |
01_3DNG-CNT ZRE | 2.84 × 10−12 | −0.561 | 1.47 × 1011 |
02_3DNG-CNT ZRE | 3.07 × 10−12 | −0.290 | 1.39 × 1011 |
Samples After 300 h Immersion | Icorr (A·cm−2) | Ecorr (V) | RL (Ω·cm2) |
---|---|---|---|
neat ZRE | 4.87 × 10−5 | −0.821 | 7.76 × 102 |
01_3DNG-CNT ZRE | 1.11 × 10−6 | −0.707 | 4.01 × 104 |
Time (h) | CPE-1 (S·cm−2·sn) | Rp (Ω·cm2) | CPE-2 (S·cm−2·sn) | Rt (Ω·cm2) |
---|---|---|---|---|
25 | 1.01 × 10−9 | 1.39 × 107 | 5.95 × 10−8 | 1.45 × 1015 |
100 | 3.28 × 10−9 | 8.11 × 104 | 3.46 × 10−6 | 3.70 × 1014 |
300 | 5.30 × 10−10 | 2.94 × 104 | 3.33 × 10−4 | 7.56 × 108 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, Y.; Liu, S.; Liu, S.; Wu, G.; Liu, Q.; Du, X. Synergistic Effect of CNT and N-Doped Graphene Foam on Improving the Corrosion Resistance of Zn Reinforced Epoxy Composite Coatings. Polymers 2024, 16, 3513. https://doi.org/10.3390/polym16243513
Mao Y, Liu S, Liu S, Wu G, Liu Q, Du X. Synergistic Effect of CNT and N-Doped Graphene Foam on Improving the Corrosion Resistance of Zn Reinforced Epoxy Composite Coatings. Polymers. 2024; 16(24):3513. https://doi.org/10.3390/polym16243513
Chicago/Turabian StyleMao, Yana, Shufu Liu, Shizhong Liu, Guodong Wu, Qi Liu, and Xusheng Du. 2024. "Synergistic Effect of CNT and N-Doped Graphene Foam on Improving the Corrosion Resistance of Zn Reinforced Epoxy Composite Coatings" Polymers 16, no. 24: 3513. https://doi.org/10.3390/polym16243513
APA StyleMao, Y., Liu, S., Liu, S., Wu, G., Liu, Q., & Du, X. (2024). Synergistic Effect of CNT and N-Doped Graphene Foam on Improving the Corrosion Resistance of Zn Reinforced Epoxy Composite Coatings. Polymers, 16(24), 3513. https://doi.org/10.3390/polym16243513