Enthalpy Relaxation, Crystal Nucleation and Crystal Growth of Biobased Poly(butylene Isophthalate)
<p>Characteristic time of crystallization (<b>a</b>) and spherulite growth rate (<b>b</b>), both as a function of the crystallization temperature. Regarding the characteristic crystallization time, fast scanning chip calorimetry (FSC) and differential scanning calorimetry (DSC) data represent the halftimes and peak-times of crystallization, respectively. In case of DSC data, the error bar is smaller than the symbol size, not shown.</p> "> Figure 2
<p>Temperature–time profile for optical analysis of isothermal nuclei formation in PBI, using Tammann’s two-stage crystal nuclei development method (right). The left part of <a href="#polymers-12-00235-f002" class="html-fig">Figure 2</a> shows selected polarized-light optical microscopy (POM) micrographs of PBI crystallized at 100 °C for 20 min, after nuclei formation at temperatures between 22 °C (bottom row) and 50 °C (top row) for annealing times between 1 min (left column) and 50 min (right column).</p> "> Figure 3
<p>FSC heating curves, heat-flow rate as a function of temperature, of PBI, collected after subjecting PBI to Tammann’s nuclei development method (<b>a</b>). The nucleation temperature was 45 °C and the nucleation time between 1 s (blue) and 10,000 s (red). The growth-stage temperature and time were 85 °C and 1000 s, respectively, and the transfer-heating rate, that is, the rate of heating the system from 45 °C to 85 °C, was 1000 K/s. The inset shows the enthalpy of melting as a function of the nucleation time at 45 °C. The right plot (<b>b</b>) shows the onset time of nuclei formation as a function of temperature.</p> "> Figure 4
<p>POM-images (left, b/w) and atomic force microscopy *AFM)-images (right, colored) of PBI crystallized at 100 °C. The crystallization temperature was approached either directly by cooling the melt (upper row images, hot-crystallization) or by heating the glass after annealing at 22 °C for more than 12 h, to allow nuclei formation (lower-row images, cold-crystallization).</p> "> Figure 5
<p>Sets of FSC heating scans, recorded at a rate of temperature-change of 1000 K/s, of PBI annealed at different temperatures between −20 °C (bottom set of curves) and 25 °C (top set of curves) for different time between 0.001 s (blue) and 10,000 s (red) (<b>a</b>). Before annealing, the sample was cooled from 180 °C, using a rate of 1000 K/s, yielding a fully amorphous sample. Enthalpy of relaxation as a function of the time of annealing at temperatures between 15 and 27.5 °C (<b>b</b>), and between −20 and 15 °C (<b>c</b>).</p> "> Figure 6
<p>Time of completion of enthalpy relaxation (blue), onset time of nuclei formation (gray), and crystallization halftime of PBI (red) as a function of temperature. Crystallization halftimes were determined on direct melt-crystallization (see also <a href="#polymers-12-00235-f001" class="html-fig">Figure 1</a>a, squares and circles) and after prior nuclei formation at 45 °C for different times (star symbol). The nuclei-transfer heating rate, that is, the rate of heating the nuclei from 45 °C to the growth-temperature, was 50 K/min.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Synthesis, Molecular Characterization and Processing
2.2. Instrumentation
3. Results and Discussion
3.1. Spherulite and Gross Crystallization Rates of PBI
3.2. Analysis of Crystal Nucleation Using Tammann’s Two-Stage Crystal Nuclei Development Method
3.2.1. Optical Microscopy
3.2.2. Calorimetry
3.2.3. Semicrystalline Morphology of Hot- and Cold-Crystallized PBI
3.3. Kinetics of Enthalpy Relaxation of the Glass of PBI
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Association of Plastics Manifacturors. Plastics-The Facts 2018. Plast. Eur. 2018, 1–57. [Google Scholar]
- Frost, J.W. Synthesis of Biobased and Substituted Terephthalic Acids and Isophthalic Acids. U.S. Patent No.9,499,465, 22 November 2016. [Google Scholar]
- He, Y.C.; Wu, Y.D.; Pan, X.H.; Ma, C.L. Biosynthesis of Terephthalic Acid, Isophthalic Acid and Their Derivatives from the Corresponding Dinitriles by Tetrachloroterephthalonitrile-Induced Rhodococcus Sp. Biotechnol. Lett. 2014, 36, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Yim, H.; Haselbeck, R.; Niu, W.; Pujol-Baxley, C.; Burgard, A.; Boldt, J.; Khandurina, J.; Trawick, J.D.; Osterhout, R.E.; Stephen, R.; et al. Metabolic Engineering of Escherichia Coli for Direct Production of 1,4-Butanediol. Nat. Chem. Biol. 2011, 7, 445–452. [Google Scholar] [CrossRef] [PubMed]
- Bechthold, I.; Bretz, K.; Kabasci, S.; Kopitzky, R.; Springer, A. Succinic Acid: A New Platform Chemical for Biobased Polymers from Renewable Resources. Chem. Eng. Technol. 2008, 31, 647–654. [Google Scholar] [CrossRef]
- Liu, H.; Lu, T. Autonomous Production of 1,4-Butanediol via a de Novo Biosynthesis Pathway in Engineered Escherichia Coli. Metab. Eng. 2015, 29, 135–141. [Google Scholar] [CrossRef]
- Radusch, H.-J. Poly (butylene terephthalate). In Handbook of Thermoplastic Polyesters; Fakirov, S., Ed.; Wiley-VCH: Weinheim, Germany, 2001; Volume 1, pp. 389–419. [Google Scholar]
- Flory, P.J.; Leutner, F.S. Crystalline Tetramethylene Isophthalate Polymer. U.S. Patent No. 2,623,034, 23 December 1952. [Google Scholar]
- Conix, A.; Van Kerpel, R. Crystallization Behavior and Melting Properties of M-Phenylene Group Containing Polyesters. J. Polym. Sci. 1959, 40, 521–532. [Google Scholar] [CrossRef]
- Gilbert, M.; Hybart, F.J. Effect of chemical structure on crystallization rates and melting of polymers: 2. Aliphatic polyesters. Polymer 1974, 15, 407–412. [Google Scholar] [CrossRef]
- Castles, J.L.; Vallance, M.A.; McKenna, J.M.; Cooper, S.L. Thermal and Mechanical Properties of Short-Segment Block Copolyesters and Copolyether-Esters. J. Polym. Sci. Polym. Phys. 1985, 23, 2119–2147. [Google Scholar] [CrossRef]
- Pyda, M.; Nowak-Pyda, E.; Heeg, J.; Huth, H.; Minakov, A.A.; Di Lorenzo, M.L.; Schick, C.; Wunderlich, B. Melting and crystallization of poly (butylene terephthalate) by temperature-modulated and superfast calorimetry. J. Polym. Sci. Polym. Phys. 2006, 44, 1364–1377. [Google Scholar] [CrossRef]
- Schawe, J.E. Influence of processing conditions on polymer crystallization measured by fast scanning DSC. J. Therm. Anal. Calorim. 2014, 116, 1165–1173. [Google Scholar] [CrossRef]
- Androsch, R.; Rhoades, A.M.; Stolte, I.; Schick, C. Density of heterogeneous and homogeneous crystal nuclei in poly (butylene terephthalate). Eur. Polym. J. 2015, 66, 180–189. [Google Scholar] [CrossRef]
- Androsch, R.; Schick, C. Crystal nucleation of polymers at high supercooling of the melt. Adv. Polym. Sci. 2015, 276, 257–288. [Google Scholar]
- Schick, C.; Androsch, R.; Schmelzer, J.W.P. Homogeneous crystal nucleation in polymers. J. Phys. Condens. Matter 2017, 29, 453002. [Google Scholar] [CrossRef] [PubMed]
- Finelli, L.; Lotti, N.; Munari, A. Influence of Branching on the Thermal Behavior of Poly (Butylene Isophthalate). J. Appl. Polym. Sci. 2002, 84, 2001–2010. [Google Scholar] [CrossRef]
- Righetti, M.C.; Pizzoli, M.; Lotti, N.; Munari, A. Crystallization Kinetics and Melting Behavior of Poly (Butylene Adipate), Poly (Butylene Isophthalate) and Their Copolymers. Macromol. Chem. Phys. 1998, 199, 2063–2070. [Google Scholar] [CrossRef]
- Gilbert, M.; Hybart, F.J. Effect of chemical structure on crystallization rates and melting of polymers: Part 1. Aromatic polyesters. Polymer 1972, 13, 327–332. [Google Scholar] [CrossRef]
- Phillips, R.A.; McKenna, J.M.; Cooper, S.L. Glass Transition and Melting Behavior of Poly (Ether-ester) Multiblock Copolymers with Poly (Tetramethylene Isophthalate) Hard Segments. J. Polym. Sci. Part B Polym. Phys. 1994, 32, 791–802. [Google Scholar] [CrossRef]
- Sanz, A.; Nogales, A.; Ezquerra, T.A.; Lotti, N.; Munari, A.; Funari, S.S. Order and Segmental Mobility during Polymer Crystallization: Poly (Butylene Isophthalate). Polymer 2006, 47, 1281–1290. [Google Scholar] [CrossRef] [Green Version]
- Munari, A.; Pilati, F.; Pezzin, G. Melt Viscosity of Linear and Branched Poly (Butyleneisophthalate). Rheol. Acta 1988, 27, 145–149. [Google Scholar] [CrossRef]
- Bandiera, M.; Munari, A.; Manaresi, P.; Pizzoli, M. Dilute Solution and Thermal Behaviour of Random Poly (Butylene Isophthalate/Terephthalate) Copolymers. Eur. Polym. J. 1994, 30, 503–508. [Google Scholar] [CrossRef]
- Bandiera, M.; Munari, A.; Pezzin, G. Rheological Characterization of Random Poly (Butylene Isophthalate/Terephthalate) Copolymers. Eur. Polym. J. 1997, 33, 497–500. [Google Scholar] [CrossRef]
- DeBruin, B.R. Polyester Process Using a Pipe Reactor. U.S. Patent No. 6,861,494, 1 March 2005. [Google Scholar]
- DeBruin, B.R. Polyester Production System Employing Horizontally Elongated Esterification Vassels. U.S. Patent No. 7,943,094, 2011. [Google Scholar]
- Wang, Z.; Li, W.; Zhao, X.; Zhu, D.; You, J. Self-Segregation Behavior of n-Ethyl-Pentadecafluorooctanamide-Terminated Polybutylene Isophthalate and Its Effects on Film Morphology and Wettability. J. Phys. Chem. B 2009, 113, 15204–15211. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Guo, R.; Lan, J. Synthesis and Characterizations of Branched Poly (Butylene Isophthalate)-Co-Poly (Tetramethylene Glycol)-Co-Poly (Ethylene Glycol) Fibers with Excellent Low Temperature Elastic Recovery. Polym. Sci. Ser. B 2015, 57, 313–321. [Google Scholar] [CrossRef]
- Gómez, F.; Quintana, R.; De Ilarduya, A.M.; Rudé, E.; Muñoz-Guerra, S. Poly (Butylene Terephthalate-Co-5-Tert-Butyl Isophthalate) Copolyesters: Synthesis, Characterization, and Properties. J. Polym. Sci. Part A Polym. Chem. 2005, 43, 92–100. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, J.C.; Cooper, S.L. Microstructure and Property Changes Accompanying Hard-Segment Crystallization in Block Copoly (Ether-Ester) Elastomers. Macromolecules 1988, 21, 1309–1316. [Google Scholar] [CrossRef]
- Lotti, N.; Finelli, L.; Munari, A.; Siracusa, V. Melting Behavior and Crystallization Kinetics of Sulfonated Poly (Butylene Isophthalate). Polym. Eng. Sci. 2002, 42, 1590–1599. [Google Scholar] [CrossRef]
- Finelli, L.; Lotti, N.; Munari, A. Crystallization Kinetics and Melting Behavior of Poly (Butylene Isophthalate/Terephthalate) Random Copolyesters. Eur. Polym. J. 2001, 37, 2039–2046. [Google Scholar] [CrossRef]
- Wang, Z.; Appelhans, D.; Synytska, A.; Komber, H.; Simon, F.; Grundke, K.; Voit, B. Studies of Surface Segregation and Surface Properties of N-Pentylperfluorooctaneamide End-Capped Semicrystalline Poly (Butylene Isophthalate) Films. Macromolecules 2008, 41, 8557–8565. [Google Scholar] [CrossRef]
- Alvarez, C.; Capitan, M.J.; Lotti, N.; Munari, A.; Ezquerra, T.A. Structure− Dynamics Relationships in Random Poly (butylene isophthalate-co-butylene adipate) Copolyesters As Revealed by Dielectric Loss Spectroscopy and X-ray Scattering. Macromolecules 2003, 36, 3245–3253. [Google Scholar] [CrossRef]
- Binsbergen, F.L. Natural and artificial heterogeneous nucleation in polymer crystallization. J. Polym. Sci. Polym. Symp. 1977, 59, 11–29. [Google Scholar] [CrossRef]
- Chatterjee, A.M.; Price, F.P.; Newman, S. Heterogeneous nucleation of crystallization of high polymers from the melt. III. Nucleation kinetics and interfacial energies. J. Polym. Sci. Polym. Phys. 1975, 13, 2391–2400. [Google Scholar] [CrossRef]
- Schick, C.; Androsch, R. Nucleation-controlled semicrystalline morphology of bulk polymers. Polym. Cryst. 2018, 1, e10036. [Google Scholar] [CrossRef]
- Androsch, R.; Di Lorenzo, M.L.; Schick, C. Optical microscopy to study crystal nucleation in polymers using a fast scanning chip calorimeter for precise control of the nucleation pathway. Macromol. Chem. Phys. 2018, 219, 1700479. [Google Scholar] [CrossRef]
- Kiflie, Z.; Piccarolo, S.; Brucato, V.; Baltá-Calleja, F.J. Role of thermal history on quiescent cold crystallization of PET. Polymer 2002, 43, 4487–4493. [Google Scholar] [CrossRef]
- Salmerón Sánchez, M.; Mathot, V.B.F.; Vanden Poel, G.; Gómez Ribelles, J.L. Effect of the cooling rate on the nucleation kinetics of poly (l-lactic acid) and its influence on morphology. Macromolecules 2007, 40, 7989–7997. [Google Scholar] [CrossRef]
- De Santis, F.; Pantani, R.; Titomanlio, G. Nucleation and crystallization kinetics of poly (lactic acid). Thermochim. Acta 2011, 522, 128–134. [Google Scholar] [CrossRef]
- Toda, A.; Androsch, R.; Schick, C. Insights into polymer crystallization and melting from fast scanning chip calorimetry. Polymer 2016, 91, 239–263. [Google Scholar] [CrossRef]
- Tammann, G. Ueber die Abhängigkeit der Zahl der Kerne, welche sich in verschiedenen unterkühlten Flüssigkeiten bilden, von der Temperatur. Z. Phys. Chem. 1898, 25, 441–479. [Google Scholar] [CrossRef]
- Tammann, G.; Jenckel, E. Die Kristallisationsgeschwindigkeit und die Kernzahl des Glycerins in Abhängigkeit von der Temperatur. Z. Anorg. Allg. Chem. 1930, 193, 76–80. [Google Scholar] [CrossRef]
- Mikhnevich, G.L.; Browko, J.F. Stability of the crystallization centers of an organic liquid at various temperatures and conclusions to be drawn therefrom concerning Tammann’s method. Phys. Z. Sowjetunion 1938, 13, 113–122. [Google Scholar]
- Nascimento, M.L.F.; Fokin, V.M.; Zanotto, E.D.; Abyzov, A.S. Dynamic Processes in a Silicate Liquid from above Melting to below the Glass Transition. J. Chem. Phys. 2011, 135, 194703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fokin, V.M.; Zanotto, E.D.; Yuritsyn, N.S.; Schmelzer, J.W.P. Homogeneous Crystal Nucleation in Silicate Glasses: A 40 Years Perspective. J. Non Cryst. Solids 2006, 352, 2681–2714. [Google Scholar] [CrossRef]
- Zhuravlev, E.; Schmelzer, J.W.P.; Wunderlich, B.; Schick, C. Kinetics of nucleation and crystallization in poly (ε-caprolactone) (PCL). Polymer 2011, 52, 1983–1997. [Google Scholar] [CrossRef]
- Wurm, A.; Zhuravlev, E.; Eckstein, K.; Jehnichen, D.; Pospiech, D.; Androsch, R.; Wunderlich, B.; Schick, C. Crystallization and homogeneous nucleation kinetics of poly (ε-caprolactone) (PCL) with different molar masses. Macromolecules 2012, 45, 3816–3828. [Google Scholar] [CrossRef]
- Zhuravlev, E.; Schmelzer, J.W.P.; Abyzov, A.S.; Fokin, V.M.; Androsch, R.; Schick, C. Experimental test of Tammann’s nuclei development approach in crystallization of macromolecules. Cryst. Growth Des. 2015, 15, 786–798. [Google Scholar] [CrossRef]
- Androsch, R.; Di Lorenzo, M.L. Crystal nucleation in glassy poly (l-lactic acid). Macromolecules 2013, 46, 6048–6056. [Google Scholar] [CrossRef]
- Androsch, R.; Di Lorenzo, M.L. Kinetics of crystal nucleation of poly (l-lactic acid). Polymer 2013, 54, 6882–6885. [Google Scholar] [CrossRef]
- Androsch, R.; Iqbal, H.N.; Schick, C. Non-isothermal crystal nucleation of poly (l-lactic acid). Polymer 2015, 81, 151–158. [Google Scholar] [CrossRef]
- Stolte, I.; Androsch, R.; Di Lorenzo, M.L.; Schick, C. Effect of aging the glass of isotactic polybutene-1 on form II nucleation and cold crystallization. J. Phys. Chem. B 2013, 117, 15196–15203. [Google Scholar] [CrossRef]
- Androsch, R.; Schick, C.; Schmelzer, J.W.P. Sequence of Enthalpy Relaxation, Homogeneous Crystal Nucleation and Crystal Growth in Glassy Polyamide 6. Eur. Polym. J. 2014, 53, 100–108. [Google Scholar] [CrossRef]
- Androsch, R.; Schick, C.; Rhoades, A.M. Application of Tammann’s Two-Stage Crystal Nuclei Development Method for Analysis of the Thermal Stability of Homogeneous Crystal Nuclei of Poly (Ethylene Terephthalate). Macromolecules 2015, 48, 8082–8089. [Google Scholar] [CrossRef]
- Nanev, C.N. Recent experimental and theoretical studies on protein crystallization. Cryst. Res. Technol. 2017, 52, 1600210. [Google Scholar] [CrossRef]
- Hernández Sánchez, F.; Molina Mateo, J.; Romero Colomer, F.J.; Salmerón Sánchez, M.; Gómez Ribelles, J.L.; Mano, J.F. Influence of low-temperature nucleation on the crystallization process of poly (l-lactide). Biomacromolecules 2005, 6, 3283–3290. [Google Scholar] [CrossRef] [PubMed]
- Mileva, D.; Androsch, R.; Zhuravlev, E.; Schick, C.; Wunderlich, B. Homogeneous nucleation and mesophase formation in glassy isotactic polypropylene. Polymer 2012, 53, 277–282. [Google Scholar] [CrossRef]
- Zanotto, E.D.; James, P.F. Experimental tests of the classical nucleation theory for glasses. J. Non Cryst. Solids 1985, 74, 373–394. [Google Scholar] [CrossRef]
- Donth, E. The size of cooperatively rearranging regions at the glass transition. J. Non Cryst. Solids 1982, 53, 325–330. [Google Scholar] [CrossRef]
- Donth, E. Characteristic length of the glass transition. J. Polym. Sci. Polym. Phys. 1996, 34, 2881–2892. [Google Scholar] [CrossRef]
- Papageorgiou, D.G.; Zhuravlev, E.; Papageorgiou, G.Z.; Bikiaris, D.; Chrissafis, K.; Schick, C. Kinetics of nucleation and crystallization in poly (butylene succinate) nanocomposites. Polymer 2014, 55, 6725–6734. [Google Scholar] [CrossRef]
- Androsch, R.; Schick, C. Interplay between the relaxation of the glass of random l/d-lactide copolymers and homogeneous crystal nucleation: Evidence for segregation of chain defects. J. Phys. Chem. B 2016, 120, 4522–4528. [Google Scholar] [CrossRef]
- Androsch, R.; Zhuravlev, E.; Schmelzer, J.W.P.; Schick, C. Relaxation and crystal nucleation in polymer glasses. Eur. Polym. J. 2018, 102, 195–208. [Google Scholar]
- Angell, C.A.; Macfarlane, D.R.; Oguni, M. The Kauzmann paradox, metastable liquids, and ideal glasses: A summary. Ann. N. Y. Acad. Sci. 1986, 484, 241–247. [Google Scholar] [CrossRef]
- Hodge, I.M. Enthalpy relaxation and recovery in amorphous materials. J. Non Cryst. Solids 1994, 169, 211–266. [Google Scholar] [CrossRef]
- Hodge, I.M. Physical aging in polymer glasses. Science 1995, 267, 1945–1947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathot, V.; Pyda, M.; Pijpers, T.; Vanden Poel, G.; van de Kerkhof, E.; van Herwaarden, S.; van Herwaarden, F.; Leenaers, A. The Flash DSC 1, a Power Compensation Twin-type, Chip-based Fast Scanning Calorimeter (FSC): First Findings on Polymers. Thermochim. Acta 2011, 522, 36–45. [Google Scholar] [CrossRef]
- Van Herwaarden, S.; Iervolino, E.; van Herwaarden, F.; Wijffels, T.; Leenaers, A.; Mathot, V. Design, Performance and Analysis of Thermal Lag of the UFS1 Twin-calorimeter Chip for Fast Scanning Calorimetry using the Mettler-Toledo Flash DSC 1. Thermochim. Acta 2011, 522, 46–52. [Google Scholar] [CrossRef]
- Iervolino, E.; van Herwaarden, A.W.; van Herwaarden, F.G.; van de Kerkhof, E.; van Grinsven, P.P.W.; Leenaers, A.C.H.I.; Mathot, V.B.F.; Sarro, P.M. Temperature Calibration and Electrical Characterization of the Differential Scanning Calorimeter Chip UFS1 for the Mettler-Toledo Flash DSC 1. Thermochim. Acta 2011, 522, 53–59. [Google Scholar] [CrossRef]
- Vanden Poel, G.; Istrate, D.; Magon, A.; Mathot, V. Performance and Calibration of the Flash DSC 1, a New, MEMS-based Fast Scanning Calorimeter. Therm. Anal. Calorim. 2012, 110, 1533–1546. [Google Scholar] [CrossRef]
- Jariyavidyanont, K.; Abdelaziz, A.; Androsch, R.; Schick, C. Experimental analysis of lateral thermal inhomogeneity of a specific chip-calorimeter sensor. Thermochim. Acta 2019, 674, 95–99. [Google Scholar] [CrossRef]
- Di Lorenzo, M.L.; Righetti, M.C. Crystallization of poly (butylene terephthalate). Polym. Eng. Sci. 2003, 43, 1889–1894. [Google Scholar] [CrossRef]
- Illers, K.H. Geordnete Strukturen in „amorphem“ Polyäthylenterephthalat. Kolloid Z. Z. Polym. 1971, 245, 393–398. [Google Scholar] [CrossRef]
- Zhang, R.; Zhuravlev, E.; Androsch, R.; Schick, C. Visualization of Polymer Crystallization by In Situ Combination of Atomic Force Microscopy and Fast Scanning Calorimetry. Polymers 2019, 11, 890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Starkweather, H.W.; Brooks, R.E. Effect of spherulites on the mechanical properties of nylon 66. J. Appl. Polym. Sci. 1959, 1, 236–239. [Google Scholar] [CrossRef] [Green Version]
- Way, J.L.; Atkinson, J.R.; Nutting, J. The effect of spherulite size on the fracture morphology of polypropylene. J. Mater. Sci. 1974, 9, 293–299. [Google Scholar] [CrossRef]
- Perkins, W.G. Polymer toughness and impact resistance. Polym. Eng. Sci. 1999, 39, 2445–2460. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quattrosoldi, S.; Androsch, R.; Janke, A.; Soccio, M.; Lotti, N. Enthalpy Relaxation, Crystal Nucleation and Crystal Growth of Biobased Poly(butylene Isophthalate). Polymers 2020, 12, 235. https://doi.org/10.3390/polym12010235
Quattrosoldi S, Androsch R, Janke A, Soccio M, Lotti N. Enthalpy Relaxation, Crystal Nucleation and Crystal Growth of Biobased Poly(butylene Isophthalate). Polymers. 2020; 12(1):235. https://doi.org/10.3390/polym12010235
Chicago/Turabian StyleQuattrosoldi, Silvia, René Androsch, Andreas Janke, Michelina Soccio, and Nadia Lotti. 2020. "Enthalpy Relaxation, Crystal Nucleation and Crystal Growth of Biobased Poly(butylene Isophthalate)" Polymers 12, no. 1: 235. https://doi.org/10.3390/polym12010235
APA StyleQuattrosoldi, S., Androsch, R., Janke, A., Soccio, M., & Lotti, N. (2020). Enthalpy Relaxation, Crystal Nucleation and Crystal Growth of Biobased Poly(butylene Isophthalate). Polymers, 12(1), 235. https://doi.org/10.3390/polym12010235