Eudragit: A Novel Carrier for Controlled Drug Delivery in Supercritical Antisolvent Coprecipitation
"> Figure 1
<p>A sketch of the supercritical antisolvent (SAS) laboratory plant. S1, tank for the CO<sub>2</sub>; S2, organic solution; RB, refrigerating bath; P1, P2, pumps; V, vessel; M, manometer; TC, thermocouple; MV, micrometric valve; LS, liquid separator; BPV, back-pressure valve; R, rotameter.</p> "> Figure 2
<p>FESEM images of Eudragit particles precipitated from DMSO at 40 °C and 20 mg/mL. Effect of the operating pressure. (<b>a</b>) 9 MPa; (<b>b</b>) 10 MPa; (<b>c</b>) 12 MPa.3.1.2 Effect of polymer concentration in DMSO.</p> "> Figure 3
<p>Volumetric cumulative particle size distributions (PSDs) of EUD precipitated from DMSO at 40 °C and 10 MPa; effect of the polymer concentration in DMSO.</p> "> Figure 4
<p>FESEM images of the drugs precipitated from DMSO at 9 MPa, 40 °C and 20 mg/mL. (<b>a</b>) DICLO; (<b>b</b>) THEOP.</p> "> Figure 5
<p>FESEM images of EUD/DICLO 20/1 particles precipitated from DMSO at 40 °C and 40 mg/mL. Effect of the operating pressure. (<b>a</b>) 9 MPa (run #6); (<b>b</b>) 10 MPa (run #7).</p> "> Figure 6
<p>FESEM images of EUD/THEOP 20/1 powders precipitated from DMSO at 40 °C and 20 mg/mL. Effect of the operating pressure. (<b>a</b>) 10 MPa (run #13) filter; (<b>b</b>) 10 MPa (run #13) precipitating chamber; (<b>c</b>) 12 MPa (run #14); (<b>d</b>) 15 MPa (run #15).</p> "> Figure 7
<p>Volumetric cumulative PSDs of EUD/THEOP 20/1 particles precipitated from DMSO at 40 °C and 20 mg/mL; effect of the operating pressure.</p> "> Figure 8
<p>FESEM images of EUD/DICLO 20/1 particles precipitated from DMSO at 40 °C, 10 MPa. (<b>a</b>) 20 mg/mL (run #8); (<b>b</b>) 50 mg/mL (run #9).</p> "> Figure 9
<p>FESEM images of EUD/THEOP 10/1 <span class="html-italic">w</span>/<span class="html-italic">w</span> precipitated from DMSO at 40 °C, 12 MPa and 40 mg/mL (run #17). (<b>a</b>) Microparticles and (<b>b</b>) expanded microparticles.</p> "> Figure 10
<p>Volumetric cumulative PSDs of EUD/THEOP particles precipitated from DMSO at 40 °C, 12 MPa and 40 mg/mL; effect of the polymer/drug ratio.</p> "> Figure 11
<p>FT-IR spectra for unprocessed and SAS processed Eudragit L100-55, unprocessed drugs, physical mixture polymer/drug and SAS processed Eudragit/drug powders. (<b>a</b>) DICLO; (<b>b</b>) THEOP.</p> "> Figure 12
<p>DSC thermograms of unprocessed and SAS processed EUD, unprocessed drugs, and SAS processed EUD/drug coprecipitated powders. (<b>a</b>) DICLO; (<b>b</b>) THEOP.</p> "> Figure 13
<p>XRD patterns of unprocessed EUD, unprocessed drugs, and SAS processed EUD/drug coprecipitated powders. (<b>a</b>) DICLO; (<b>b</b>) THEOP.</p> "> Figure 14
<p>Dissolution profiles in PBS at 37 °C and pH 7.4. (<b>a</b>) DICLO; (<b>b</b>) THEOP.</p> ">
Abstract
:1. Introduction
2. Materials, Methods and Procedures
2.1. Materials
2.2. SAS Apparatus and Procedure
2.3. Characterization Methods
3. Results and Discussion
3.1. Micronization of Eudragit L100-55
Effect of the Operating Pressure
3.2. Coprecipitation Using Eudragit as the Carrier
3.2.1. Effect of the Operating Pressure on Coprecipitated Particles
3.2.2. Effect of Total Concentration on Coprecipitated Particles
3.2.3. Effect of Polymer/Drug Ratio on Coprecipitated Particles
3.3. Characterization of Samples
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Todd, P.A.; Sorkin, E.M. Diclofenac sodium. Drugs 1988, 35, 244–285. [Google Scholar] [CrossRef] [PubMed]
- Mengozzi, G.; Intorre, L.; Bertini, S.; Giorgi, M.; Soldani, G. Comparative bioavailability of two sustained-release theophylline formulations in the dog. Pharm. Res. 1998, 38, 481–485. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Yu, H.; Ru, Q. Bioavailability and delivery of nutraceuticals using nanotechnology. J. Food Sci. 2010, 75, R50–R57. [Google Scholar] [CrossRef] [PubMed]
- Tønnesen, H.H.; Karlsen, J. Alginate in drug delivery systems. Drug Dev. Ind. Pharm. 2002, 28, 621–630. [Google Scholar] [CrossRef] [PubMed]
- Vehring, R. Pharmaceutical particle engineering via spray drying. Pharm. Res. 2008, 25, 999–1022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heidebach, T.; Först, P.; Kulozik, U. Influence of casein-based microencapsulation on freeze-drying and storage of probiotic cells. J. Food Eng. 2010, 98, 309–316. [Google Scholar] [CrossRef]
- O’Donnell, P.B.; McGinity, J.W. Preparation of microspheres by the solvent evaporation technique. Adv. Drug Del. Rev. 1997, 28, 25–42. [Google Scholar] [CrossRef]
- Oxley, J. Coextrusion for Food Ingredients and Nutraceutical Encapsulation: Principles and Technology. In Encapsulation Technologies and Delivery Systems for Food Ingredients and Nutraceuticals; Woodhead Publishing: Cambridge, UK, 2012; pp. 131–150. [Google Scholar]
- Nykamp, G.; Carstensen, U.; Müller, B. Jet milling—A new technique for microparticle preparation. Int. J. Pharm. 2002, 242, 79–86. [Google Scholar] [CrossRef]
- Nihant, N.; Grandfils, C.; Jérôme, R.; Teyssié, P. Microencapsulation by coacervation of poly (lactide-co-glycolide) IV. Effect of the processing parameters on coacervation and encapsulation. J. Control. Release 1995, 35, 117–125. [Google Scholar] [CrossRef]
- Franco, P.; Reverchon, E.; De Marco, I. Zein/diclofenac sodium coprecipitation at micrometric and nanometric range by supercritical antisolvent processing. J. CO2 Util. 2018, 27, 366–373. [Google Scholar] [CrossRef]
- Franco, P.; Reverchon, E.; De Marco, I. Production of zein/antibiotic microparticles by supercritical antisolvent coprecipitation. J. Supercrit. Fluids 2019, 145, 31–38. [Google Scholar] [CrossRef]
- Montes, A.; Gordillo, M.D.; Pereyra, C.; De los Santos, D.M.; Martínez de la Ossa, E.J. Ibuprofen–polymer precipitation using supercritical CO2 at low temperature. J. Supercrit. Fluids 2014, 94, 91–101. [Google Scholar] [CrossRef]
- Montes, A.; Kin, N.; Gordillo, M.D.; Pereyra, C.; Martínez de la Ossa, E.J. Polymer–naproxen precipitation by supercritical antisolvent (SAS) process. J. Supercrit. Fluids 2014, 89, 58–67. [Google Scholar] [CrossRef]
- Montes, A.; Wehner, L.; Pereyra, C.; Martínez de la Ossa, E.J. Mangiferin nanoparticles precipitation by supercritical antisolvent process. J. Supercrit. Fluids 2016, 112, 44–50. [Google Scholar] [CrossRef]
- Prosapio, V.; De Marco, I.; Reverchon, E. Supercritical antisolvent coprecipitation mechanisms. J. Supercrit. Fluids 2018, 138, 247–258. [Google Scholar] [CrossRef]
- Matos, R.L.; Lu, T.; Prosapio, V.; McConville, C.; Leeke, G.; Ingram, A. Coprecipitation of curcumin/PVP with enhanced dissolution properties by the supercritical antisolvent process. J. CO2 Util. 2019, 30, 48–62. [Google Scholar] [CrossRef]
- Zahran, F.; Cabañas, A.; Cheda, J.A.R.; Renuncio, J.A.R.; Pando, C. Dissolution rate enhancement of the anti-inflammatory drug diflunisal by coprecipitation with a biocompatible polymer using carbon dioxide as a supercritical fluid antisolvent. J. Supercrit. Fluids 2014, 88, 56–65. [Google Scholar] [CrossRef]
- Lim, R.T.Y.; Ng, W.K.; Tan, R.B. Amorphization of pharmaceutical compound by co-precipitation using supercritical anti-solvent (SAS) process (Part I). J. Supercrit. Fluids 2010, 53, 179–184. [Google Scholar] [CrossRef]
- Wang, W.; Liu, G.; Wu, J.; Jiang, Y. Co-precipitation of 10-hydroxycamptothecin and poly (l-lactic acid) by supercritical CO2 anti-solvent process using dichloromethane/ethanol co-solvent. J. Supercrit. Fluids 2013, 74, 137–144. [Google Scholar] [CrossRef]
- Lee, S.; Kim, M.; Kim, J.; Park, H.; Woo, J.; Lee, B.; Hwang, S.J. Controlled delivery of a hydrophilic drug from a biodegradable microsphere system by supercritical anti-solvent precipitation technique. J. Microencapsul. 2006, 23, 741–749. [Google Scholar] [CrossRef]
- Kibbe, A. Handbook of Pharmaceutical Excipients; Americal Pharmaceutical Association and Pharmaceutical Press: Washington, DC, USA, 2000; pp. 401–406. [Google Scholar]
- Moustafine, R.; Kabanova, T.; Kemenova, V.; Van den Mooter, G. Characteristics of interpolyelectrolyte complexes of eudragit E100 with eudragit L100. J. Control. Release 2005, 103, 191–198. [Google Scholar] [CrossRef]
- Duarte, A.R.C.; Roy, C.; Vega-González, A.; Duarte, C.M.; Subra-Paternault, P. Preparation of acetazolamide composite microparticles by supercritical anti-solvent techniques. Int. J. Pharm. 2007, 332, 132–139. [Google Scholar] [CrossRef] [Green Version]
- Garay, I.; Pocheville, A.; Madariaga, L. Polymeric microparticles prepared by supercritical antisolvent precipitation. Powder Technol. 2010, 197, 211–217. [Google Scholar] [CrossRef]
- Singh, S.; Neelam, S.A.; Singla, Y.P. An overview of multifaceted significance of eudragit polymers in drug delivery systems. Asian J. Pharm. Clin. Res. 2015, 8, 1–6. [Google Scholar]
- Sonje, A.; Chandra, A. Comprehensive review on eudragit polymers. Int. Res. J. Pharm 2013, 4, 2230–8407. [Google Scholar] [CrossRef]
- Shidhaye, S.; Malke, S.; Kadam, V. Taste masked, orally disintegrating tablet containing microspheres for immediate release. J. Pharm. Res. 2008, 1, 225–229. [Google Scholar]
- Majeed, A.; Ranjha, N.M.; Hanif, M.; Abbas, G.; Khan, M.A. Development and evaluation of ivabradine HCl-loaded polymeric microspheres prepared with eudragit L100-55 (methacrylic acid-ethyl acrylate copolymer) and ethyl cellulose for controlled drug release. Acta Pol. Pharm. 2017, 74, 565–578. [Google Scholar]
- Moustafine, R.I.; Zaharov, I.M.; Kemenova, V.A. Physicochemical characterization and drug release properties of eudragit® E PO/eudragit® L 100-55 interpolyelectrolyte complexes. Eur. J. Pharm. Biopharm. 2006, 63, 26–36. [Google Scholar] [CrossRef]
- Hamman, J.H. Chitosan based polyelectrolyte complexes as potential carrier materials in drug delivery systems. Mar. Drugs 2010, 8, 1305–1322. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.Z.I.; Prebeg, Ž.; Kurjaković, N. A pH-dependent colon targeted oral drug delivery system using methacrylic acid copolymers: I. Manipulation of drug release using Eudragit® L100-55 and Eudragit® S100 combinations. J. Control. Release 1999, 58, 215–222. [Google Scholar] [CrossRef]
- Montes, A.; Wehner, L.; Pereyra, C.; Martínez de la Ossa, E.J. Generation of microparticles of ellagic acid by supercritical antisolvent process. J. Supercrit. Fluids 2016, 116, 101–110. [Google Scholar] [CrossRef]
- Andreatta, A.E.; Florusse, L.J.; Bottini, S.B.; Peters, C.J. Phase equilibria of dimethyl sulfoxide (DMSO) + carbon dioxide, and DMSO + carbon dioxide + water mixtures. J. Supercrit. Fluids 2007, 42, 60–68. [Google Scholar] [CrossRef]
- Reverchon, E.; De Marco, I. Mechanisms controlling supercritical antisolvent precipitate morphology. Chem. Eng. J. 2011, 169, 358–370. [Google Scholar] [CrossRef]
- Campardelli, R.; Reverchon, E.; De Marco, I. Dependence of SAS particle morphologies on the ternary phase equilibria. J. Supercrit. Fluids 2017, 130, 273–281. [Google Scholar] [CrossRef]
- Campardelli, R.; Reverchon, E.; De Marco, I. PVP microparticles precipitation from acetone-ethanol mixtures using SAS process: Effect of phase behavior. J. Supercrit. Fluids 2019, 143, 321–329. [Google Scholar] [CrossRef]
- Edavalath, S.; Shivanand, K.; Prakasam, K.; Rao, B.P.; Divakar, G. Formulation development and optimization of controlled porosity osmotic pump tablets of diclofenac sodium. Int. J. Pharm. Pharm. Sci. 2011, 3, 80–87. [Google Scholar]
- Lin, H.-L.; Hsu, P.-C.; Lin, S.-Y. Theophylline–citric acid co-crystals easily induced by DSC–FTIR microspectroscopy or different storage conditions. Asian J. Pharm. Sci. 2013, 8, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Kesavan, J.G.; Peck, G.E. Solid-state stability of theophylline anhydrous in theophylline anhydrous-polyvinylpyrrolidone physical mixtures. Drug Dev. Ind. Pharm. 1996, 22, 189–199. [Google Scholar] [CrossRef]
- Kumar Singh Yadav, H.; Shivakumar, H. In vitro and in vivo evaluation of pH-sensitive hydrogels of carboxymethyl chitosan for intestinal delivery of theophylline. ISRN Pharm 2012, 2012, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Tiţa, D.; Fuliaş, A.; Tiţa, B. Thermal stability of ketoprofen—active substance and tablets: Part 1. Kinetic study of the active substance under non-isothermal conditions. J. Therm. Anal. Calorim. 2011, 105, 501–508. [Google Scholar]
- Ochoa, L.; Igartua, M.; Hernandez, R.; Gascon, A.; Pedraz, J.L. Preparation of sustained release hydrophilic matrices by melt granulation in a high-shear mixer. J. Pharm. Pharm. Sci. A Publ. Can. Soc. Pharm. Sci. Soc. Can. Sci. Pharm. 2005, 8, 132–140. [Google Scholar]
- Ceballos, A.; Cirri, M.; Maestrelli, F.; Corti, G.; Mura, P. Influence of formulation and process variables on in vitro release of theophylline from directly-compressed Eudragit matrix tablets. Farmaco 2005, 60, 913–918. [Google Scholar] [CrossRef]
- Jadhav, N.R.; Gaikwad, V.L.; Nair, K.J.; Kadam, H.M. Glass transition temperature: Basics and application in pharmaceutical sector. Asian J. Pharm. Free Full Text Artic. Asian J. Pharm 2014, 3. [Google Scholar] [CrossRef]
- Lian, Z.; Epstein, S.A.; Blenk, C.W.; Shine, A.D. Carbon dioxide-induced melting point depression of biodegradable semicrystalline polymers. J. Supercrit. Fluids 2006, 39, 107–117. [Google Scholar] [CrossRef]
- Campardelli, R.; Franco, P.; Reverchon, E.; De Marco, I. Polycaprolactone/nimesulide patches obtained by a one-step supercritical foaming+ impregnation process. J. Supercrit. Fluids 2019, 146, 47–54. [Google Scholar] [CrossRef]
- Brzeziński, M.; Kost, B.; Wedepohl, S.; Socka, M.; Biela, T.; Calderón, M. Stereocomplexed PLA microspheres: Control over morphology, drug encapsulation and anticancer activity. Coll. Surf. B Biointerfaces 2019, 184, 110544. [Google Scholar] [CrossRef]
# | Polymer/Drug [w/w] | P, [Mpa] | Ctot [mg/mL] | M | m.d. ± s.d. [μm] |
---|---|---|---|---|---|
EUD | |||||
1 | 1/0 | 9 | 20 | MP | 1.99 ± 0.49 |
2 | 1/0 | 10 | 20 | MP | 1.69 ± 0.51 |
3 | 1/0 | 12 | 20 | cMP | 1.64 ± 0.72 |
4 | 1/0 | 10 | 40 | MP | 1.95 ± 0.54 |
EUD/DICLO | |||||
5 | 0/1 | 9 | 20 | NP | 0.14 ± 0.05 |
6 | 20/1 | 9 | 40 | MP * + cMP | * 2.16 ± 0.69 |
7 | 20/1 | 10 | 40 | MP | 2.47 ± 0.71 |
8 | 20/1 | 10 | 20 | cMP | - |
9 | 20/1 | 10 | 50 | MP | 2.92 ± 0.81 |
10 | 10/1 | 10 | 50 | MP | 1.53 ± 0.45 |
EUD/THEOP | |||||
11 | 0/1 | 9 | 20 | C | - |
12 | 20/1 | 10 | 40 | C | - |
13 | 20/1 | 10 | 20 | C + MP * | * 6.79 ± 1.84 |
14 | 20/1 | 12 | 20 | MP | 5.93 ± 1.62 |
15 | 20/1 | 15 | 20 | cMP | 1.64 ± 0.32 |
16 | 20/1 | 12 | 40 | MP | 5.65 ± 1.66 |
17 | 10/1 | 12 | 40 | MP * + EMP | * 3.75 ± 1.08 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franco, P.; De Marco, I. Eudragit: A Novel Carrier for Controlled Drug Delivery in Supercritical Antisolvent Coprecipitation. Polymers 2020, 12, 234. https://doi.org/10.3390/polym12010234
Franco P, De Marco I. Eudragit: A Novel Carrier for Controlled Drug Delivery in Supercritical Antisolvent Coprecipitation. Polymers. 2020; 12(1):234. https://doi.org/10.3390/polym12010234
Chicago/Turabian StyleFranco, Paola, and Iolanda De Marco. 2020. "Eudragit: A Novel Carrier for Controlled Drug Delivery in Supercritical Antisolvent Coprecipitation" Polymers 12, no. 1: 234. https://doi.org/10.3390/polym12010234
APA StyleFranco, P., & De Marco, I. (2020). Eudragit: A Novel Carrier for Controlled Drug Delivery in Supercritical Antisolvent Coprecipitation. Polymers, 12(1), 234. https://doi.org/10.3390/polym12010234