Exploring Needle-Like Zinc Oxide Nanostructures for Improving Dental Resin Sealers: Design and Evaluation of Antibacterial, Physical and Chemical Properties
"> Figure 1
<p>Schematic representation of the proposed approach of needle-like zinc oxide nanostructures (ZnO-NN) for improving dental resin sealers.</p> "> Figure 2
<p>Scanning electron microscopy of ZnO-NN showing the nanostructure after the thermal evaporation process (magnification of 40,000×). The arrows indicate the nucleation core that originates the extensions with distinct directions within three-dimensional space.</p> "> Figure 3
<p>Representative micro-Raman analysis at the dentin-sealer interface. Image (<b>a</b>) represents the interface dentin-sealer, where ES states for experimental sealer, D states for dentine, and * is the analyzed line at the interface. Image (<b>b</b>) represents the total interface area. Image (<b>c</b>) displays the graph when there is integration in micro-Raman analysis for the hydroxyapatite (HAp) using the peak at 910 cm<sup>−1</sup>. Image (<b>d</b>) shows the graph when there is integration in the micro-Raman study for ZnO using the peak at 582 cm<sup>−1</sup>. Note that from the sealer analysis into dentin, there is a decrease in the ZnO peak and an increase in the phosphate peak contained in hydroxyapatite (HAp). There is a site in the center of the interface (image <b>b</b>) where there is still a high peak of phosphate and the maintenance of the ZnO peak. The overlap of graphs (<b>c</b>,<b>d</b>) shows the presence of ZnO and phosphate in the same site, suggesting that the ZnO was able to penetrate the dentinal tubules.</p> "> Figure 4
<p>Results of antibacterial analysis of the resin sealers. Mean and standard deviation values of colony-forming units (CFU) in log<sub>10</sub> at 0 and 24 h of the experimental dental sealers against <span class="html-italic">E. faecalis</span>. Different capital letters indicate significant differences among groups within the same time (<span class="html-italic">p</span> < 0.05). Different small letters indicate significant differences within the same group at different times (<span class="html-italic">p</span> < 0.05).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Needle-Like Zinc Oxide Nanostructures (ZnO-NN)
2.2. Resin Sealers Formulation
2.3. Flow
2.4. Film Thickness
2.5. Water Sorption and Solubility
2.6. Radiopacity
2.7. Degree of Conversion
2.8. Interface Characterization by Micro-Raman
2.9. Antibacterial Activity
2.10. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Raghupathi, K.R.; Koodali, R.T.; Manna, A.C. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 2011, 27, 4020–4028. [Google Scholar] [CrossRef]
- Roduner, E. Size matters: Why nanomaterials are different. Chem. Soc. Rev. 2006, 35, 583–592. [Google Scholar] [CrossRef] [PubMed]
- Melo, M.A.S.; Guedes, S.F.F.; Xu, H.H.K.; Rodrigues, L.K.A. Nanotechnology-based restorative materials for dental caries management. Trends Biotechnol. 2013, 31, 459–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hume, W.R. The pharmacologic and toxicological properties of zinc oxide-eugenol. J. Am. Dent. Assoc. 1986, 113, 789–791. [Google Scholar] [CrossRef] [PubMed]
- Markowitz, K.; Moynihan, M.; Liu, M.; Kim, S. Biologic properties of eugenol and zinc oxide-eugenol: A clinically oriented review. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 1992, 73, 729–737. [Google Scholar] [CrossRef]
- Niu, L.N.; Fang, M.; Jiao, K.; Tang, L.H.; Xiao, Y.H.; Shen, L.J.; Chen, J.H. Tetrapod-like zinc oxide whisker enhancement of resin composite. J. Dent. Res. 2010, 89, 746–750. [Google Scholar] [CrossRef] [PubMed]
- Garcia, I.M.; Leitune, V.C.B.; Kist, T.L.; Takimi, A.; Samuel, S.M.W.; Collares, F.M. Quantum dots as nonagglomerated nanofillers for adhesive resins. J. Dent. Res. 2016, 95, 1401–1407. [Google Scholar] [CrossRef] [PubMed]
- Garcia, I.M.; Leitune, V.C.B.; Visioli, F.; Samuel, S.M.W.; Collares, F.M. Influence of zinc oxide quantum dots in the antibacterial activity and cytotoxicity of an experimental adhesive resin. J. Dent. 2018, 73, 57–60. [Google Scholar] [CrossRef]
- Divya, M.; Vaseeharan, B.; Abinaya, M.; Vijayakumar, S.; Govindarajan, M.; Alharbi, N.S.; Kadaikunnan, S.; Khaled, J.M.; Benelli, G. Biopolymer gelatin-coated zinc oxide nanoparticles showed high antibacterial, antibiofilm and anti-angiogenic activity. J. Photochem. Photobiol. B Biol. 2018, 178, 211–218. [Google Scholar] [CrossRef]
- Osorio, R.; Cabello, I.; Toledano, M. Bioactivity of zinc-doped dental adhesives. J. Dent. 2014, 42, 403–412. [Google Scholar] [CrossRef]
- Cheng, L.; Zhang, K.; Weir, M.D.; Melo, M.A.S.; Zhou, X.; Xu, H.H.K. Nanotechnology strategies for antibacterial and remineralizing composites and adhesives to tackle dental caries. Nanomedicine 2015, 10, 627–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balhaddad, A.A.; Kansara, A.A.; Hidan, D.; Weir, M.D.; Xu, H.H.K.; Melo, M.A.S. Toward dental caries: Exploring nanoparticle-based platforms and calcium phosphate compounds for dental restorative materials. Bioact. Mater. 2019, 4, 43–55. [Google Scholar] [CrossRef] [PubMed]
- Chao, L.-C.; Lee, J.-W.; Liau, C.-C. ZnO nanoneedles prepared by ion implantation and thermal oxidation on metallic zinc foils. J. Phys. D Appl. Phys. 2008, 41, 115405. [Google Scholar] [CrossRef]
- Park, D.; Tak, Y.; Yong, K. Fabrication and characterization of ZnO nanoneedle array using metal organic chemical vapor deposition. J. Nanosci. Nanotechnol. 2008, 8, 623–627. [Google Scholar] [CrossRef]
- Kumari, P.; Roy, S.S.; McLaughlin, J. Growth and characterization of zinc oxide nanoneedles. J. Nanosci. Nanotechnol. 2009, 9, 4367–4370. [Google Scholar] [CrossRef]
- Kim, T.Y.; Lee, S.H.; Mo, Y.H.; Nahm, K.S.; Kim, J.Y.; Sun, E.K.; Kim, M. Growth mechanism of needle-shaped ZnO nanostructures over NiO-coated Si substrates. Korean J. Chem. Eng. 2004, 21, 733–738. [Google Scholar] [CrossRef]
- Neykova, N.; Brož, A.; Remeš, Z.; Hruška, K.; Kalbáčová, M.; Kromka, A.; Vaněček, M. ZnO hedgehog-like structures for control cell cultivation. Appl. Surf. Sci. 2012, 258, 3485–3489. [Google Scholar] [CrossRef]
- Jones, N.; Ray, B.; Ranjit, K.T.; Manna, A.C. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol. Lett. 2008, 279, 71–76. [Google Scholar] [CrossRef] [Green Version]
- Zhong, L.; Liu, H.; Samal, M.; Yun, K. Synthesis of ZnO nanoparticles-decorated spindle-shaped graphene oxide for application in synergistic antibacterial activity. J. Photochem. Photobiol. B Biol. 2018, 183, 293–301. [Google Scholar] [CrossRef]
- Stuart, C.H.; Schwartz, S.A.; Beeson, T.J.; Owatz, C.B. Enterococcus faecalis: Its role in root canal treatment failure and current concepts in retreatment. J. Endod. 2006, 32, 93–98. [Google Scholar] [CrossRef]
- Partoazar, A.; Talaei, N.; Bahador, A.; Pourhajibagher, M.; Dehpour, S.; Sadati, M.; Bakhtiarian, A. Antibiofilm activity of natural zeolite supported NanoZnO: Inhibition of Esp gene expression of Enterococcus faecalis. Nanomedicine 2019, 14, 675–687. [Google Scholar] [CrossRef] [PubMed]
- AlShwaimi, E.; Bogari, D.; Ajaj, R.; Al-Shahrani, S.; Almas, K.; Majeed, A. In vitro antimicrobial effectiveness of root canal sealers against enterococcus faecalis: A systematic review. J. Endod. 2016, 42, 1588–1597. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, D.A.; Paula, A.B.; Marto, C.M.; Coelho, A.; Paulo, S.; Martinho, J.P.; Carrilho, E.; Ferreira, M.M. Biocompatibility of root canal sealers: A systematic review of in vitro and in vivo studies. Materials 2019, 12, 4113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, X.; Deng, M.; Kaps, S.; Zhu, X.; Hölken, I.; Mess, K.; Adelung, R.; Mishra, Y.K. Study of tetrapodal ZnO-PDMS composites: A comparison of fillers shapes in stiffness and hydrophobicity improvements. PLoS ONE 2014, 9, e106991. [Google Scholar] [CrossRef]
- Leitune, V.C.B.; Schiroky, P.R.; Genari, B.; Camassola, M.; S, F.A.L.; Samuel, S.M.W.; Collares, F.M. Nanoneedle-like zinc oxide as a filler particle for an experimental adhesive resin. Indian J. Dent. Res. 2019, 30, 777–782. [Google Scholar]
- Yao, B.D.; Chan, Y.F.; Wang, N. Formation of ZnO nanostructures by a simple way of thermal evaporation. Appl. Phys. Lett. 2002, 81, 757–759. [Google Scholar] [CrossRef]
- International Organization for Standardization. ISO 6876:2012—Dentistry—Root Canal Sealing Materials; International Organization for Standardization: Geneva, Switzerland, 2012; pp. 1–9. [Google Scholar]
- International Organization for Standardization. ISO 4049:2009—Dentistry—Polymer-Based Restorative Materials; International Organization for Standardization: Geneva, Switzerland, 2009; pp. 1–28. [Google Scholar]
- Collares, F.M.; Ogliari, F.A.; Zanchi, C.H.; Petzhold, C.L.; Piva, E.; Samuel, S.M.W. Influence of 2-hydroxyethyl methacrylate concentration on polymer network of adhesive resin. J. Adhes. Dent. 2011, 13, 125–129. [Google Scholar]
- Garcia, I.M.; Leitune, V.C.B.; Takimi, A.S.; Bergmann, C.P.; Samuel, S.M.W.; Melo, M.A.; Collares, F.M. Cerium dioxide particles to tune radiopacity of dental adhesives: Microstructural and physico-chemical evaluation. J. Funct. Biomater. 2020, 11, 7. [Google Scholar] [CrossRef] [Green Version]
- Maktabi, H.; Ibrahim, M.; Alkhubaizi, Q.; Weir, M.; Xu, H.; Strassler, H.; Fugolin, A.P.P.; Pfeifer, C.S.; Melo, M.A.S. Underperforming light curing procedures trigger detrimental irradiance-dependent biofilm response on incrementally placed dental composites. J. Dent. 2019, 88, 103110. [Google Scholar] [CrossRef]
- Collares, F.M.; Portella, F.F.; Leitune, V.C.B.; Samuel, S.M.W. Discrepancies in degree of conversion measurements by FTIR. Braz. Oral Res. 2013, 27, 453–454. [Google Scholar]
- De Souza, M.O.; Branco Leitune, V.C.; Bohn, P.V.; Werner Samuel, S.M.; Collares, F.M. Physical-mechanical properties of Bis-EMA based root canal sealer with different fillers addition. J. Conserv. Dent. 2015, 18, 227–231. [Google Scholar]
- Ferracane, J.L. Hygroscopic and hydrolytic effects in dental polymer networks. Dent. Mater. 2006, 22, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Ersahan, S.; Aydin, C. Solubility and apical sealing characteristics of a new calcium silicate-based root canal sealer in comparison to calcium hydroxide-, methacrylate resin- and epoxy resin-based sealers. Acta Odontol. Scand. 2013, 71, 857–862. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, A.; Sword, J.; Nishitani, Y.; Yoshiyama, M.; Agee, K.; Tay, F.R.; Pashley, D.H. Water sorption and solubility of methacrylate resin-based root canal sealers. J. Endod. 2007, 33, 990–994. [Google Scholar] [CrossRef] [PubMed]
- Durner, J.; Obermaier, J.; Draenert, M.; Ilie, N. Correlation of the degree of conversion with the amount of elutable substances in nano-hybrid dental composites. Dent. Mater. 2012, 28, 1146–1153. [Google Scholar] [CrossRef]
- Hass, V.; Dobrovolski, M.; Zander-Grande, C.; Martins, G.C.; Gordillo, L.A.A.; Rodrigues Accorinte, M.D.L.; Gomes, O.M.M.; Loguercio, A.D.; Reis, A. Correlation between degree of conversion, resin-dentin bond strength and nanoleakage of simplified etch-and-rinse adhesives. Dent. Mater. 2013, 29, 921–928. [Google Scholar] [CrossRef] [PubMed]
- Garcia, I.M.; Leitune, V.C.B.; Ferreira, C.J.; Collares, F.M. Tantalum oxide as filler for dental adhesive resin. Dent. Mater. J. 2018, 37, 897–903. [Google Scholar] [CrossRef] [Green Version]
- Leitune, V.C.B.; Collares, F.M.; Takimi, A.; de Lima, G.B.; Petzhold, C.L.; Bergmann, C.P.; Samuel, S.M.W. Niobium pentoxide as a novel filler for dental adhesive resin. J. Dent. 2013, 41, 106–113. [Google Scholar] [CrossRef] [Green Version]
- Beriat, N.C.; Ertan, A.; Cehreli, Z.C.; Gulsahi, K. Time-dependent conversion of a methacrylate-based sealer polymerized with different light-curing units. J. Endod. 2009, 35, 110–112. [Google Scholar] [CrossRef]
- Collares, F.M.; Klein, M.; Santos, P.D.; Portella, F.F.; Ogliari, F.; Leitune, V.C.B.; Samuel, S.M.W. Influence of radiopaque fillers on physicochemical properties of a model epoxy resin-based root canal sealer. J. Appl. Oral Sci. 2013, 21, 533–539. [Google Scholar] [CrossRef] [Green Version]
- Toledano, M.; Yamauti, M.; Ruiz-Requena, M.E.; Osorio, R. A ZnO-doped adhesive reduced collagen degradation favouring dentine remineralization. J. Dent. 2012, 40, 756–765. [Google Scholar] [CrossRef] [PubMed]
- Osorio, R.; Osorio, E.; Medina-Castillo, A.L.; Toledano, M. Polymer nanocarriers for dentin adhesion. J. Dent. Res. 2014, 93, 1258–1263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirsch, J.; Basche, S.; Neunzehn, J.; Dede, M.; Dannemann, M.; Hannig, C.; Weber, M.-T. Is it really penetration? Locomotion of devitalized Enterococcus faecalis cells within dentinal tubules of bovine teeth. Arch. Oral Biol. 2017, 83, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, J.C.; Garcia, I.M.; Leitune, V.C.B.; Visioli, F.; de Souza Balbinot, G.; Samuel, S.M.W.; Makeeva, I.; Collares, F.M.; Sauro, S. Halloysite nanotubes loaded with alkyl trimethyl ammonium bromide as antibacterial agent for root canal sealers. Dent. Mater. 2019, 35, 789–796. [Google Scholar] [CrossRef] [PubMed]
- Rostirolla, F.V.; Leitune, V.C.B.; Bohns, F.R.; Portella, F.F.; Samuel, S.M.W.; Collares, F.M. Calcium phosphates as fillers for methacrylate-based sealer. Clin. Oral Investig. 2019, 23, 4417–4423. [Google Scholar] [CrossRef] [PubMed]
- Love, R.M. Bacterial adhesins—Their role in tubule invasion and endodontic disease. Aust. Endod. J. 2002, 28, 25–28. [Google Scholar] [CrossRef]
- Xie, J.Y.; He, Y.; Irwin, P.L.; Jin, T.; Shi, X. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against campylobacter. Appl. Environ. Microbiol. 2011, 77, 2325–2331. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, V.; Mishra, N.; Gadani, K.; Solanki, P.S.; Shah, N.A.; Tiwari, M. Mechanism of anti-bacterial activity of zinc oxide nanoparticle against carbapenem-resistant acinetobacter baumannii. Front. Microbiol. 2018, 9, 1218. [Google Scholar] [CrossRef] [Green Version]
- Kashef, N.; Hamblin, M.R. Can microbial cells develop resistance to oxidative stress in antimicrobial photodynamic inactivation? Drug Resist. Updates 2017, 31, 31–42. [Google Scholar] [CrossRef]
- Zanni, E.; Chandraiahgari, C.R.; De Bellis, G.; Montereali, M.R.; Armiento, G.; Ballirano, P.; Polimeni, A.; Sarto, M.S.; Uccelletti, D. Zinc oxide nanorods-decorated graphene nanoplatelets: A promising antimicrobial agent against the cariogenic bacterium streptococcus mutans. Nanomaterials 2016, 6, 179. [Google Scholar] [CrossRef]
- Szemes, T.; Vlkova, B.; Minarik, G.; Tothova, L.; Drahovska, H.; Turna, J.; Celec, P. On the origin of reactive oxygen species and antioxidative mechanisms in Enterococcus faecalis. Redox Rep. 2010, 15, 202–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vidana, R.; Sullivan, A.; Billström, H.; Ahlquist, M.; Lund, B. Enterococcus faecalis infection in root canals–host-derived or exogenous source? Lett. Appl. Microbiol. 2011, 52, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Wang, Q.; Zhang, C.; Cheung, G.S.P.; Shen, Y. Prevalence, phenotype, and genotype of Enterococcus faecalis isolated from saliva and root canals in patients with persistent apical periodontitis. J. Endod. 2010, 36, 1950–1955. [Google Scholar] [CrossRef] [PubMed]
Chemical Component Description | Abbreviation | Manufacturer | Role of each Substance | Content |
---|---|---|---|---|
Urethane dimethacrylate | UDMA | Sigma-Aldrich, St Louis, MO, USA | Co-monomeric blend composition | 70.00 wt.% |
Glycerol-1,3-dimethacrylate | GDMA | Sigma-Aldrich, St Louis, MO, USA | Co-monomeric blend composition | 15.00 wt.% |
Ethoxylated bisphenol A glycol dimethacrylate | BISEMA | Sigma-Aldrich, St Louis, MO, USA | Co-monomeric blend composition | 15.00 wt.% |
Camphorquinone | CQ | Sigma-Aldrich, St Louis, MO, USA | Photo-initiator: excitation via photoactivation process and reaction with N, N-dihydroxy ethyl-para–toluidine. | 1 mol % |
N, N-dihydroxy ethyl-para–toluidine | DHEPT | Sigma-Aldrich, St Louis, MO, USA | Co-initiator with CQ and activator with BP: initiation process of the polymerization reaction | 1 mol % |
Benzoyl-peroxide | BP | Sigma-Aldrich, St Louis, MO, USA | Initiator: initiation process of polymerization reaction with N, N-dihydroxy ethyl-para–toluidine | 1 mol % |
Nanoneedle structured zinc oxide | ZnO-NN | Self-synthetized | Inorganic filler: improves mechanical properties, reduces hydrolytic degradation, increases viscosity, increases radiopacity | * |
Groups | Flow (mm) | Film Thickness (mm) | Water Sorption (µm/mm3) | Solubility (µm/mm3) | Radiopacity (pixels) |
---|---|---|---|---|---|
0% | * | 26.7 (± 5.0) B | 39.4 (± 5.6) A | −4.2 (± 0.1) A | 66.8 (± 5.3) C |
20% | 19.8 (± 1.0) A | 54.0 (± 12.2) A | 32.3 (± 1.7) A | −3.0 (± 1.4) A | 103.6 (± 6.9) B |
30% | 18.6 (± 1.0) A | 48.0 (± 7.2) A | 35.2 (± 3.8) A | −1.7 (± 1.5) A | 110.6 (± 7.9) A,B |
40% | 17.2 (± 2.0) A | 56.7 (± 5.8) A | 36.5 (± 6.5) A | 0.3 (± 6.1) A | 123.2 (± 9.0) A,# |
Groups | Immediate | 7 Days | 14 Days |
---|---|---|---|
0% | 49.9 (± 0.4) A,a | 48.1 (± 1.3) A,a | 48.1 (± 0.4) A,a |
20% | 46.2 (± 1.5) A,B,a | 38.1 (± 2.8) B,b | 32.5 (± 2.3) B,b |
30% | 43.0 (± 2.4) B,a | 30.0 (± 3.0) C,b | 31.5 (± 2.8) B,b |
40% | 2.4 (± 1.2) C,b | 26.7 (± 4.6) D,a | 25.9 (± 3.4) C,a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Collares, F.M.; Garcia, I.M.; Klein, M.; Parolo, C.F.; Sánchez, F.A.L.; Takimi, A.; Bergmann, C.P.; Samuel, S.M.W.; Melo, M.A.; Leitune, V.C. Exploring Needle-Like Zinc Oxide Nanostructures for Improving Dental Resin Sealers: Design and Evaluation of Antibacterial, Physical and Chemical Properties. Polymers 2020, 12, 789. https://doi.org/10.3390/polym12040789
Collares FM, Garcia IM, Klein M, Parolo CF, Sánchez FAL, Takimi A, Bergmann CP, Samuel SMW, Melo MA, Leitune VC. Exploring Needle-Like Zinc Oxide Nanostructures for Improving Dental Resin Sealers: Design and Evaluation of Antibacterial, Physical and Chemical Properties. Polymers. 2020; 12(4):789. https://doi.org/10.3390/polym12040789
Chicago/Turabian StyleCollares, Fabrício M, Isadora M Garcia, Mariana Klein, Clarissa F Parolo, Felipe Antonio L Sánchez, Antônio Takimi, Carlos P Bergmann, Susana Maria W Samuel, Mary Anne Melo, and Vicente CB Leitune. 2020. "Exploring Needle-Like Zinc Oxide Nanostructures for Improving Dental Resin Sealers: Design and Evaluation of Antibacterial, Physical and Chemical Properties" Polymers 12, no. 4: 789. https://doi.org/10.3390/polym12040789
APA StyleCollares, F. M., Garcia, I. M., Klein, M., Parolo, C. F., Sánchez, F. A. L., Takimi, A., Bergmann, C. P., Samuel, S. M. W., Melo, M. A., & Leitune, V. C. (2020). Exploring Needle-Like Zinc Oxide Nanostructures for Improving Dental Resin Sealers: Design and Evaluation of Antibacterial, Physical and Chemical Properties. Polymers, 12(4), 789. https://doi.org/10.3390/polym12040789