Estimation and Prediction for Alpha-Power Weibull Distribution Based on Hybrid Censoring
<p>Classical examination of the survival times.</p> "> Figure 2
<p>APW estimated examination of the survival times.</p> "> Figure 3
<p>Existence and uniqueness plot for MLE of survival times: r = 60, and T = 110.</p> "> Figure 4
<p>Histogram of posterior for APW parameters: r = 60, and T = 110.</p> "> Figure 5
<p>Trace and BGR lines of MCMC results for APW parameters. Survival times: r = 60, and T = 110.</p> "> Figure 6
<p>Auto-correlation test with different lags of MCMC results for APW parameters. Survival times: r = 60 and T = 110.</p> "> Figure 7
<p>Bayes prediction by one-sample prediction and two-sample prediction: survival times.</p> "> Figure 8
<p>Classical examination of glass fiber data.</p> "> Figure 9
<p>Classical examination of Fibre data.</p> "> Figure 10
<p>Existence and uniqueness plot for MLE of glass fibers data: r = 40, and T = 1.5.</p> "> Figure 11
<p>Histogram of posterior for APW parameters of glass fiber data: r = 40, and T = 1.5.</p> "> Figure 12
<p>Trace and BGR lines of MCMC results for APW parameters of glass fiber data: r = 40, and T = 1.5.</p> "> Figure 13
<p>Auto-correlation test with different lags of MCMC results for APW parameters of glass fiber data: r = 40, and T = 1.5.</p> "> Figure 14
<p>Bayes prediction by one-sample prediction and two-sample prediction: glass fiber data.</p> ">
Abstract
:1. Introduction
2. Estimation Based on Type II Hybrid Censored Samples
2.1. Maximum Likelihood
2.2. Bayesian Estimation
3. Predictive Posterior Density
- 1-
- One-sample prediction;
- 2-
- Two-sample prediction.
3.1. One Sample Prediction
- Case I:
- Case II:
- Case I:
- Case II:
3.2. Two-Sample Prediction
4. Simulation
- As the sample size increases for the parameters of APW and , the minimum RAB and MSE decline for the estimated parameters of MLE and Bayes estimates;
- The Bayes estimates consistently outperform the MLE in terms of RAB, MSE, and interval values;
- In most cases, the HPD intervals are shorter than ACI;
- When the censored sample size r increases while keeping the hybrid censored sample’s sample size n and time constant, and the performance improves.
5. Application
6. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pushpalatha, M.N.; Parkavi, A.; Alex, S.A. Predictive analytics for healthcare. In Deep Learning Applications for Cyber-Physical; IGI Global: Hershey, PA, USA, 2022; pp. 222–244. [Google Scholar]
- Lee, S.C.; Cheang, S.Y.P.; Moslehpour, M. Predictive analytics in business analytics: Decision tree. Adv. Decis. Sci. 2022, 26, 1–29. [Google Scholar]
- Burnaev, E. Algorithmic foundations of predictive analytics in industrial engineering design. J. Commun. Technol. Electron. 2019, 64, 1485–1492. [Google Scholar] [CrossRef]
- Epstein, B. Truncated life test in the exponential case. Ann. Math. Stat. 1954, 25, 555–564. [Google Scholar] [CrossRef]
- MIL-STD-781C; Reliability Design Qualification and Production Acceptance Test, Exponential Distribution. U.S. Government Printing Office: Washington, DC, USA, 1977.
- Dubey, S.; Pradhan, B.; Kundu, D. Parameter estimation of the hybrid censored log-normal distribution. J. Stat. Comput. Simul. 2011, 81, 275–287. [Google Scholar] [CrossRef]
- Salem, S.; Abo-Kasem, O.E.; Hussien, A. On Joint Type-II Generalized Progressive Hybrid Censoring Scheme. Comput. J. Math. Stat. Sci. 2023, 2, 123–158. [Google Scholar] [CrossRef]
- Yadav, A.S.; Singh, S.K.; Singh, U. On hybrid censored inverse Lomax distribution: Application to the survival data. Statistica 2016, 76, 185–203. [Google Scholar]
- Almetwally, E.M.; Alotaibi, R.; Mutairi, A.A.; Park, C.; Rezk, H. Optimal plan of multi-stress–strength reliability Bayesian and non-Bayesian methods for the alpha power exponential model using progressive first failure. Symmetry 2022, 14, 1306. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Kundu, D. Hybrid censoring: Models, inferential results and applications. Comput. Stat. Data Anal. 2013, 57, 166–209. [Google Scholar] [CrossRef]
- Ganguly, A.; Mitra, S.; Samanta, D.; Kundu, D. Exact inference for the two parameter exponential distribution under Type-II hybrid censoring. J. Stat. Plan. Inference 2012, 42, 613–625. [Google Scholar] [CrossRef]
- AL-Zahrani, B.; Gindwan, M. Parameter estimation of a two-parameter Lindley distribution under hybrid censoring. Int. J. Syst. Assur. Eng. Manag. 2014, 5, 628–636. [Google Scholar] [CrossRef]
- Kohansal, A.; Rezakhah, S.; Khorram, E. Parameter estimation of Type II hybrid censored weighted exponential distribution. Commun. Stat.-Simul. Comput. 2015, 44, 1273–1299. [Google Scholar] [CrossRef]
- Lawless, J.F. A prediction problem concerning samples from the exponential distribution, with application in life testing. Technometrics 1971, 13, 725–730. [Google Scholar] [CrossRef]
- Ebrahmini, N. Prediction intervals for future failures in the exponential distribution under hybrid censoring. IEEE Trans. Reliab. 1992, 41, 127–132. [Google Scholar] [CrossRef]
- Singh, S.K.; Singh, U.; Sharma, V.K. Estimation and prediction for Type-I hybrid censored data from generalized Lindley distribution. J. Stat. Manag. Syst. 2016, 19, 367–396. [Google Scholar]
- Balakrishnan, N.; Shafay, R.A. One- and two-sample Bayesian prediction intervals based on Type-II hybrid censored data. Commun. Stat.-Theory Methods 2012, 41, 1511–1531. [Google Scholar] [CrossRef]
- Nassar, M.; Alzaatreh, A.; Mead, M.; Abo-Kasem, O. Alpha power Weibull distribution: Properties and applications. Commun. Stat.-Theory Methods 2017, 46, 10236–10252. [Google Scholar] [CrossRef]
- Berger, J.O. Statistical Decision Theory and Bayesian Analysis; Springer: New York, NY, USA, 1985. [Google Scholar]
- Okasha, H.M.; Mohammed, H.S.; Lio, Y. E-Bayesian Estimation of Reliability Characteristics of a Weibull Distribution with Applications. Mathematics 2021, 9, 1261. [Google Scholar] [CrossRef]
- Panahi, H.; Asadi, S. Estimation of the Weibull Distribution Based on Type-II Censored Samples. Appl. Math. Sci. 2011, 5, 2549–2558. [Google Scholar]
- Singh, S.K.; Singh, U.; Sharma, V.K. Bayesian Estimation and Prediction for Flexible Weibull Model under Type-II Censoring Scheme. J. Probab. Stat. 2013, 2013, 146140. [Google Scholar] [CrossRef]
- Jefferey, H. Theory of Probability, 3rd ed.; Oxford University Press: Oxford, UK, 1961. [Google Scholar]
- Smith, A.; Roberts, G. Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods. J. R. Stat. Soc. Ser. B 1993, 55, 3–23. [Google Scholar] [CrossRef]
- Hastings, W. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 1970, 55, 97–109. [Google Scholar] [CrossRef]
- Brooks, S. Markov chain Monte Carlo method and its application. J. R. Stat. Soc. Ser. D 1998, 47, 69–100. [Google Scholar] [CrossRef]
- Alotaibi, R.; Nassar, M.; Rezk, H.; Elshahhat, A. Inferences and engineering applications of alpha power Weibull distribution using progressive type-II censoring. Mathematics 2022, 10, 2901. [Google Scholar] [CrossRef]
- Alotaibi, R.; Almetwally, E.M.; Kumar, D.; Rezk, H. Optimal test plan of step-stress model of alpha power Weibull lifetimes under progressively type-II censored samples. Symmetry 2022, 14, 1801. [Google Scholar] [CrossRef]
- Mohamed, M.O.; Hassan, N.A.; Abdelrahman, N. Discrete alpha-power Weibull distribution: Properties and application. Int. J. Nonlinear Anal. Appl. 2022, 13, 1305–1317. [Google Scholar]
- Smith, R.L.; Naylor, J. A Comparison of Maximum Likelihood and Bayesian Estimators for the Three-Parameter Weibull Distribution. Appl. Stat. 1987, 36, 358–369. [Google Scholar] [CrossRef]
MLE | Bayesian | Prediction | One | Two | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RAB | MSE | Lower | Upper | RAB | MSE | Lower | Upper | ||||||||||
50 | 3 | 35 | 0.2026 | 0.3199 | 0.0517 | 1.6925 | 0.0277 | 0.0186 | 0.2079 | 0.7426 | 40, 45 | Point | 2.1031 | 3.2638 | 1.8775 | 2.9404 | |
0.0390 | 0.0112 | 0.4213 | 0.8254 | 0.0188 | 0.0064 | 0.4599 | 0.7574 | Lower | 0.2534 | 0.5543 | 0.6219 | 0.8281 | |||||
0.0133 | 0.0254 | 0.0824 | 0.7069 | 0.0049 | 0.0078 | 0.2321 | 0.5686 | Upper | 4.7466 | 7.2531 | 3.5614 | 5.5412 | |||||
45 | 0.1442 | 0.2445 | 0.1052 | 1.5314 | 0.0126 | 0.0078 | 0.3268 | 0.6620 | 46, 48 | Point | 3.5224 | 4.4166 | 3.3800 | 4.2708 | |||
0.0326 | 0.0102 | 0.4311 | 0.8283 | 0.0072 | 0.0046 | 0.4760 | 0.7384 | Lower | 0.8367 | 1.1031 | 0.9917 | 1.4414 | |||||
0.0311 | 0.0218 | 0.0994 | 0.6758 | 0.0022 | 0.0049 | 0.2744 | 0.5375 | Upper | 7.2299 | 9.0887 | 6.6257 | 8.8478 | |||||
4 | 35 | 0.1934 | 0.3069 | 0.1152 | 1.8134 | 0.0251 | 0.0172 | 0.2146 | 0.7673 | 40, 45 | Point | 2.0594 | 3.1748 | 1.8931 | 2.9502 | ||
0.0318 | 0.0108 | 0.4191 | 0.8190 | 0.0210 | 0.0057 | 0.4872 | 0.7661 | Lower | 0.3788 | 0.6340 | 0.6475 | 0.9533 | |||||
0.0139 | 0.0248 | 0.0865 | 0.7451 | 0.0040 | 0.0077 | 0.2236 | 0.5583 | Upper | 4.4258 | 6.9577 | 3.5605 | 5.6441 | |||||
45 | 0.1419 | 0.2329 | 0.1263 | 1.5070 | 0.0011 | 0.0073 | 0.3183 | 0.6554 | 46, 48 | Point | 3.5462 | 4.4823 | 3.3446 | 4.2395 | |||
0.0271 | 0.0099 | 0.4233 | 0.8092 | 0.0001 | 0.0040 | 0.4810 | 0.7266 | Lower | 0.9232 | 1.1323 | 1.0593 | 1.2635 | |||||
0.0132 | 0.0203 | 0.0993 | 0.6815 | 0.0007 | 0.0044 | 0.2749 | 0.5220 | Upper | 7.5150 | 9.4798 | 6.4960 | 8.4014 | |||||
100 | 3 | 70 | 0.0445 | 0.1599 | −0.2607 | 1.3052 | 0.0254 | 0.0170 | 0.2137 | 0.7535 | 80, 85 | Point | 1.8986 | 2.3406 | 1.8074 | 2.2342 | |
0.0099 | 0.0048 | 0.4699 | 0.7419 | 0.0103 | 0.0032 | 0.4921 | 0.7114 | Lower | 0.6983 | 0.7122 | 0.8720 | 0.9590 | |||||
0.0388 | 0.0174 | 0.1277 | 0.6413 | 0.0104 | 0.0054 | 0.2510 | 0.5347 | Upper | 3.6524 | 4.3399 | 3.0887 | 3.6875 | |||||
85 | 0.0229 | 0.1362 | −0.2121 | 1.2349 | 0.0011 | 0.0071 | 0.3414 | 0.6627 | 88, 95 | Point | 2.7074 | 3.8979 | 2.6593 | 3.8467 | |||
0.0081 | 0.0045 | 0.4717 | 0.7477 | 0.0030 | 0.0028 | 0.5044 | 0.7053 | Lower | 1.0529 | 1.5861 | 1.2280 | 1.7688 | |||||
0.0431 | 0.0163 | 0.1348 | 0.6307 | 0.0010 | 0.0033 | 0.2972 | 0.5246 | Upper | 5.0868 | 7.3680 | 4.5357 | 6.6665 | |||||
4 | 70 | 0.0556 | 0.1600 | −0.2546 | 1.3102 | 0.0191 | 0.0170 | 0.2230 | 0.7561 | 80, 85 | Point | 1.9252 | 2.3701 | 1.8398 | 2.2718 | ||
0.0132 | 0.0047 | 0.4746 | 0.7413 | 0.0095 | 0.0028 | 0.5041 | 0.7086 | Lower | 0.7294 | 0.7921 | 0.8472 | 1.0814 | |||||
0.0426 | 0.0172 | 0.1216 | 0.6405 | 0.0131 | 0.0049 | 0.2618 | 0.5290 | Upper | 3.5883 | 4.2110 | 2.9375 | 3.6616 | |||||
85 | 0.0118 | 0.1188 | −0.1816 | 1.1698 | 0.0010 | 0.0069 | 0.3530 | 0.6567 | 88, 95 | Point | 2.7373 | 3.9274 | 2.6134 | 3.7641 | |||
0.0121 | 0.0045 | 0.4761 | 0.7384 | 0.0039 | 0.0027 | 0.4908 | 0.6919 | Lower | 0.7406 | 1.2681 | 1.2032 | 1.8186 | |||||
0.0700 | 0.0152 | 0.1365 | 0.6076 | 0.0014 | 0.0031 | 0.2967 | 0.5175 | Upper | 4.9428 | 7.2694 | 4.2727 | 6.4409 |
MLE | Bayesian | Prediction | One | Two | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RAB | MSE | Lower | Upper | RAB | MSE | Lower | Upper | ||||||||||
50 | 0.3 | 35 | 0.1108 | 0.2678 | 0.0982 | 1.5644 | 0.0177 | 0.0193 | 0.2342 | 0.7658 | 40, 45 | Point | 0.2291 | 0.2724 | 0.2286 | 0.2718 | |
0.0390 | 0.0669 | 0.8535 | 1.8480 | 0.0055 | 0.0115 | 1.1196 | 1.5350 | Lower | 0.1473 | 0.1715 | 0.1543 | 0.1913 | |||||
0.0242 | 0.2761 | 1.9069 | 3.9481 | 0.0031 | 0.0225 | 2.7080 | 3.2779 | Upper | 0.3329 | 0.3775 | 0.3092 | 0.3620 | |||||
45 | 0.0936 | 0.2488 | 0.1259 | 1.5207 | 0.0054 | 0.0076 | 0.3329 | 0.6741 | 46, 48 | Point | 0.2832 | 0.3073 | 0.2819 | 0.3061 | |||
0.0343 | 0.0634 | 0.8585 | 1.8307 | 0.0010 | 0.0063 | 1.1409 | 1.4518 | Lower | 0.1958 | 0.2132 | 0.2096 | 0.2309 | |||||
0.0315 | 0.2284 | 1.9867 | 3.8240 | 0.0005 | 0.0079 | 2.8268 | 3.1734 | Upper | 0.3740 | 0.3956 | 0.3648 | 0.3943 | |||||
0.6 | 35 | 0.1105 | 0.2430 | 0.1925 | 1.6476 | 0.0050 | 0.0187 | 0.2276 | 0.7550 | 40, 45 | Point | 0.2295 | 0.2732 | 0.2278 | 0.2709 | ||
0.0390 | 0.0506 | 0.9212 | 1.7803 | 0.0043 | 0.0115 | 1.0881 | 1.5124 | Lower | 0.1359 | 0.1789 | 0.1479 | 0.1828 | |||||
0.0008 | 0.2399 | 1.9301 | 4.0748 | 0.0017 | 0.0213 | 2.7682 | 3.2844 | Upper | 0.3215 | 0.3818 | 0.3025 | 0.3534 | |||||
45 | 0.0924 | 0.2375 | 0.2055 | 1.7988 | 0.0032 | 0.0072 | 0.3416 | 0.6647 | 46, 48 | Point | 0.2829 | 0.3072 | 0.2866 | 0.3109 | |||
0.0232 | 0.0385 | 0.9497 | 1.7105 | 0.0003 | 0.0058 | 1.1391 | 1.4333 | Lower | 0.2039 | 0.2227 | 0.2086 | 0.2259 | |||||
0.0037 | 0.2051 | 1.9941 | 4.3838 | 0.0005 | 0.0061 | 2.8327 | 3.1657 | Upper | 0.3741 | 0.3998 | 0.3699 | 0.3945 | |||||
100 | 0.3 | 70 | 0.0835 | 0.2363 | 0.1985 | 2.1887 | 0.0083 | 0.0183 | 0.2586 | 0.7596 | 80, 85 | Point | 0.2303 | 0.2507 | 0.2300 | 0.2505 | |
0.0094 | 0.0315 | 0.9650 | 1.6593 | 0.0062 | 0.0079 | 1.1396 | 1.4814 | Lower | 0.1654 | 0.1809 | 0.1744 | 0.1890 | |||||
0.0101 | 0.2041 | 1.9722 | 4.2175 | 0.0017 | 0.0219 | 2.7064 | 3.2757 | Upper | 0.3020 | 0.3209 | 0.2944 | 0.3157 | |||||
85 | 0.0932 | 0.2261 | 0.2167 | 2.3658 | 0.0033 | 0.0068 | 0.3406 | 0.6703 | 88, 95 | Point | 0.2625 | 0.3003 | 0.2620 | 0.3001 | |||
0.0089 | 0.0306 | 0.9448 | 1.6897 | 0.0029 | 0.0049 | 1.1723 | 1.4382 | Lower | 0.1968 | 0.2322 | 0.2076 | 0.2397 | |||||
0.0035 | 0.1939 | 1.7863 | 4.2346 | 0.0000 | 0.0061 | 2.8302 | 3.1799 | Upper | 0.3258 | 0.3671 | 0.3207 | 0.3616 | |||||
0.6 | 70 | 0.0750 | 0.1975 | 0.2194 | 2.3796 | 0.0009 | 0.0169 | 0.2628 | 0.7679 | 80, 85 | Point | 0.2294 | 0.2498 | 0.2289 | 0.2492 | ||
0.0094 | 0.0284 | 0.9824 | 1.6420 | 0.0052 | 0.0081 | 1.1370 | 1.4780 | Lower | 0.1497 | 0.1688 | 0.1710 | 0.1898 | |||||
0.0227 | 0.1944 | 1.9776 | 4.1236 | 0.0014 | 0.0216 | 2.7202 | 3.3071 | Upper | 0.2959 | 0.3201 | 0.2855 | 0.3096 | |||||
85 | 0.0695 | 0.1908 | 0.3182 | 2.3856 | 0.0060 | 0.0068 | 0.3326 | 0.6509 | 88, 95 | Point | 0.2618 | 0.2999 | 0.2610 | 0.2989 | |||
0.0038 | 0.0212 | 1.0194 | 1.5906 | 0.0023 | 0.0045 | 1.1524 | 1.4409 | Lower | 0.1942 | 0.2343 | 0.2009 | 0.2351 | |||||
0.0149 | 0.1855 | 1.9959 | 4.1502 | 0.0001 | 0.0059 | 2.8327 | 3.1810 | Upper | 0.3292 | 0.3779 | 0.3249 | 0.3643 |
MLE | Bayesian | Prediction | One | Two | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RAB | MSE | Lower | Upper | RAB | MSE | Lower | Upper | ||||||||||
50 | 0.15 | 35 | 0.0269 | 0.1426 | 0.0023 | 1.2534 | 0.0096 | 0.0194 | 0.2273 | 0.7593 | 40, 45 | Point | 0.0659 | 0.1003 | 0.0635 | 0.0976 | |
0.0446 | 0.0131 | 0.4087 | 0.8449 | 0.0160 | 0.0032 | 0.5167 | 0.7266 | Lower | 0.0203 | 0.0355 | 0.0251 | 0.0465 | |||||
0.0110 | 0.1541 | 2.2001 | 3.7341 | 0.0006 | 0.0207 | 2.7075 | 3.2595 | Upper | 0.1257 | 0.1741 | 0.1090 | 0.1666 | |||||
45 | 0.0353 | 0.1360 | 0.0266 | 1.3011 | 0.0015 | 0.0080 | 0.3377 | 0.6822 | 46, 48 | Point | 0.1095 | 0.1368 | 0.1085 | 0.1363 | |||
0.0380 | 0.0109 | 0.4226 | 0.8230 | 0.0060 | 0.0027 | 0.5121 | 0.7112 | Lower | 0.0460 | 0.0630 | 0.0542 | 0.0682 | |||||
0.0121 | 0.1472 | 2.3318 | 3.7244 | 0.0007 | 0.0087 | 2.8271 | 3.1841 | Upper | 0.1777 | 0.2251 | 0.1816 | 0.2218 | |||||
0.4 | 35 | 0.0256 | 0.1361 | 0.0125 | 1.1315 | 0.0043 | 0.0191 | 0.2171 | 0.7526 | 40, 45 | Point | 0.0658 | 0.1004 | 0.0644 | 0.0989 | ||
0.0438 | 0.0117 | 0.4207 | 0.8319 | 0.0146 | 0.0030 | 0.4999 | 0.7135 | Lower | 0.0152 | 0.0297 | 0.0231 | 0.0457 | |||||
0.0053 | 0.1489 | 2.2598 | 3.7720 | 0.0028 | 0.0208 | 2.7241 | 3.2833 | Upper | 0.1170 | 0.1731 | 0.1091 | 0.1695 | |||||
45 | 0.0184 | 0.1277 | 0.0279 | 1.3630 | 0.0017 | 0.0077 | 0.3479 | 0.6954 | 46, 48 | Point | 0.1103 | 0.1375 | 0.1090 | 0.1368 | |||
0.0336 | 0.0088 | 0.4407 | 0.7996 | 0.0065 | 0.0025 | 0.5013 | 0.7048 | Lower | 0.0451 | 0.0621 | 0.0520 | 0.0597 | |||||
0.0050 | 0.1230 | 2.3208 | 3.6910 | 0.0001 | 0.0080 | 2.8193 | 3.1712 | Upper | 0.1854 | 0.2264 | 0.1801 | 0.2166 | |||||
100 | 0.15 | 70 | 0.0405 | 0.1251 | 0.0196 | 2.0385 | 0.0081 | 0.0184 | 0.2616 | 0.7778 | 80, 85 | Point | 0.0637 | 0.0781 | 0.0622 | 0.0765 | |
0.0114 | 0.0062 | 0.4527 | 0.7610 | 0.0140 | 0.0019 | 0.5217 | 0.6862 | Lower | 0.0243 | 0.0319 | 0.0325 | 0.0423 | |||||
0.0282 | 0.1357 | 1.6092 | 4.5602 | 0.0006 | 0.0215 | 2.7226 | 3.2838 | Upper | 0.1039 | 0.1250 | 0.0952 | 0.1166 | |||||
85 | 0.0129 | 0.1244 | 0.0352 | 1.9122 | 0.0074 | 0.0078 | 0.3397 | 0.6752 | 88, 95 | Point | 0.0888 | 0.1261 | 0.0880 | 0.1255 | |||
0.0029 | 0.0055 | 0.4561 | 0.7474 | 0.0073 | 0.0016 | 0.5279 | 0.6858 | Lower | 0.0444 | 0.0688 | 0.0506 | 0.0758 | |||||
0.0174 | 0.1225 | 1.6836 | 4.2595 | 0.0009 | 0.0080 | 2.8351 | 3.1794 | Upper | 0.1331 | 0.1828 | 0.1277 | 0.1800 | |||||
0.4 | 70 | 0.0137 | 0.1147 | 0.0199 | 1.9815 | 0.0219 | 0.0171 | 0.2630 | 0.7562 | 80, 85 | Point | 0.0632 | 0.0775 | 0.0624 | 0.0768 | ||
0.0148 | 0.0057 | 0.4623 | 0.7554 | 0.0159 | 0.0020 | 0.5262 | 0.6941 | Lower | 0.0272 | 0.0325 | 0.0304 | 0.0423 | |||||
0.0305 | 0.1145 | 1.7882 | 4.3949 | 0.0010 | 0.0213 | 2.6968 | 3.2729 | Upper | 0.1021 | 0.1207 | 0.0941 | 0.1170 | |||||
85 | 0.0124 | 0.1004 | 0.0830 | 1.9730 | 0.0058 | 0.0075 | 0.3383 | 0.6822 | 88, 95 | Point | 0.0890 | 0.1265 | 0.0874 | 0.1248 | |||
0.0040 | 0.0049 | 0.4655 | 0.7393 | 0.0057 | 0.0016 | 0.5261 | 0.6822 | Lower | 0.0460 | 0.0668 | 0.0494 | 0.0770 | |||||
0.0080 | 0.1043 | 1.6964 | 4.3514 | 0.0005 | 0.0079 | 2.8234 | 3.1685 | Upper | 0.1427 | 0.1905 | 0.1254 | 0.1785 |
MLE | Bayesian | Prediction | One | Two | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RAB | MSE | Lower | Upper | RAB | MSE | Lower | Upper | ||||||||||
50 | 0.5 | 35 | 0.1689 | 1.9609 | 0.5798 | 4.3272 | 0.0005 | 0.0239 | 1.6725 | 2.2775 | 40, 45 | Point | 0.3293 | 0.3807 | 0.3283 | 0.3794 | |
0.0792 | 0.0775 | 0.8957 | 1.9101 | 0.0023 | 0.0148 | 1.0816 | 1.5504 | Lower | 0.2281 | 0.2727 | 0.2303 | 0.2813 | |||||
0.0532 | 0.9964 | 0.9083 | 4.7728 | 0.0009 | 0.0241 | 2.7058 | 3.3127 | Upper | 0.4491 | 0.4927 | 0.4193 | 0.4791 | |||||
45 | 0.1113 | 1.8086 | 0.6942 | 4.1576 | 0.0009 | 0.0082 | 1.8284 | 2.1785 | 46, 48 | Point | 0.3927 | 0.4196 | 0.3920 | 0.4188 | |||
0.0799 | 0.0719 | 0.8996 | 1.9522 | 0.0017 | 0.0066 | 1.1541 | 1.4606 | Lower | 0.2914 | 0.3184 | 0.2995 | 0.3233 | |||||
0.0422 | 0.9500 | 0.9783 | 4.7685 | 0.0004 | 0.0085 | 2.8295 | 3.1817 | Upper | 0.4876 | 0.5163 | 0.4859 | 0.5114 | |||||
0.8 | 35 | 0.0049 | 1.9653 | 0.6091 | 4.7392 | 0.0044 | 0.0233 | 1.6962 | 2.2756 | 40, 45 | Point | 0.3293 | 0.3799 | 0.3292 | 0.3802 | ||
0.0796 | 0.0730 | 0.9142 | 1.8929 | 0.0032 | 0.0138 | 1.0618 | 1.5156 | Lower | 0.2153 | 0.2673 | 0.2297 | 0.2880 | |||||
0.0198 | 0.8697 | 1.2345 | 4.8846 | 0.0025 | 0.0215 | 2.7304 | 3.2945 | Upper | 0.4284 | 0.4844 | 0.4234 | 0.4858 | |||||
45 | 0.1016 | 1.7415 | 0.6716 | 4.4127 | 0.0007 | 0.0080 | 1.8287 | 2.1751 | 46, 48 | Point | 0.3893 | 0.4159 | 0.3904 | 0.4172 | |||
0.0856 | 0.0707 | 0.9378 | 1.8849 | 0.0027 | 0.0062 | 1.1466 | 1.4555 | Lower | 0.2941 | 0.3186 | 0.3042 | 0.3249 | |||||
0.0552 | 0.7473 | 1.1706 | 4.4980 | 0.0018 | 0.0084 | 2.8266 | 3.1809 | Upper | 0.4875 | 0.5151 | 0.4870 | 0.5083 | |||||
100 | 0.5 | 70 | 0.0267 | 0.8196 | 0.1745 | 3.7189 | 0.0002 | 0.0231 | 1.7032 | 2.2969 | 80, 85 | Point | 0.3280 | 0.3524 | 0.3290 | 0.3533 | |
0.0237 | 0.0312 | 0.9896 | 1.6721 | 0.0002 | 0.0093 | 1.0998 | 1.4748 | Lower | 0.2527 | 0.2717 | 0.2602 | 0.2829 | |||||
0.0020 | 0.3551 | 1.8255 | 4.1626 | 0.0022 | 0.0202 | 2.6934 | 3.2714 | Upper | 0.4160 | 0.4390 | 0.4054 | 0.4318 | |||||
85 | 0.0021 | 0.7953 | 0.2354 | 4.0292 | 0.0006 | 0.0079 | 1.8413 | 2.1842 | 88, 95 | Point | 0.3691 | 0.4117 | 0.3673 | 0.4101 | |||
0.0227 | 0.0306 | 0.9685 | 1.7027 | 0.0012 | 0.0058 | 1.1422 | 1.4460 | Lower | 0.2972 | 0.3343 | 0.2976 | 0.3427 | |||||
0.0013 | 0.3211 | 1.8850 | 4.1075 | 0.0001 | 0.0078 | 2.8431 | 3.1833 | Upper | 0.4517 | 0.4913 | 0.4324 | 0.4807 | |||||
0.8 | 70 | 0.0217 | 0.7381 | 0.2741 | 3.6392 | 0.0006 | 0.0228 | 1.7298 | 2.2978 | 80, 85 | Point | 0.3295 | 0.3538 | 0.3287 | 0.3530 | ||
0.0409 | 0.0303 | 1.0151 | 1.6912 | 0.0016 | 0.0091 | 1.1065 | 1.4726 | Lower | 0.2479 | 0.2767 | 0.2545 | 0.2784 | |||||
0.0199 | 0.3158 | 1.9638 | 4.1555 | 0.0015 | 0.0201 | 2.7075 | 3.2674 | Upper | 0.4237 | 0.4531 | 0.3968 | 0.4225 | |||||
85 | 0.0261 | 0.7182 | 0.3740 | 3.7218 | 0.0019 | 0.0069 | 1.8401 | 2.2069 | 88, 95 | Point | 0.3704 | 0.4132 | 0.3693 | 0.4123 | |||
0.0352 | 0.0254 | 1.0461 | 1.6454 | 0.0011 | 0.0056 | 1.1564 | 1.4419 | Lower | 0.2934 | 0.3328 | 0.3040 | 0.3364 | |||||
0.0105 | 0.2677 | 1.9956 | 3.9813 | 0.0010 | 0.0078 | 2.8175 | 3.1515 | Upper | 0.4475 | 0.4903 | 0.4348 | 0.4738 |
r | T | Estimates | SE | Lower | Upper | R | h | |
---|---|---|---|---|---|---|---|---|
60 | 110 | MLE | 0.12432 | 0.06293 | 0.00098 | 0.24767 | 0.58740 | 0.00450 |
1.00717 | 0.12820 | 0.75590 | 1.25844 | |||||
0.00213 | 0.00027 | 0.00160 | 0.00265 | |||||
Bayesian | 0.16131 | 0.05115 | 0.00019 | 0.20380 | 0.61358 | 0.00416 | ||
1.00678 | 0.12802 | 0.76875 | 1.26696 | |||||
0.00213 | 0.00021 | 0.00207 | 0.00219 | |||||
235 | MLE | 0.11153 | 0.05176 | 0.00233 | 0.24563 | 0.43888 | 0.00395 | |
0.98353 | 0.10345 | 0.78076 | 1.18629 | |||||
0.00226 | 0.00023 | 0.00167 | 0.00259 | |||||
Bayesian | 0.13639 | 0.04956 | 0.00022 | 0.23157 | 0.46121 | 0.00374 | ||
0.98322 | 0.10331 | 0.79113 | 1.19317 | |||||
0.00226 | 0.00003 | 0.00220 | 0.00233 | |||||
90 | 250 | MLE | 0.11035 | 0.04169 | 0.00265 | 0.44420 | 0.33250 | 0.00375 |
0.99656 | 0.09374 | 0.81284 | 1.18029 | |||||
0.00216 | 0.00023 | 0.00172 | 0.00261 | |||||
Bayesian | 0.13494 | 0.03935 | 0.00023 | 0.30928 | 0.35126 | 0.00360 | ||
0.99628 | 0.09361 | 0.82224 | 1.18652 | |||||
0.00215 | 0.00025 | 0.00211 | 0.00221 | |||||
300 | MLE | 0.14193 | 0.03919 | 0.00294 | 0.45158 | 0.27213 | 0.00366 | |
1.00695 | 0.08421 | 0.84190 | 1.17200 | |||||
0.00223 | 0.00025 | 0.00174 | 0.00272 | |||||
Bayesian | 0.16166 | 0.02961 | 0.00012 | 0.30063 | 0.28566 | 0.00355 | ||
1.00669 | 0.08409 | 0.85034 | 1.17760 | |||||
0.00222 | 0.00021 | 0.00218 | 0.00229 |
r | T | 110 | 235 | ||
---|---|---|---|---|---|
One | Two | One | Two | ||
60 | x_(s1:n) | 213.592 | 227.753 | 215.257 | 220.946 |
x_(s2:n) | 330.184 | 356.529 | 336.810 | 366.244 | |
KSD | 0.110 | 0.128 | 0.119 | 0.138 | |
p value | 0.524 | 0.330 | 0.420 | 0.253 | |
250 | 300 | ||||
90 | x_(s1:n) | 209.059 | 214.511 | 203.959 | 209.208 |
x_(s2:n) | 325.225 | 353.268 | 315.296 | 342.015 | |
KSD | 0.110 | 0.138 | 0.101 | 0.128 | |
p value | 0.524 | 0.253 | 0.636 | 0.330 |
r | T | Estimates | SE | Lower | Upper | R | h | |
---|---|---|---|---|---|---|---|---|
40 | 1.5 | MLE | 6.38471 | 4.04607 | 1.14558 | 33.91500 | 0.62580 | 1.46420 |
3.61683 | 1.28464 | 1.09894 | 6.13471 | |||||
0.20871 | 0.13080 | 0.02465 | 0.66107 | |||||
Bayesian | 6.37244 | 0.97457 | 4.42246 | 8.24316 | 0.62825 | 1.44788 | ||
3.60977 | 0.64323 | 2.40183 | 4.87414 | |||||
0.20784 | 0.04637 | 0.12152 | 0.30367 | |||||
1.6 | MLE | 8.13212 | 3.88604 | 1.08452 | 35.34876 | 0.48970 | 2.36942 | |
3.85947 | 1.15056 | 1.60436 | 6.11457 | |||||
0.21478 | 0.18670 | 0.05115 | 0.58071 | |||||
Bayesian | 8.13443 | 0.96970 | 6.16518 | 9.96940 | 0.48921 | 2.37509 | ||
3.86299 | 0.65603 | 2.61326 | 5.15972 | |||||
0.21465 | 0.03762 | 0.14443 | 0.29162 | |||||
50 | 1.65 | MLE | 8.89171 | 3.80317 | 2.24250 | 32.02592 | 0.37761 | 3.57436 |
4.34119 | 1.02724 | 2.32779 | 6.35459 | |||||
0.19080 | 0.10426 | 0.02234 | 0.45395 | |||||
Bayesian | 8.89902 | 0.82629 | 7.29770 | 10.54122 | 0.37968 | 3.54935 | ||
4.33410 | 0.59919 | 3.17194 | 5.50907 | |||||
0.19074 | 0.02704 | 0.14021 | 0.24606 | |||||
1.7 | MLE | 8.69209 | 1.46131 | 0.85208 | 27.23627 | 0.25907 | 5.41665 | |
4.96924 | 0.95637 | 3.09475 | 6.84374 | |||||
0.15153 | 0.09348 | 0.03169 | 0.33475 | |||||
Bayesian | 8.69814 | 0.66231 | 7.41435 | 10.01433 | 0.26094 | 5.38285 | ||
4.96264 | 0.55785 | 3.88066 | 6.05655 | |||||
0.15149 | 0.01883 | 0.11631 | 0.19001 |
r | T | 1.4 | 1.6 | ||
---|---|---|---|---|---|
One | Two | One | Two | ||
40 | x_(s1:n) | 1.930 | 1.942 | 1.850 | 1.860 |
x_(s2:n) | 2.041 | 2.089 | 1.946 | 1.988 | |
KSD | 0.222 | 0.238 | 0.159 | 0.175 | |
p value | 0.085 | 0.053 | 0.398 | 0.284 | |
r | T | 1.65 | 1.7 | ||
50 | x_(s1:n) | 1.783 | 1.792 | 1.735 | 1.742 |
x_(s2:n) | 1.865 | 1.900 | 1.804 | 1.834 | |
KSD | 0.111 | 0.127 | 0.111 | 0.127 | |
p value | 0.828 | 0.681 | 0.826 | 0.686 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almetwally, E.M.; Alotaibi, R.; Rezk, H. Estimation and Prediction for Alpha-Power Weibull Distribution Based on Hybrid Censoring. Symmetry 2023, 15, 1687. https://doi.org/10.3390/sym15091687
Almetwally EM, Alotaibi R, Rezk H. Estimation and Prediction for Alpha-Power Weibull Distribution Based on Hybrid Censoring. Symmetry. 2023; 15(9):1687. https://doi.org/10.3390/sym15091687
Chicago/Turabian StyleAlmetwally, Ehab M., Refah Alotaibi, and Hoda Rezk. 2023. "Estimation and Prediction for Alpha-Power Weibull Distribution Based on Hybrid Censoring" Symmetry 15, no. 9: 1687. https://doi.org/10.3390/sym15091687
APA StyleAlmetwally, E. M., Alotaibi, R., & Rezk, H. (2023). Estimation and Prediction for Alpha-Power Weibull Distribution Based on Hybrid Censoring. Symmetry, 15(9), 1687. https://doi.org/10.3390/sym15091687