Optimal Plan of Multi-Stress–Strength Reliability Bayesian and Non-Bayesian Methods for the Alpha Power Exponential Model Using Progressive First Failure
<p>Three-dimensional plot of skewness and kurtosis with different values of parameters.</p> "> Figure 2
<p>Three-dimensional plot of multi-stress–strength reliability with different values of parameters.</p> "> Figure 3
<p>Plots of the estimated PDF, CDF, and PP of APE distribution in data set I.</p> "> Figure 4
<p>Plots of the estimated PDF, CDF and PP plot of APE distribution in data set II.</p> "> Figure 5
<p>Plots of the estimated PDF, CDF, and PP plot of APE distribution in data set III.</p> "> Figure 6
<p>Contour plot of log-likelihood function with different values of parameters; complete sample.</p> "> Figure 7
<p>MCMC trace, convergence and plot of posterior distribution; complete sample.</p> ">
Abstract
:1. Introduction
2. Moments
3. Estimation in the Classical Style
Maximum Likelihood R Estimation
4. Fisher Information
5. Confidence Intervals
5.1. Approximate Confidence Intervals
5.2. Bootstrap Confidence Intervals
5.2.1. Methods of Boot-p
- Use the sample to compute and .
- Based on censoring technique, a bootstrap progressive first-failure Type-II censored sample indicated by is constructed from the From the , a bootstrap progressive first-failure Type-II censored sample designated by is constructed using censoring scheme. Based on censoring scheme, a bootstrap progressive first-failure Type-II censored sample, indicated by , is constructed from the Based on and , construct the bootstrap sample estimate of R using (5), say .
- Step 2 should be repeated times.
- Assume , where is the cumulative distribution function. For a given , define The approximation of percent confidence interval of is given by
5.2.2. Methods of Boot-t
- Use the sample and to compute and .
- Use to generate a bootstrap sample , to generate a bootstrap sample , and similarly, to generate a bootstrap sample . Based on , and , compute the bootstrap sample estimate of R using (5), say and the following statistic:
- Step 2 should be repeated times.
- After obtaining a number of values, the boundaries of percent confidence interval are determined as follows: Assume has a cumulative distribution function given by Define for a given .
- percent boot-t confidence interval of is calculated as
- To achieve better estimates of parameters or any function of parameters, it is often advantageous to incorporate prior knowledge about the parameters, which could be prior data, expert opinion, or some other medium of knowledge. A Bayesian technique is used to include such prior knowledge into the estimation process. As a result, we now go through the Bayesian approach of estimation in depth, which incorporates previous knowledge in the form of prior distributions.
6. Bayesian Approach
6.1. Prior Information and Loss Function
6.2. Posterior Analysis by SLF
7. Optimization Criterion
8. Simulation Study
- Scheme I: and ,
- Scheme II: and .
9. Application of Real Data
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weerahandi, S.; Johnson, R.A. Testing reliability in a stress-strength model when X and Y are normally distributed. Technometrics 1992, 34, 83–91. [Google Scholar] [CrossRef]
- Surles, J.G.; Padgett, W.J. Inference for reliability and stress-strength for a scaled Burr Type X distribution. Lifetime Data Anal. 2001, 7, 187–200. [Google Scholar] [CrossRef] [PubMed]
- Al-Mutairi, D.K.; Ghitany, M.E.; Kundu, D. Inferences on stress-strength reliability from Lindley distributions. Commun. Stat.—Theory Methods 2013, 42, 1443–1463. [Google Scholar] [CrossRef]
- Rao, G.S.; Aslam, M.; Kundu, D. Burr-XII distribution parametric estimation and estimation of reliability of multicomponent stress-strength. Commun. Stat.—Theory Methods 2015, 44, 4953–4961. [Google Scholar] [CrossRef]
- Singh, S.K.; Singh, U.; Yaday, A.; Viswkarma, P.K. On the estimation of stress strength reliability parameter of inverted exponential distribution. Int. J. Sci. World 2015, 3, 98–112. [Google Scholar] [CrossRef] [Green Version]
- Abo-Kasem, O.E.; Almetwally, E.M.; Abu El Azm, W.S. Inferential Survival Analysis for Inverted NH Distribution Under Adaptive Progressive Hybrid Censoring with Application of Transformer Insulation. Ann. Data Sci. 2022, 1–48. [Google Scholar] [CrossRef]
- Alshenawy, R.; Sabry, M.A.; Almetwally, E.M.; Almongy, H.M. Product Spacing of Stress-Strength under Progressive Hybrid Censored for Exponentiated-Gumbel Distribution. Comput. Mater. Contin. 2021, 66, 2973–2995. [Google Scholar] [CrossRef]
- Alamri, O.A.; Abd El-Raouf, M.M.; Ismail, E.A.; Almaspoor, Z.; Alsaedi, B.S.; Khosa, S.K.; Yusuf, M. Estimate stress-strength reliability model using Rayleigh and half-normal distribution. Comput. Intell. Neurosci. 2021, 7653581. [Google Scholar] [CrossRef]
- Sabry, M.A.; Almetwally, E.M.; Alamri, O.A.; Yusuf, M.; Almongy, H.M.; Eldeeb, A.S. Inference of fuzzy reliability model for inverse Rayleigh distribution. AIMS Math. 2021, 6, 9770–9785. [Google Scholar] [CrossRef]
- Abu El Azm, W.S.; Almetwally, E.M.; Alghamdi, A.S.; Aljohani, H.M.; Muse, A.H.; Abo-Kasem, O.E. Stress-Strength Reliability for Exponentiated Inverted Weibull Distribution with Application on Breaking of Jute Fiber and Carbon Fibers. Comput. Intell. Neurosci. 2021, 4227346. [Google Scholar] [CrossRef]
- Okabe, T.; Otsuka, Y. Proposal of a Validation Method of Failure Mode Analyses based on the Stress-Strength Model with a Support Vector Machine. Reliab. Eng. Syst. Saf. 2021, 205, 107247. [Google Scholar] [CrossRef]
- Bhattacharyya, G.K.; Johnson, R.A. Estimation of reliability in a multicomponent stress-strength model. J. Am. Stat. Assoc. 1974, 69, 966–970. [Google Scholar] [CrossRef]
- Kotb, M.S.; Raqab, M.Z. Estimation of reliability for multi-component stress–strength model based on modified Weibull distribution. Stat. Pap. 2021, 62, 2763–2797. [Google Scholar] [CrossRef]
- Maurya, R.K.; Tripathi, Y.M. Reliability estimation in a multicomponent stress-strength model for Burr XII distribution under progressive censoring. Braz. J. Probab. Stat. 2020, 34, 345–369. [Google Scholar] [CrossRef]
- Mahto, A.K.; Tripathi, Y.M.; Kızılaslan, F. Estimation of Reliability in a Multicomponent Stress-Strength Model for a General Class of Inverted Exponentiated Distributions Under Progressive Censoring. J. Stat. Theory Pract. 2020, 14, 58. [Google Scholar] [CrossRef]
- Alotaibi, R.M.; Tripathi, Y.M.; Dey, S.; Rezk, H.R. Bayesian and non-Bayesian reliability estimation of multicomponent stress–strength model for unit Weibull distribution. J. Taibah Univ. Sci. 2020, 14, 1164–1181. [Google Scholar] [CrossRef]
- Maurya, R.K.; Tripathi, Y.M.; Kayal, T. Reliability Estimation in a Multicomponent Stress-Strength Model Based on Inverse Weibull Distribution. Sankhya B 2022, 84, 364–401. [Google Scholar] [CrossRef]
- Chandra, S.; Owen, D.B. On estimating the reliability of a component subject to several different stresses (strengths). Nav. Res. Logist. Quart. 1975, 22, 31–39. [Google Scholar]
- Dutta, K.; Sriwastav, G.L. An n-standby system with P(X < Y < Z). IAPQR Trans. 1986, 12, 95–97. [Google Scholar]
- Ivshin, V.V. On the estimation of the probabilities of a double linear inequality in the case of uniform and two-parameter exponential distributions. J. Math. Sci. 1998, 88, 819–827. [Google Scholar] [CrossRef]
- Singh, N. On the estimation of Pr(X1 < Y < X2). Commun. Statist. Theory Meth. 1980, 9, 1551–1561. [Google Scholar]
- Hlawka, P. Estimation of the Parameter p = P(X < Y < Z); No.11, Ser. Stud. i Materiaty No. 10 Problemy Rachunku Prawdopodobienstwa; Prace Nauk. Inst. Mat. Politechn.: Wroclaw, Poland, 1975; pp. 55–65. [Google Scholar]
- Hanagal, D.D. Estimation of system reliability in multicomponent series stress-strength model. J. Indian Statist. Assoc. 2003, 41, 1–7. [Google Scholar]
- Waegeman, W.; De Baets, B.; Boullart, L. On the scalability of ordered multi-class ROC analysis. Comput. Statist. Data Anal. 2008, 52, 33–71. [Google Scholar] [CrossRef]
- Chumchum, D.; Munindra, B.; Jonali, G. Cascade System with Pr(X < Y < Z). J. Inform. Math. Sci. 2013, 5, 37–47. [Google Scholar]
- Patowary, A.N.; Sriwastav, G.L.; Hazarika, J. Inference of R = P(X < Y < Z) for n-Standby System: A Monte-Carlo Simulation Approach. J. Math. 2016, 12, 18–22. [Google Scholar]
- Yousef, M.M.; Almetwally, E.M. Multi stress-strength reliability based on progressive first failure for Kumaraswamy model: Bayesian and non-Bayesian estimation. Symmetry 2021, 13, 2120. [Google Scholar] [CrossRef]
- Kohansal, A.; Shoaee, S. Bayesian and classical estimation of reliability in a multicomponent stress-strength model under adaptive hybrid progressive censored data. Stat. Pap. 2021, 62, 309–359. [Google Scholar] [CrossRef]
- Saini, S.; Tomer, S.; Garg, R. On the reliability estimation of multicomponent stress–strength model for Burr XII distribution using progressively first-failure censored samples. J. Stat. Comput. Simul. 2022, 92, 667–704. [Google Scholar] [CrossRef]
- Kohansal, A.; Fernández, A.J.; Pérez-González, C.J. Multi-component stress–strength parameter estimation of a non-identical component strengths system under the adaptive hybrid progressive censoring samples. Statistics 2021, 55, 925–962. [Google Scholar] [CrossRef]
- Hassan, M.K. On Estimating Standby Redundancy System in a MSS Model with GLFRD Based on Progressive Type II Censoring Data. Reliab. Theory Appl. 2021, 16, 206–219. [Google Scholar]
- Alotaibi, R.; Tripathi, Y.; Dey, S.; Rezk, H. Estimation of multicomponent reliability based on progressively Type II censored data from unit Weibull distribution. WSEAS Trans. Math. 2021, 20, 288–299. [Google Scholar] [CrossRef]
- Wu, S.J.; Kus, C. On estimation based on progressive first-failure-censored sampling. Comput. Stat. Data Anal. 2009, 53, 3659–3670. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Aggarwala, R. Progressive Censoring: Theory, Methods, and Applications; Springer Science & Business Media Birkhauser Boston: Cambridge, MA, USA, 2000. [Google Scholar]
- Mahdavi, A.; Kundu, D. A new method for generating distributions with an application to exponential distribution. Commun. Stat. Theory Methods 2017, 46, 6543–6557. [Google Scholar] [CrossRef]
- Nassar, M.; Alzaatreh, A.; Mead, M.; Abo-Kasem, O. Alpha power Weibull distribution: Properties and applications. Commun. Stat.—Theory Methods 2017, 46, 10236–10252. [Google Scholar] [CrossRef]
- Dey, A.; Alzaatreh, A.; Zhang, C.; Kumar, D. A new extension of generalized exponential distribution with application to ozone data. Ozone Sci. Eng. 2017, 39, 273–285. [Google Scholar] [CrossRef]
- Nadarajah, S.; Okorie, I.E. On the moments of the alpha power transformed generalized exponential distribution. Ozone Sci. Eng. 2018, 40, 330–335. [Google Scholar] [CrossRef]
- Alotaibi, R.; Elshahhat, A.; Rezk, H.; Nassar, M. Inferences for Alpha Power Exponential Distribution Using Adaptive Progressively Type-II Hybrid Censored Data with Applications. Symmetry 2022, 14, 651. [Google Scholar] [CrossRef]
- Alotaibi, R.; Al Mutairi, A.; Almetwally, E.M.; Park, C.; Rezk, H. Optimal Design for a Bivariate Step-Stress Accelerated Life Test with Alpha Power Exponential Distribution Based on Type-I Progressive Censored Samples. Symmetry 2022, 14, 830. [Google Scholar] [CrossRef]
- Dence, T.P.; Dence, J.B. A survey of Euler’s constant. Math. Mag. 2009, 82, 255–265. [Google Scholar] [CrossRef] [Green Version]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables; 55 of National Bureau of Standards Applied Mathematics Series; U.S. Government Printing Office: Washington, DC, USA, 1964.
- Seaborn, J.B. Hypergeometric Functions and Their Applications; Springer: New York, NY, USA, 1991. [Google Scholar]
- Wolfram Research, Inc. Mathematica—Wolfram/Alpha; Davison and Hinkley: Champaign, IL, USA, 1997. [Google Scholar]
- Davison, A.C.; Hinkley, D.V. Bootstrap Methods and Their Application; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Tibshirani, R.; Efron, B. An Introduction to the Bootstrap; Chapman & Hall, Inc.: New York, NY, USA, 1993. [Google Scholar]
- Ng, H.K.T.; Chan, C.S.; Balakrishnan, N. Optimal progressive censoring plans for the Weibull distribution. Technometrics 2004, 46, 470–481. [Google Scholar] [CrossRef]
- Balasooriya, U.; Balakrishnan, N. Reliability sampling plans for log-normal distribution, based on progressively-censored samples. IEEE Trans. Reliab. 2000, 49, 199–203. [Google Scholar] [CrossRef]
- Balasooriya, U.; Saw, S.L.C.; Gadag, V. Progressively censored reliability sampling plans for the Weibull distribution. Technometrics 2000, 42, 160–167. [Google Scholar] [CrossRef]
- Burkschat, M.; Cramer, E.; Kamps, U. Optimality criteria and optimal schemes in progressive censoring. Commun. Stat.—Theory Methods 2007, 36, 1419–1431. [Google Scholar] [CrossRef]
- Burkschat, M.; Cramer, E.; Kamps, U. On optimal schemes in progressive censoring. Stat. Probab. Lett. 2006, 76, 1032–1036. [Google Scholar] [CrossRef]
- Burkschat, M. On optimality of extremal schemes in progressive type II censoring. J. Stat. Plan. Inference 2008, 138, 1647–1659. [Google Scholar] [CrossRef]
- Pradhan, B.; Kundu, D. On progressively censored generalized exponential distribution. Test 2009, 18, 497–515. [Google Scholar] [CrossRef]
- Elshahhat, A.; Rastogi, M.K. Estimation of parameters of life for an inverted Nadarajah–Haghighi distribution from Type-II progressively censored samples. J. Indian Soc. Probab. Stat. 2021, 22, 113–154. [Google Scholar] [CrossRef]
- Gupta, R.D.; Kundu, D. On the comparison of Fisher information of the Weibull and GE distributions. J. Stat. Plan. Inference 2006, 136, 3130–3144. [Google Scholar] [CrossRef]
- Almongy, H.M.; Alshenawy, F.Y.; Almetwally, E.M.; Abdo, D.A. Applying transformer insulation using Weibull extended distribution based on progressive censoring scheme. Axioms 2021, 10, 100. [Google Scholar] [CrossRef]
- El-Sherpieny, E.S.A.; Almetwally, E.M.; Muhammed, H.Z. Bayesian and non-bayesian estimation for the parameter of bivariate generalized Rayleigh distribution based on clayton copula under progressive type-II censoring with random removal. Sankhya A 2021, 1–38. [Google Scholar] [CrossRef]
- Plummer, M.; Best, N.; Cowles, K.; Vines, K. CODA: Convergence diagnosis and output analysis for MCMC. R News 2006, 6, 7–11. [Google Scholar]
- Nelson, W.B. Applied Life Data Analysis; John Wiley & Sons.: Hoboken, NJ, USA, 2003. [Google Scholar]
- Choudhary, N.; Tyagi, A.; Singh, B. Estimation of R = P[Y < X < Z] under Progressive Type-II Censored Data from Weibull Distribution. Lobachevskii J. Math. 2021, 42, 318–335. [Google Scholar]
Q1 | Median | Q3 | SK | KT | ||
---|---|---|---|---|---|---|
0.15 | 0.15 | 0.8973 | 2.2992 | 5.1031 | 0.33333 | 0.93528 |
1.3 | 0.1035 | 0.2653 | 0.5888 | 0.33330 | 0.93527 | |
2.45 | 0.0549 | 0.1408 | 0.3124 | 0.33333 | 0.93536 | |
3.6 | 0.0374 | 0.0958 | 0.2126 | 0.33342 | 0.93537 | |
4.75 | 0.0283 | 0.0726 | 0.1611 | 0.33342 | 0.93564 | |
1.5 | 0.15 | 2.2878 | 5.3284 | 10.2600 | 0.23720 | 0.63055 |
1.3 | 0.2640 | 0.6148 | 1.1838 | 0.23721 | 0.63060 | |
2.45 | 0.1401 | 0.3262 | 0.6282 | 0.23723 | 0.63052 | |
3.6 | 0.0953 | 0.2220 | 0.4275 | 0.23719 | 0.63057 | |
4.75 | 0.0722 | 0.1683 | 0.3240 | 0.23715 | 0.63062 | |
2.85 | 0.15 | 3.0063 | 6.5448 | 11.8495 | 0.19972 | 0.53889 |
1.3 | 0.3469 | 0.7552 | 1.3673 | 0.19971 | 0.53887 | |
2.45 | 0.1841 | 0.4007 | 0.7255 | 0.19978 | 0.53887 | |
3.6 | 0.1253 | 0.2727 | 0.4937 | 0.19972 | 0.53893 | |
4.75 | 0.0949 | 0.2067 | 0.3742 | 0.19967 | 0.53882 | |
4.2 | 0.15 | 3.5129 | 7.3072 | 12.7711 | 0.18033 | 0.49144 |
1.3 | 0.4053 | 0.8431 | 1.4736 | 0.18035 | 0.49140 | |
2.45 | 0.2151 | 0.4474 | 0.7819 | 0.18030 | 0.49140 | |
3.6 | 0.1464 | 0.3045 | 0.5321 | 0.18043 | 0.49148 | |
4.75 | 0.1109 | 0.2308 | 0.4033 | 0.18031 | 0.49143 |
Criterion | Method |
---|---|
Maximize trace | |
Minimize trace | |
Minimize det | |
Minimize |
MLE | Bayesian | MLE | HPD | Optimality | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | k | Scheme | m | Bias | MSE | Bias | MSE | LACI | LBPCI | LBTCI | LCCI | O1 | O2 | O3 | |
0.8 | 20 | 2 | I | 12 | 0.0244 | 0.0051 | 0.0491 | 0.0038 | 0.2621 | 0.0085 | 0.0083 | 0.1397 | 21.3816 | 0.00079670 | 1315.0742 |
18 | 0.0137 | 0.0031 | 0.0487 | 0.0029 | 0.2099 | 0.0065 | 0.0064 | 0.0909 | 4.1313 | 0.00000699 | 1860.8153 | ||||
II | 12 | 0.0142 | 0.0051 | 0.0257 | 0.0019 | 0.2750 | 0.0083 | 0.0086 | 0.1332 | 6.5200 | 0.00010403 | 1137.2594 | |||
18 | 0.0152 | 0.0027 | 0.0402 | 0.0021 | 0.1966 | 0.0063 | 0.0062 | 0.0807 | 3.2014 | 0.00000570 | 1541.9155 | ||||
4 | I | 12 | 0.0231 | 0.0043 | 0.0215 | 0.0041 | 0.2271 | 0.0072 | 0.0071 | 0.1299 | 32.0128 | 0.00002417 | 4326.9511 | ||
18 | 0.0110 | 0.0023 | 0.0103 | 0.0021 | 0.1695 | 0.0054 | 0.0053 | 0.0757 | 7.1082 | 0.00000042 | 5887.7508 | ||||
II | 12 | 0.0218 | 0.0038 | 0.0179 | 0.0037 | 0.2274 | 0.0071 | 0.0072 | 0.1124 | 13.6802 | 0.00001076 | 4260.3735 | |||
18 | 0.0278 | 0.0024 | 0.0020 | 0.0020 | 0.1602 | 0.0052 | 0.0052 | 0.0689 | 5.7489 | 0.00000036 | 4892.7823 | ||||
50 | 2 | I | 35 | −0.0026 | 0.0019 | 0.0025 | 0.0015 | 0.1694 | 0.0076 | 0.0076 | 0.1309 | 5.4335 | 0.00000781 | 2173.0070 | |
45 | −0.0018 | 0.0013 | 0.0016 | 0.0013 | 0.1399 | 0.0062 | 0.0062 | 0.0876 | 0.9871 | 0.00000027 | 2673.3238 | ||||
II | 35 | 0.0038 | 0.0027 | −0.0034 | 0.0008 | 0.2033 | 0.0093 | 0.0095 | 0.1027 | 1.4849 | 0.00000062 | 1446.0044 | |||
45 | 0.0026 | 0.0020 | 0.0233 | 0.0010 | 0.1764 | 0.0079 | 0.0080 | 0.0801 | 1.0515 | 0.00000015 | 1889.7725 | ||||
4 | I | 35 | 0.0016 | 0.0029 | −0.0039 | 0.0005 | 0.2119 | 0.0099 | 0.0099 | 0.0795 | 2.7322 | 0.00000005 | 4818.0247 | ||
45 | 0.0054 | 0.0018 | 0.0341 | 0.0016 | 0.1642 | 0.0070 | 0.0071 | 0.0688 | 1.8893 | 0.000000008 | 6547.6266 | ||||
II | 35 | 0.0148 | 0.0016 | 0.0408 | 0.0015 | 0.1434 | 0.0062 | 0.0062 | 0.0693 | 1.9652 | 0.00000001 | 12,058.2247 | |||
45 | 0.0171 | 0.0010 | 0.0740 | 0.0010 | 0.1042 | 0.0047 | 0.0047 | 0.0534 | 1.4447 | 0.000000002 | 14,466.0555 | ||||
2 | 20 | 2 | I | 12 | 0.0252 | 0.0053 | 0.0389 | 0.0029 | 0.2687 | 0.0122 | 0.0118 | 0.1378 | 44.8698 | 0.00028752 | 1298.6571 |
18 | 0.0138 | 0.0025 | 0.0383 | 0.0019 | 0.1901 | 0.0083 | 0.0083 | 0.0824 | 10.6874 | 0.000007058 | 1724.2822 | ||||
II | 12 | 0.0118 | 0.0047 | 0.0151 | 0.0012 | 0.2650 | 0.0118 | 0.0119 | 0.1133 | 18.6539 | 0.00006624 | 1221.1348 | |||
18 | 0.0138 | 0.0028 | 0.0319 | 0.0014 | 0.1998 | 0.0090 | 0.0090 | 0.0797 | 10.2767 | 0.000007664 | 1692.4905 | ||||
4 | I | 12 | 0.0362 | 0.0044 | 0.0958 | 0.0041 | 0.2189 | 0.0098 | 0.0097 | 0.1120 | 71.0129 | 0.00003361 | 3458.2427 | ||
18 | 0.0305 | 0.0023 | 0.0739 | 0.0022 | 0.1469 | 0.0064 | 0.0065 | 0.0646 | 17.4184 | 0.000000603 | 4725.7657 | ||||
II | 12 | 0.0284 | 0.0053 | 0.0352 | 0.0018 | 0.2632 | 0.0123 | 0.0124 | 0.0918 | 30.5605 | 0.000007690 | 3241.6188 | |||
18 | 0.0311 | 0.0027 | 0.0570 | 0.0025 | 0.1628 | 0.0072 | 0.0073 | 0.0606 | 14.7362 | 0.00000051 | 4491.3445 | ||||
50 | 2 | I | 35 | 0.0149 | 0.0018 | 0.0475 | 0.0018 | 0.1565 | 0.0069 | 0.0071 | 0.0939 | 6.3239 | 0.000000503 | 3853.6782 | |
45 | 0.0119 | 0.0012 | 0.0396 | 0.0011 | 0.1287 | 0.0058 | 0.0056 | 0.0564 | 2.9557 | 0.00000007 | 4607.4580 | ||||
II | 35 | 0.0120 | 0.0016 | 0.0029 | 0.0004 | 0.1479 | 0.0066 | 0.0067 | 0.0780 | 3.5200 | 0.000000218 | 3587.6918 | |||
45 | 0.0135 | 0.0011 | 0.0278 | 0.0010 | 0.1215 | 0.0053 | 0.0054 | 0.0543 | 2.6907 | 0.00000007 | 4509.7376 | ||||
4 | I | 35 | 0.0305 | 0.0020 | 0.0796 | 0.0017 | 0.1285 | 0.0059 | 0.0058 | 0.0817 | 13.5622 | 0.000000060 | 9487.8097 | ||
45 | 0.0247 | 0.0013 | 0.0652 | 0.0012 | 0.1001 | 0.0046 | 0.0047 | 0.0521 | 5.5558 | 0.00000001 | 12,885.4276 | ||||
II | 35 | 0.0264 | 0.0019 | 0.0119 | 0.0003 | 0.1350 | 0.0060 | 0.0060 | 0.0459 | 5.9567 | 0.000000015 | 10,036.4394 | |||
45 | 0.0253 | 0.0014 | 0.0402 | 0.0013 | 0.1085 | 0.0048 | 0.0048 | 0.0480 | 4.1892 | 0.00000000 | 12,893.1857 |
MLE | Bayesian | MLE | HPD | Optimality | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | k | Scheme | m | Bias | MSE | Bias | MSE | LACI | LBPCI | LBTCI | LCCI | O1 | O2 | O3 | |
0.8 | 20 | 2 | I | 12 | 0.0141 | 0.0035 | 0.0204 | 0.0015 | 0.2243 | 0.0098 | 0.0095 | 0.1263 | 32.7192 | 0.851629 | 59.1656 |
18 | 0.0062 | 0.0020 | 0.0075 | 0.0004 | 0.1737 | 0.0079 | 0.0078 | 0.0721 | 5.3389 | 0.007162 | 95.2781 | ||||
II | 12 | 0.0054 | 0.0041 | 0.0079 | 0.0010 | 0.2489 | 0.0109 | 0.0109 | 0.1141 | 8.4620 | 0.140559 | 93.5644 | |||
18 | 0.0041 | 0.0020 | 0.0066 | 0.0004 | 0.1755 | 0.0076 | 0.0077 | 0.0753 | 3.8724 | 0.005310 | 68.8098 | ||||
4 | I | 12 | 0.0086 | 0.0017 | 0.0514 | 0.0014 | 0.1601 | 0.0069 | 0.0071 | 0.1405 | 41.6896 | 0.040229 | 181.3487 | ||
18 | 0.0101 | 0.0011 | 0.0207 | 0.0008 | 0.1233 | 0.0056 | 0.0057 | 0.0726 | 8.0888 | 0.000366 | 197.4359 | ||||
II | 12 | 0.0060 | 0.0029 | 0.0252 | 0.0017 | 0.2111 | 0.0093 | 0.0093 | 0.1170 | 10.7009 | 0.005277 | 123.4315 | |||
18 | 0.0108 | 0.0014 | 0.0160 | 0.0006 | 0.1426 | 0.0062 | 0.0061 | 0.0715 | 5.8162 | 0.000307 | 140.7154 | ||||
50 | 2 | I | 35 | 0.0053 | 0.0011 | 0.0412 | 0.0010 | 0.1291 | 0.0056 | 0.0055 | 0.1019 | 5.5126 | 0.000537 | 262.9994 | |
45 | 0.0019 | 0.0006 | 0.0163 | 0.0006 | 0.0982 | 0.0043 | 0.0042 | 0.0641 | 1.7133 | 0.000035 | 247.1240 | ||||
II | 35 | 0.0038 | 0.0010 | 0.0161 | 0.0008 | 0.1262 | 0.0056 | 0.0057 | 0.0920 | 1.4508 | 0.000110 | 130.4385 | |||
45 | 0.0002 | 0.0007 | 0.0114 | 0.0004 | 0.1059 | 0.0048 | 0.0047 | 0.0648 | 1.0404 | 0.000031 | 148.3842 | ||||
4 | I | 35 | 0.0028 | 0.0005 | 0.0923 | 0.0004 | 0.0857 | 0.0038 | 0.0039 | 0.1058 | 7.7591 | 0.000029 | 704.7141 | ||
45 | 0.0025 | 0.0003 | 0.0411 | 0.0002 | 0.0723 | 0.0033 | 0.0033 | 0.0717 | 2.8182 | 0.000002 | 710.6756 | ||||
II | 35 | 0.0046 | 0.0009 | 0.0333 | 0.0006 | 0.1163 | 0.0052 | 0.0053 | 0.0854 | 2.1859 | 0.000007 | 399.3411 | |||
45 | 0.0055 | 0.0005 | 0.0279 | 0.0004 | 0.0836 | 0.0037 | 0.0039 | 0.0686 | 1.6343 | 0.000002 | 465.4802 | ||||
2 | 20 | 2 | I | 12 | 0.0111 | 0.0030 | 0.0250 | 0.0019 | 0.2118 | 0.0095 | 0.0094 | 0.1366 | 48.2769 | 0.309823 | 47.0611 |
18 | 0.0096 | 0.0021 | 0.0070 | 0.0004 | 0.1750 | 0.0078 | 0.0080 | 0.0737 | 12.2381 | 0.008539 | 65.7453 | ||||
II | 12 | 0.0031 | 0.0036 | 0.0084 | 0.0011 | 0.2352 | 0.0106 | 0.0105 | 0.1259 | 19.2689 | 0.059121 | 39.0353 | |||
18 | 0.0088 | 0.0020 | 0.0062 | 0.0004 | 0.1710 | 0.0073 | 0.0074 | 0.0710 | 10.0978 | 0.006465 | 53.7042 | ||||
4 | I | 12 | 0.0121 | 0.0018 | 0.0592 | 0.0015 | 0.1611 | 0.0071 | 0.0071 | 0.1328 | 73.0888 | 0.029018 | 112.0391 | ||
18 | 0.0117 | 0.0011 | 0.0215 | 0.0009 | 0.1243 | 0.0056 | 0.0056 | 0.0815 | 17.7696 | 0.000577 | 137.7838 | ||||
II | 12 | 0.0064 | 0.0027 | 0.0247 | 0.0015 | 0.2010 | 0.0090 | 0.0091 | 0.1186 | 16.6365 | 0.001927 | 101.0923 | |||
18 | 0.0106 | 0.0013 | 0.0151 | 0.0006 | 0.1342 | 0.0060 | 0.0062 | 0.0770 | 11.7618 | 0.000317 | 136.2249 | ||||
50 | 2 | I | 35 | 0.0033 | 0.0009 | 0.0416 | 0.0008 | 0.1198 | 0.0055 | 0.0055 | 0.0975 | 6.9337 | 0.000501 | 111.1543 | |
45 | 0.0022 | 0.0007 | 0.0165 | 0.0006 | 0.1023 | 0.0045 | 0.0045 | 0.0632 | 3.0112 | 0.000064 | 143.9309 | ||||
II | 35 | 0.0034 | 0.0011 | 0.0105 | 0.0006 | 0.1271 | 0.0059 | 0.0058 | 0.0869 | 3.6038 | 0.000188 | 110.5934 | |||
45 | 0.0040 | 0.0008 | 0.0100 | 0.0004 | 0.1094 | 0.0049 | 0.0049 | 0.0686 | 2.6286 | 0.000058 | 140.2241 | ||||
4 | I | 35 | 0.0113 | 0.0006 | 0.0822 | 0.0005 | 0.0895 | 0.0039 | 0.0037 | 0.0869 | 13.8108 | 0.000054 | 281.3838 | ||
45 | 0.0089 | 0.0005 | 0.0375 | 0.0004 | 0.0780 | 0.0036 | 0.0036 | 0.0656 | 5.6687 | 0.000006 | 388.0669 | ||||
II | 35 | 0.0100 | 0.0010 | 0.0195 | 0.0007 | 0.1191 | 0.0054 | 0.0056 | 0.0689 | 5.7857 | 0.000014 | 313.3802 | |||
45 | 0.0093 | 0.0004 | 0.0238 | 0.0004 | 0.0839 | 0.0037 | 0.0036 | 0.0595 | 4.3141 | 0.000004 | 395.1895 |
Estimates | SE | Lower | Upper | |
---|---|---|---|---|
0.6813 | 0.0911 | 0.5026 | 0.8599 | |
0.6861 | 0.2586 | 0.1793 | 1.1928 | |
0.4150 | 0.1424 | 0.1358 | 0.6942 | |
0.2266 | 0.0892 | 0.0518 | 0.4015 | |
R | 0.3342 |
Estimates | SE | KSD | PVKS | VAIC | VBIC | VCVM | VAD | ||
---|---|---|---|---|---|---|---|---|---|
x1 | 0.0854 | 0.1495 | 0.2598 | 0.2214 | 142.1859 | 143.6020 | 0.0431 | 0.3264 | |
0.0147 | 0.0082 | ||||||||
x2 | 0.1094 | 0.2142 | 0.1612 | 0.6492 | 140.8927 | 142.7816 | 0.0584 | 0.3580 | |
0.0409 | 0.0253 | ||||||||
x3 | 0.0421 | 0.1392 | 0.1427 | 0.8786 | 77.8128 | 79.2289 | 0.0669 | 0.4317 | |
0.0943 | 0.0885 |
MLE | Bayesian | |||||||
---|---|---|---|---|---|---|---|---|
Estimates | SE | Lower | Upper | Estimates | SE | Lower | Upper | |
0.0811 | 0.0168 | 0.0481 | 0.2791 | 0.0837 | 0.0125 | 0.0426 | 0.1297 | |
0.1126 | 0.0515 | 0.0116 | 0.2135 | 0.1252 | 0.0444 | 0.0485 | 0.2212 | |
0.0375 | 0.0173 | 0.0036 | 0.0714 | 0.0405 | 0.0102 | 0.0167 | 0.0663 | |
0.0145 | 0.0066 | 0.0014 | 0.0275 | 0.0156 | 0.0035 | 0.0053 | 0.0275 | |
R | 0.4523 | 0.4570 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almetwally, E.M.; Alotaibi, R.; Mutairi, A.A.; Park, C.; Rezk, H. Optimal Plan of Multi-Stress–Strength Reliability Bayesian and Non-Bayesian Methods for the Alpha Power Exponential Model Using Progressive First Failure. Symmetry 2022, 14, 1306. https://doi.org/10.3390/sym14071306
Almetwally EM, Alotaibi R, Mutairi AA, Park C, Rezk H. Optimal Plan of Multi-Stress–Strength Reliability Bayesian and Non-Bayesian Methods for the Alpha Power Exponential Model Using Progressive First Failure. Symmetry. 2022; 14(7):1306. https://doi.org/10.3390/sym14071306
Chicago/Turabian StyleAlmetwally, Ehab M., Refah Alotaibi, Aned Al Mutairi, Chanseok Park, and Hoda Rezk. 2022. "Optimal Plan of Multi-Stress–Strength Reliability Bayesian and Non-Bayesian Methods for the Alpha Power Exponential Model Using Progressive First Failure" Symmetry 14, no. 7: 1306. https://doi.org/10.3390/sym14071306
APA StyleAlmetwally, E. M., Alotaibi, R., Mutairi, A. A., Park, C., & Rezk, H. (2022). Optimal Plan of Multi-Stress–Strength Reliability Bayesian and Non-Bayesian Methods for the Alpha Power Exponential Model Using Progressive First Failure. Symmetry, 14(7), 1306. https://doi.org/10.3390/sym14071306