Bivariate Step-Stress Accelerated Life Tests for the Kavya–Manoharan Exponentiated Weibull Model under Progressive Censoring with Applications
<p>PTIC scheme.</p> "> Figure 2
<p>Bivariate SSALT under PTIC.</p> "> Figure 3
<p>Different shapes of pdf and hrf for KMEW distribution.</p> "> Figure 4
<p>TTT plot and estimated hazard of KMEW distribution for waiting times data.</p> "> Figure 5
<p>Different plots for estimated curve of KMEW model for waiting times data.</p> "> Figure 6
<p>cdf plots of alternative models for waiting times data.</p> "> Figure 7
<p>pdf plots of alternative models for waiting times data.</p> "> Figure 8
<p>Contour plot for log-likelihood value for waiting times data.</p> "> Figure 9
<p>TTT plot and estimated hazard of KMEW distribution for time between failures of secondary reactor pumps data.</p> "> Figure 10
<p>Different plots for estimation of KMEW model curve for secondary reactor pumps data.</p> "> Figure 11
<p>cdf plots of alternative models for secondary reactor pumps data.</p> "> Figure 12
<p>pdf plots of alternative models for secondary reactor pumps data.</p> "> Figure 13
<p>Contour plot for log-likelihood value for secondary reactor pumps data.</p> "> Figure 14
<p>TTT plot and estimated hazard of KMEW distribution for bladder cancer data.</p> "> Figure 15
<p>Different plots for estimation of KMEW model curve for bladder cancer data.</p> "> Figure 16
<p>CDF plots of alternative models for bladder cancer data.</p> "> Figure 17
<p>pdf plots of alternative models for bladder cancer data.</p> "> Figure 18
<p>Contour plot for log-likelihood value for bladder cancer data.</p> "> Figure 19
<p>Contour plot for log-likelihood value under bivariate SSALT when <span class="html-italic">p</span> = 0.5 for bladder cancer data.</p> ">
Abstract
:1. Introduction
- Predicated on the experimenter’s past knowledge and skills with the objects under consideration, as in the study by Balasooriya and lwa [27];
- Or the quantiles of the lifetimes distribution, th, which are possibly computed by using the provided expression
2. Kavya–Manoharan Exponentiated Weibull Distribution
- When , we obtain KM transformation Weibull (see Kavya and Manoharan [23]);
- For , we obtain KM transformation exponentiated Rayleigh (new);
- Setting , we have KM transformation exponentiated exponential (new);
- When and , the KMEW distribution reduces to KM Rayleigh (new);
- The case and refers to the KM transformation exponential (see Kavya and Manoharan [23]).
3. Statistical Measures
3.1. Quantile Function
3.2. Mode
3.3. Moments
3.4. Probability Weighted Moments
3.5. Order Statistics
3.6. Entropy
4. Maximum Likelihood Estimation
5. Application of Real Data
6. SSALT Based on PTIC
6.1. Model Assumptions
- Step 1:
- .
- Step 2:
- .
- Step 3:
- .
6.2. Likelihood Function of Bivariate SSALT model
7. Concluding Remarks
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
KM | Kavya–Manoharan |
EW | exponentiated Weibull |
PTIC | progressive type-I censoring |
hrf | hazard rate function |
cdf | cumulative function |
density function | |
EE | exponentiated exponential |
DUS | Dinesh–Umesh–Sanjay |
GDUS | generalized Dinesh–Umesh–Sanjay |
ALTs | accelerated life tests |
SSALT | step-stress accelerated life test |
KMEW | Kavya–Manoharan exponentiated Weibull |
AV | asymptotic variance |
B | Bowley skewness |
M | Moors kurtosis |
CV | coefficient of variation |
SK | skewness |
KU | kurtosis |
PWMs | probability weighted moments |
OS | order statistics |
log-LLF | The log-likelihood function |
MW | modified Weibull |
KMW | Kavya–Manoharan Weibull |
ExW | extended Weibull |
OWITL | odd Weibull inverse Topp–Leone |
EOWINH | extended odd Weibull inverse Nadarajah–Haghighi |
SEs | standard errors |
AINC | Akaike information criterion |
BINC | Bayesian information criterion |
CVM | Cramér–von-Mises |
AD | Anderson–Darling |
KS | Kolmogorov–Smirnov |
PV | p-value |
SV | stress variable |
SL | stress level |
Appendix A
Mode | Var(X) | SK | KU | CV | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0.5 | 0.5 | 0.5 | 1.345 | 24.284 | 953.686 | 52,958.030 | 0.000 | 22.475 | 8.076 | 8.076 | 3.525 |
0.9 | 2.360 | 43.616 | 1716.136 | 95,318.947 | 0.000 | 38.047 | 6.109 | 6.109 | 2.614 | ||
1.5 | 3.761 | 72.344 | 2858.218 | 158,841.988 | 0.504 | 58.199 | 4.839 | 4.839 | 2.028 | ||
2.0 | 4.826 | 95.974 | 3807.923 | 211,753.346 | 0.897 | 72.686 | 4.265 | 4.265 | 1.767 | ||
0.9 | 0.5 | 0.884 | 3.320 | 22.856 | 228.643 | 0.000 | 2.539 | 3.816 | 3.816 | 1.803 | |
0.9 | 1.455 | 5.867 | 40.966 | 411.123 | 0.862 | 3.750 | 2.964 | 2.964 | 1.331 | ||
1.5 | 2.135 | 9.456 | 67.671 | 683.557 | 2.647 | 4.896 | 2.452 | 2.452 | 1.036 | ||
2.0 | 2.591 | 12.241 | 89.435 | 909.071 | 3.142 | 5.526 | 2.238 | 2.238 | 0.907 | ||
1.5 | 0.5 | 0.925 | 1.870 | 5.511 | 20.607 | 0.716 | 1.015 | 1.863 | 1.863 | 1.090 | |
0.9 | 1.393 | 3.157 | 9.675 | 36.720 | 1.207 | 1.216 | 1.410 | 1.410 | 0.791 | ||
1.5 | 1.866 | 4.773 | 15.436 | 60.007 | 2.366 | 1.291 | 1.166 | 1.166 | 0.609 | ||
2.0 | 2.147 | 5.904 | 19.826 | 78.558 | 2.622 | 1.296 | 1.076 | 1.076 | 0.530 | ||
0.9 | 0.5 | 0.5 | 0.763 | 8.582 | 242.076 | 10,882.278 | 0.000 | 8.000 | 9.869 | 9.869 | 3.709 |
0.9 | 1.339 | 15.418 | 435.652 | 19,587.576 | 0.000 | 13.626 | 7.526 | 7.526 | 2.757 | ||
1.5 | 2.136 | 25.589 | 725.742 | 32,643.774 | 1.840 | 21.027 | 6.028 | 6.028 | 2.147 | ||
2.0 | 2.743 | 33.969 | 967.136 | 43,521.602 | 2.505 | 26.446 | 5.359 | 5.359 | 1.875 | ||
0.9 | 0.5 | 0.491 | 1.025 | 3.919 | 21.781 | 0.000 | 0.784 | 3.816 | 3.816 | 1.803 | |
0.9 | 0.808 | 1.811 | 7.024 | 39.163 | 0.479 | 1.157 | 2.964 | 2.964 | 1.331 | ||
1.5 | 1.186 | 2.918 | 11.603 | 65.116 | 1.470 | 1.511 | 2.452 | 2.452 | 1.036 | ||
2.0 | 1.440 | 3.778 | 15.335 | 86.598 | 1.745 | 1.706 | 2.238 | 2.238 | 0.907 | ||
1.5 | 0.5 | 0.514 | 0.577 | 0.945 | 1.963 | 0.398 | 0.313 | 1.863 | 1.863 | 1.090 | |
0.9 | 0.774 | 0.974 | 1.659 | 3.498 | 0.670 | 0.375 | 1.410 | 1.410 | 0.791 | ||
1.5 | 1.037 | 1.473 | 2.647 | 5.716 | 1.314 | 0.399 | 1.166 | 1.166 | 0.609 | ||
2.0 | 1.193 | 1.822 | 3.400 | 7.483 | 1.457 | 0.400 | 1.076 | 1.076 | 0.530 | ||
1.5 | 0.5 | 0.5 | 0.459 | 3.196 | 60.115 | 1998.959 | 0.000 | 2.985 | 10.841 | 10.841 | 3.764 |
0.9 | 0.806 | 5.742 | 108.188 | 3598.059 | 0.000 | 5.092 | 8.298 | 8.298 | 2.800 | ||
1.5 | 1.286 | 9.531 | 180.238 | 5996.482 | 1.104 | 7.877 | 6.682 | 6.682 | 2.183 | ||
2.0 | 1.652 | 12.654 | 240.205 | 7994.864 | 1.503 | 9.926 | 5.964 | 5.964 | 1.908 | ||
0.9 | 0.5 | 0.295 | 0.369 | 0.847 | 2.823 | 0.000 | 0.282 | 3.816 | 3.816 | 1.803 | |
0.9 | 0.485 | 0.652 | 1.517 | 5.076 | 0.287 | 0.417 | 2.964 | 2.964 | 1.331 | ||
1.5 | 0.712 | 1.051 | 2.506 | 8.439 | 0.882 | 0.544 | 2.452 | 2.452 | 1.036 | ||
2.0 | 0.864 | 1.360 | 3.312 | 11.223 | 1.047 | 0.614 | 2.238 | 2.238 | 0.907 | ||
1.5 | 0.5 | 0.308 | 0.208 | 0.204 | 0.254 | 0.239 | 0.113 | 1.863 | 1.863 | 1.090 | |
0.9 | 0.464 | 0.351 | 0.358 | 0.453 | 0.402 | 0.135 | 1.410 | 1.410 | 0.791 | ||
1.5 | 0.622 | 0.530 | 0.572 | 0.741 | 0.789 | 0.143 | 1.166 | 1.166 | 0.609 | ||
2.0 | 0.716 | 0.656 | 0.734 | 0.97 | 0.874 | 0.144 | 1.076 | 1.076 | 0.53 |
References
- Weibull, W. A statistical distribution function of wide applicability. J. Appl. Mech. 1951, 18, 293–297. [Google Scholar] [CrossRef]
- Mudholkar, G.S.; Srivastava, D.K.; Freimer, M. The exponentiated Weibull family: A reanalysis of the bus-motor-failure data. Technometrics 1995, 37, 436–445. [Google Scholar] [CrossRef]
- Xie, M.; Tang, Y.; Goh, T.N. A modified Weibull extension with bathtub shaped failure rate function. Reliab. Eng. Syst. Saf. 2002, 76, 279–285. [Google Scholar] [CrossRef]
- Xie, M.; Lai, C.D. Reliability analysis using an additive Weibull model with bathtub shaped failure rate function. Reliab. Eng. Syst. Saf. 1995, 52, 87–93. [Google Scholar] [CrossRef]
- Nadarajah, S.; Cordeiro, G.M.; Ortega, E.M.M. The exponentiated Weibull distribution: A survey. Stat. Pap. 2013, 54, 839–877. [Google Scholar] [CrossRef]
- Elbatal, I.; Aryal, G. On the transmuted additive Weibull distribution. Austrian J. Stat. 2013, 42, 117–132. [Google Scholar] [CrossRef]
- Al-Babtain, A.; Fattah, A.A.; Hadi, A.N.; Merovci, F. The Kumaraswamy-transmuted exponentiated modified Weibull distribution. Commun. Stat. Simul. Comput. 2017, 46, 3812–3832. [Google Scholar]
- Khalil, M.G.; Hamedani, G.G.; Yousof, H.M. The Burr X Exponentiated Weibull Model: Characterizations, Mathematical Properties and Applications to Failure and Survival Times Data. Pak. J. Stat. Oper. Res. 2019, 15, 141–160. [Google Scholar] [CrossRef]
- Afify, A.Z.; Kumar, D.; Elbatal, I. Marshall Olkin Power Generalized Weibull Distribution with Applications in Engineering and Medicine. J. Stat. Theory Appl. 2020, 19, 223–237. [Google Scholar] [CrossRef]
- Alotaibi, N.; Elbatal, I.; Almetwally, E.M.; Alyami, S.A.; Al-Moisheer, A.S.; Elgarhy, M. Truncated Cauchy Power Weibull-G Class of Distributions: Bayesian and Non-Bayesian Inference Modelling for COVID-19 and Carbon Fiber Data. Mathematics 2022, 10, 1565. [Google Scholar] [CrossRef]
- Alahmadi, A.A.; Alqawba, M.; Almutiry, W.; Shawki, A.W.; Alrajhi, S.; Al-Marzouki, S.; Elgarhy, M. A New version of Weighted Weibull distribution: Modelling to COVID-19 data. Discret. Dyn. Nat. Soc. 2022, 2022, 3994361. [Google Scholar] [CrossRef]
- Aldahlan, M.A.; Jamal, F.; Chesneau, C.; Elbatal, I.; Elgarhy, M. Exponentiated power generalized Weibull power series family of distributions: Properties, estimation and applications. PLoS ONE 2020, 15, e0230004. [Google Scholar] [CrossRef] [PubMed]
- Almarashi, A.M.; Jamal, F.; Chesneau, C.; Elgarhy, M. The exponentiated truncated inverse Weibull-generated family of distributions with applications. Symmetry 2020, 12, 650. [Google Scholar] [CrossRef]
- Al-Moisheer, A.S.; Elbatal, I.; Almutiry, W.; Elgarhy, M. Odd inverse power generalized Weibull generated family of distributions:Properties and applications. Math. Probl. Eng. 2021, 2021, 5082192. [Google Scholar] [CrossRef]
- Alkarni, S.; Afify, A.Z.; Elbatal, I.; Elgarhy, M. The extended inverse Weibull distribution: Properties and applications. Complexity 2020, 2020, 3297693. [Google Scholar] [CrossRef]
- Abouelmagd, T.H.M.; Al-mualim, S.; Elgarhy, M.; Afify, A.Z.; Ahmad, M. Properties of the four-parameter Weibull distribution and its applications. Pak. J. Stat. 2017, 33, 449–466. [Google Scholar]
- Hassan, A.; Elgarhy, M. Exponentiated Weibull Weibull distribution: Statistical Properties and Applications. Gazi Univ. J. Sci. 2019, 32, 616–635. [Google Scholar]
- Mudholkar, G.S.; Srivastava, D.K. Exponentiated weibull family for analysing bathtub failure-rate data. IEEE Trans. Reliab. 1993, 42, 299–302. [Google Scholar] [CrossRef]
- Johnson, N.L.; Kotz, S.; Balakrishnan, N. Continuous Univariate Distributions, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 1994. [Google Scholar]
- Kumar, D.; Singh, U.; Singh, S.K. A method of proposing new distribution and its application to bladder cancer patients data. J. Stat. Appl. Prob. Lett. 2015, 2, 235–245. [Google Scholar]
- Maurya, S.K.; Kaushik, A.; Singh, S.K.; Singh, U. A new class of exponential transformed Lindley distribution and its application to Yarn data. Int. J. Stat. Econ. 2017, 18, 135–151. [Google Scholar]
- Kavya, P.; Manoharan, M. On a Generalized lifetime model using DUS transformation. In Applied Probability and Stochastic Processes; Joshua, V., Varadhan, S., Vishnevsky, V., Eds.; Infosys Science Foundation Series; Springer: Singapore, 2020; pp. 281–291. [Google Scholar]
- Kavya, P.; Manoharan, M. Some parsimonious models for lifetimes and applications. J. Stat. Comput. Simul. 2021, 91, 3693–3708. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Han, D.; Iliopoulos, G. Exact inference for progressively type-I censored exponential failure data. Metrika 2011, 73, 335–358. [Google Scholar] [CrossRef]
- Korkmaz, M.C.; Yousof, H.M.; Rasekhi, M.; Hamedan, G.G. The odd Lindley Burr XII model: Bayesian analysis, classical inference and characterizations. J. Data Sci. 2018, 16, 327–354. [Google Scholar] [CrossRef]
- Yousof, H.M.; Korkmaz, M.C. Topp-Leone Nadarajah-Haghighi distribution. İstatistikçiler Dergisi: İstatistik Ve Aktüerya 2017, 10, 119–128. [Google Scholar]
- Balasooriya, U.; Low, C.K. Competing causes of failure and reliability tests for Weibull lifetimes under type I progressive censoring. IEEE Trans. Reliab. 2004, 53, 29–36. [Google Scholar] [CrossRef]
- Cohen, A.C. Progressively censored samples in life testing. Technometrics 1963, 5, 327–329. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Cramer, E. The Art of Progressive Censoring: Applications to Reliability and Quality; Springer: Berlin, Germany, 2010. [Google Scholar]
- Mahmoud, R.M.; Muhammed, H.Z.; El-Saeed, A.R. Inference for generalized inverted exponential distribution under progressive Type-I censoring scheme in presence of competing risks model. Sankhya A Indian J. Stat. 2021. [Google Scholar] [CrossRef]
- Abo-Kasem, O.E.; Almetwally, E.M.; Abu El-Azm, W.S. Inferential Survival Analysis for Inverted NH Distribution Under Adaptive Progressive Hybrid Censoring with Application of Transformer Insulation. Ann. Data Sci. 2022, 1–48. [Google Scholar] [CrossRef]
- Mahmoud, R.M.; Muhammed, H.Z.; El-Saeed, A.R. Analysis of progressively Type-I censored data in competing risks models with generalized inverted exponential distribution. J. Stat. Appl. Prob. 2020, 9, 109–117. [Google Scholar]
- Ahmad, H.H.; Almetwally, E.M.; Ramadan, D.A. A comparative inference on reliability estimation for a multi-component stress-strength model under power Lomax distribution with applications. AIMS Math. 2022, 7, 18050–18079. [Google Scholar] [CrossRef]
- Almetwally, E.M.; Alotaibi, R.; Mutairi, A.A.; Park, C.; Rezk, H. Optimal Plan of Multi-Stress–Strength Reliability Bayesian and Non-Bayesian Methods for the Alpha Power Exponential Model Using Progressive First Failure. Symmetry 2022, 14, 1306. [Google Scholar] [CrossRef]
- Mahmoud, R.M.; Muhammed, H.Z.; El-Saeed, A.R.; Abdellatif, A.D. Estimation of parameters of the GIE distribution under progressive Type-I censoring. J. Stat. Theory Appl. 2021, 20, 380–394. [Google Scholar] [CrossRef]
- Algarni, A.; Elgarhy, M.; Almarashi, A.M.; Fayomi, A.; El-Saeed, A.R. Classical and Bayesian Estimation of the Inverse Weibull Distribution: Using Progressive Type-I Censoring Scheme. Adv. Civ. Eng. 2021, 2021, 5701529. [Google Scholar] [CrossRef]
- Elbatal, I.; Alotaibi, N.; Alyami, S.A.; Elgarhy, M.; El-Saeed, A.R. Bayesian and Non-Bayesian Estimation of the Nadarajah–Haghighi Distribution: Using Progressive Type-1 Censoring Scheme. Mathematics 2022, 10, 760. [Google Scholar] [CrossRef]
- Hakamipour, N. Approximated optimal design for a bivariate step-stress accelerated life test with generalized exponential distribution under type-I progressive censoring. Int. J. Qual. Reliab. Manag. 2020, 38, 1090–1115. [Google Scholar] [CrossRef]
- Meeker, W.Q.; Escobar, L.A.; Pascual, F.G. Statistical Methods for Reliability Data; John Wiley & Sons: Hoboken, NJ, USA, 2022. [Google Scholar]
- Nelson, W.B. Accelerated Testing: Statistical Models, Test Plans, and Data Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- El-Sherpieny, E.S.A.; Muhammed, H.Z.; Almetwally, E.M. Accelerated Life Testing for Bivariate Distributions based on Progressive Censored Samples with Random Removal. J. Stat. Appl. Probab. 2022, 11, 203–223. [Google Scholar]
- Han, D. Optimal design of a simple step-stress accelerated life test under progressive type I censoring with nonuniform durations for exponential lifetimes. Qual. Reliab. Eng. Int. 2019, 35, 1297–1312. [Google Scholar] [CrossRef]
- Li, C.; Fard, N. Optimum bivariate step-stress accelerated life test for censored data. IEEE Trans. Reliab. 2007, 56, 77–84. [Google Scholar] [CrossRef]
- Ling, L.; Xu, W.; Li, M. Optimal bivariate step-stress accelerated life test for Type-I hybrid censored data. J. Stat. Comput. Simul. 2011, 81, 1175–1186. [Google Scholar] [CrossRef]
- Hakamipour, N.; Rezaei, S. Optimal design for a bivariate simple step-stress accelerated life testing model with Type-II censoring and Gompertz distribution. Int. J. Inf. Technol. Decis. Mak. 2015, 14, 1243–1262. [Google Scholar] [CrossRef]
- Khan, M.A.; Chandra, N. Estimation and Optimal Plan for Bivariate Step-Stress Accelerated Life Test under Progressive Type-I Censoring. Pak. J. Stat. Oper. Res. 2021, 17, 683–694. [Google Scholar] [CrossRef]
- Alotaibi, R.; Mutairi, A.A.; Almetwally, E.M.; Park, C.; Rezk, H. Optimal Design for a Bivariate Step-Stress Accelerated Life Test with Alpha Power Exponential Distribution Based on Type-I Progressive Censored Samples. Symmetry 2022, 14, 830. [Google Scholar] [CrossRef]
- Jäntschi, L. Detecting Extreme Values with Order Statistics in Samples from Continuous Distributions. Mathematics 2020, 8, 216. [Google Scholar] [CrossRef]
- Rényi, A. On measures of entropy and information. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 20–30 June 1960; pp. 547–561. [Google Scholar]
- King, G. Unifying Political Methodology: The Likelihood Theory of Statistical Inference; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Henningsen, A.; Toomet, O. maxLik: A package for maximum likelihood estimation in R. Comput. Stat. 2011, 26, 443–458. [Google Scholar] [CrossRef]
- Ghitany, M.E.; Atieh, B.; Nadarajah, S. Lindley distribution and its application. Math. Comput. Simul. 2008, 78, 493–506. [Google Scholar] [CrossRef]
- Suprawhardana, M.S.; Prayoto, S. Total time on test plot analysis for mechanical components of the RSG-GAS reactor. Atom. Indones. 1999, 25, 81–90. [Google Scholar]
- El-Desouky, B.S.; Mustafa, A.; AL-Garash, S. The Beta Flexible Weibull Distribution. arXiv 2017, arXiv:1703.05757. [Google Scholar]
- Lee, E.T.; Wang, J.W. Statistical Methods for Survival Data Analysis, 3rd ed.; Wiley: New York, NY, USA, 2003. [Google Scholar]
- Pal, M.; Ali, M.M.; Woo, J. Exponentiated weibull distribution. Statistica 2006, 66, 139–147. [Google Scholar]
- Lai, C.D.; Xie, M.; Murthy, D.N.P. A modified Weibull distribution. IEEE Trans. Reliab. 2003, 52, 33–37. [Google Scholar] [CrossRef]
- Oguntunde, P.E.; Odetunmibi, O.A.; Adejumo, A.O. On the exponentiated generalized Weibull distribution: A generalization of the Weibull distribution. Indian J. Sci. Technol. 2015, 8, 1–7. [Google Scholar] [CrossRef]
- Zhang, T.; Xie, M. Failure data analysis with extended Weibull distribution. Commun. Stat. Simul. Comput. 2007, 36, 579–592. [Google Scholar] [CrossRef]
- Almetwally, E.M. The odd Weibull inverse Topp–Leone distribution with applications to COVID-19 data. Ann. Data Sci. 2021, 9, 121–140. [Google Scholar] [CrossRef]
- Almetwally, E.M. Extended Odd Weibull Inverse Nadarajah-Haghighi Distribution with Application on COVID-19 in Saudi Arabia. Math. Sci. Lett. 2021, 10, 85–99. [Google Scholar]
- Cramér, H. On the composition of elementary errors. Scand. Actuar. J. 1928, 1, 13–74. [Google Scholar] [CrossRef]
- Von Mises, R.E. Wahrscheinlichkeit, Statistik und Wahrheit; Julius Springer: Berlin, Germany, 1928. [Google Scholar]
- Kolmogoroff, A. Confidence limits for an unknown distribution function. Ann. Math. Stat. 1941, 12, 461–463. [Google Scholar] [CrossRef]
- Smirnov, N. Table for estimating the goodness of fit of empirical distributions. Ann. Math. Stat. 1948, 19, 279–281. [Google Scholar] [CrossRef]
- Anderson, T.W.; Darling, D. Asymptotic theory of certain ’goodness-of-fit’ criteria based on stochastic processes. Ann. Math. Stat. 1952, 23, 193–212. [Google Scholar] [CrossRef]
- Anderson, T.W.; Darling, D.A. A test of goodness of fit. J. Am. Stat. Assoc. 1954, 49, 765–769. [Google Scholar] [CrossRef]
Estimates | SE | AINC | BINC | CVM | AD | KS | PV | ||
---|---|---|---|---|---|---|---|---|---|
KMEW | 0.1173 | 0.0511 | 640.0457 | 647.8612 | 0.0174 | 0.1252 | 0.0364 | 0.9995 | |
1.1036 | 0.3339 | ||||||||
1.9522 | 1.0881 | ||||||||
GW | 0.1905 | 0.1065 | 640.0668 | 647.8823 | 0.0175 | 0.1271 | 0.0364 | 0.9994 | |
0.9056 | 0.2570 | ||||||||
2.6750 | 1.6430 | ||||||||
KMW | 1.5432 | 0.1149 | 640.0468 | 648.2572 | 0.0373 | 0.2427 | 0.0541 | 0.9316 | |
0.0754 | 0.0054 | ||||||||
MW | 1.7405 | 0.2171 | 641.2957 | 649.1112 | 0.0310 | 0.1978 | 0.0439 | 0.9905 | |
−0.0225 | 0.0145 | ||||||||
0.0210 | 0.0084 | ||||||||
EW | 1.4491 | 0.1139 | 643.6791 | 651.4946 | 0.0656 | 0.4134 | 0.0590 | 0.8767 | |
236.914 | 362.8947 | ||||||||
0.3595 | 0.3027 | ||||||||
OWITL | 1.8517 | 0.4051 | 640.0527 | 647.8682 | 0.0217 | 0.1534 | 0.0411 | 0.995 | |
0.3721 | 0.5036 | ||||||||
0.5540 | 0.2879 | ||||||||
EOWINH | 2.3481 | 0.9309 | 642.5829 | 653.0035 | 0.0218 | 0.1475 | 0.039 | 0.9981 | |
0.3927 | 0.3300 | ||||||||
62.1123 | 57.6765 | ||||||||
0.2575 | 0.1058 |
Estimates | SE | AINC | BINC | CVM | AD | KS | PV | ||
---|---|---|---|---|---|---|---|---|---|
KMEW | 0.5593 | 0.1505 | 69.6296 | 73.0361 | 0.0400 | 0.2902 | 0.0981 | 0.9643 | |
1.2056 | 0.9861 | ||||||||
1.4105 | 1.2381 | ||||||||
KMW | 0.8879 | 0.1388 | 69.7596 | 73.0793 | 0.0551 | 0.3744 | 0.1081 | 0.9248 | |
0.5172 | 0.1356 | ||||||||
MW | 0.7924 | 0.1925 | 71.0165 | 74.4229 | 0.0682 | 0.4442 | 0.1198 | 0.8573 | |
0.0090 | 0.0849 | ||||||||
0.7523 | 0.2198 | ||||||||
EW | 0.8007 | 0.1454 | 71.0369 | 74.4434 | 0.0669 | 0.4381 | 0.1195 | 0.8593 | |
206.889 | 2104.018 | ||||||||
0.2615 | 0.4529 | ||||||||
OWITL | 0.6178 | 0.4464 | 69.8434 | 73.2499 | 0.0432 | 0.2954 | 0.1014 | 0.9530 | |
1.8928 | 0.3974 | ||||||||
0.8714 | 0.3549 | ||||||||
EOWINH | 2.5359 | 1.9491 | 72.8852 | 77.4272 | 0.0483 | 0.3438 | 0.1034 | 0.9455 | |
0.4878 | 1.9310 | ||||||||
89.9997 | 2.9563 | ||||||||
0.1168 | 0.0945 |
Estimates | SE | AINC | BINC | CVM | AD | KS | PV | ||
---|---|---|---|---|---|---|---|---|---|
KMEW | 0.1581 | 0.0718 | 829.5181 | 838.0742 | 0.0356 | 0.2421 | 0.0392 | 0.9893 | |
0.7789 | 0.1692 | ||||||||
2.1304 | 0.8784 | ||||||||
GW | 0.2782 | 0.1521 | 829.9013 | 838.4574 | 0.0405 | 0.2708 | 0.0429 | 0.9728 | |
0.6698 | 0.1375 | ||||||||
2.6633 | 1.1856 | ||||||||
KMW | 1.1584 | 0.0728 | 831.7673 | 838.4713 | 0.0824 | 0.5150 | 0.0605 | 0.7374 | |
0.0785 | 0.0066 | ||||||||
MW | 1.2315 | 0.0968 | 830.3780 | 838.9341 | 0.0459 | 0.2816 | 0.0480 | 0.9295 | |
−0.0118 | 0.0036 | ||||||||
0.0727 | 0.0169 | ||||||||
EW | 1.0530 | 0.0689 | 836.1976 | 844.7537 | 0.1164 | 0.7103 | 0.0662 | 0.6295 | |
368,598.718 | 2.6641 | ||||||||
0.1812 | 0.1273 | ||||||||
OWITL | 1.2459 | 0.2442 | 832.5163 | 841.0724 | 0.0660 | 0.4406 | 0.0520 | 0.8797 | |
0.4881 | 0.3990 | ||||||||
0.6159 | 0.2797 | ||||||||
EOWINH | 2.2456 | 1.1872 | 830.7619 | 842.1700 | 0.0403 | 0.2702 | 0.0422 | 0.9768 | |
0.4988 | 0.2580 | ||||||||
99.9987 | 156.6841 | ||||||||
0.1965 | 0.1089 |
p | Data | ||
---|---|---|---|
0.1 | 0.8 0.8 1.3 1.5 1.8 1.9 1.9 2.1 2.6 2.7 2.9 3.1 3.2 3.3 3.5 3.6 4.0 4.1 4.2 4.2 4.3 4.3 4.4 4.4 4.6 4.7 4.7 4.8 4.9 4.9 5.0 5.3 5.5 5.7 5.7 6.1 6.2 6.2 6.2 6.3 6.7 6.9 7.1 7.1 7.1 7.1 7.4 7.6 7.7 | 49 | 4 |
8.0 8.2 8.6 8.6 8.8 8.8 8.9 8.9 9.5 9.6 9.7 9.8 11.0 11.0 11.1 11.2 11.2 11.5 11.9 12.4 12.5 12.9 | 22 | 2 | |
13.0 13.1 13.3 13.6 13.7 13.9 14.1 15.4 15.4 17.3 18.1 18.2 18.4 18.9 19.0 | 15 | 8 | |
0.3 | 0.8 0.8 1.3 1.5 1.8 1.9 1.9 2.1 2.6 2.7 2.9 3.1 3.2 3.3 3.5 3.6 4.0 4.1 4.2 4.2 4.3 4.3 4.4 4.4 4.6 4.7 4.7 4.8 4.9 4.9 5.0 5.3 5.5 5.7 5.7 6.1 6.2 6.2 6.2 6.3 6.7 6.9 7.1 7.1 7.1 7.1 7.4 7.6 7.7 | 49 | 13 |
8.0 8.2 8.6 8.8 8.8 8.9 8.9 9.5 9.6 9.7 9.8 11.0 11.0 11.1 11.2 11.2 11.5 11.9 12.4 12.5 | 20 | 6 | |
13.6 13.7 14.1 15.4 15.4 18.9 19.0 | 7 | 5 | |
0.5 | 0.8 0.8 1.3 1.5 1.8 1.9 1.9 2.1 2.6 2.7 2.9 3.1 3.2 3.3 3.5 3.6 4.0 4.1 4.2 4.2 4.3 4.3 4.4 4.4 4.6 4.7 4.7 4.8 4.9 4.9 5.0 5.3 5.5 5.7 5.7 6.1 6.2 6.2 6.2 6.3 6.7 6.9 7.1 7.1 7.1 7.1 7.4 7.6 7.7 | 49 | 23 |
8.0 8.2 8.6 8.8 9.6 9.7 9.8 11.0 11.0 11.1 11.2 11.5 11.9 12.4 12.5 | 15 | 8 | |
15.4 15.4 18.4 | 3 | 2 |
p | AINC | BINC | ||||||
---|---|---|---|---|---|---|---|---|
0.1 | estimates | 0.5573 | 6.2110 | 0.3983 | 0.4664 | 0.6876 | 561.6743 | 572.0950 |
SE | 0.5151 | 5.6768 | 0.3065 | 0.3952 | 0.6279 | |||
CV | 0.9242 | 0.9140 | 0.7697 | 0.8473 | 0.9133 | |||
0.3 | estimates | 0.6484 | 4.6481 | 0.2701 | 0.3574 | 0.3505 | 499.5381 | 509.9587 |
SE | 0.5921 | 3.9749 | 0.2573 | 0.3288 | 0.3173 | |||
CV | 0.9131 | 0.8552 | 0.9527 | 0.9198 | 0.9054 | |||
0.5 | estimates | 0.9180 | 2.5745 | 0.1450 | 0.1669 | 0.1401 | 446.9478 | 457.3685 |
SE | 0.8818 | 2.9420 | 0.1392 | 0.1528 | 0.1281 | |||
CV | 0.9605 | 1.1427 | 0.9601 | 0.9153 | 0.9141 |
p | Data | ||
---|---|---|---|
0.1 | 0.062 0.070 0.101 0.150 0.199 0.273 0.347 0.358 0.402 0.491 | 10 | 1 |
0.605 0.614 0.954 | 3 | 2 | |
1.060 2.160 3.465 4.082 | 4 | 3 | |
0.3 | 0.062 0.070 0.101 0.150 0.199 0.273 0.347 0.358 0.402 0.491 | 10 | 3 |
0.605 0.614 0.954 | 3 | 2 | |
1.060 1.359 2.160 3.465 | 4 | 1 | |
0.5 | 0.062 0.070 0.101 0.150 0.199 0.273 0.347 0.358 0.402 0.491 | 10 | 5 |
0.605 0.954 | 2 | 3 | |
1.06 2.16 | 2 | 1 |
p | AINC | BINC | ||||||
---|---|---|---|---|---|---|---|---|
0.1 | estimates | 0.1389 | 111.8840 | 107,027.2112 | 121,853.6131 | 54,095.2495 | 54.3313 | 58.8733 |
SE | 0.0111 | 55.5312 | 5693.4319 | 5338.5803 | 6365.0290 | |||
CV | 0.0798 | 0.4963 | 0.0532 | 0.0438 | 0.1177 | |||
0.3 | estimates | 0.1253 | 150.1647 | 556,405.5271 | 987,629.8394 | 1,211,483.5591 | 45.2165 | 49.7585 |
SE | 0.0098 | 80.3702 | 6574.7217 | 7855.1114 | 16,817.1504 | |||
CV | 0.0780 | 0.5352 | 0.0118 | 0.0080 | 0.0139 | |||
0.5 | estimates | 0.1202 | 183.6365 | 1,327,320.436 | 1,664,626.840 | 2,085,033.0914 | 38.4230 | 42.9650 |
SE | 0.0102 | 112.4214 | 5187.9587 | 7103.4757 | 15,595.2157 | |||
CV | 0.0847 | 0.6122 | 0.0039 | 0.0043 | 0.0075 |
p | Data | ||
---|---|---|---|
0.1 | 0.08 0.20 0.40 0.50 0.51 0.81 0.90 1.05 1.19 1.26 1.35 1.40 1.46 1.76 2.02 2.02 2.07 2.09 2.23 2.26 2.46 2.54 2.62 2.64 2.69 2.69 2.75 2.83 2.87 3.02 3.25 3.36 3.36 3.48 3.52 3.57 3.64 3.70 3.82 3.88 4.18 4.23 4.26 4.33 4.34 4.40 4.50 4.51 4.87 4.98 5.06 5.09 5.17 5.32 5.32 5.34 5.41 5.41 5.49 5.62 5.71 5.85 | 62 | 5 |
6.25 6.54 6.93 6.94 6.97 7.09 7.26 7.28 7.32 7.39 7.59 7.62 7.66 7.87 7.93 8.26 8.37 8.53 8.65 8.66 9.02 9.22 9.47 9.74 | 24 | 6 | |
10.06 10.34 10.66 10.75 11.25 11.64 11.79 11.98 12.02 12.03 12.07 12.63 13.11 13.31 14.24 14.76 14.77 14.83 15.96 16.62 17.12 18.10 19.13 | 23 | 8 | |
0.3 | 0.08 0.20 0.40 0.50 0.51 0.81 0.90 1.05 1.19 1.26 1.35 1.40 1.46 1.76 2.02 2.02 2.07 2.09 2.23 2.26 2.46 2.54 2.62 2.64 2.69 2.69 2.75 2.83 2.87 3.02 3.25 3.36 3.36 3.48 3.52 3.57 3.64 3.70 3.82 3.88 4.18 4.23 4.26 4.33 4.34 4.40 4.50 4.51 4.87 4.98 5.06 5.09 5.17 5.32 5.32 5.34 5.41 5.41 5.49 5.62 5.71 5.85 | 62 | 18 |
6.25 6.54 6.93 6.97 7.09 7.26 7.28 7.32 7.39 7.59 7.62 7.66 7.87 7.93 8.26 8.37 8.53 8.65 8.66 9.02 9.22 | 21 | 9 | |
10.66 10.75 11.79 11.98 13.29 13.31 14.76 14.83 15.96 16.62 17.12 | 11 | 7 | |
0.5 | 0.08 0.20 0.40 0.50 0.51 0.81 0.90 1.05 1.19 1.26 1.35 1.40 1.46 1.76 2.02 2.02 2.07 2.09 2.23 2.26 2.46 2.54 2.62 2.64 2.69 2.69 2.75 2.83 2.87 3.02 3.25 3.36 3.36 3.48 3.52 3.57 3.64 3.70 3.82 3.88 4.18 4.23 4.26 4.33 4.34 4.40 4.50 4.51 4.87 4.98 5.06 5.09 5.17 5.32 5.32 5.34 5.41 5.41 5.49 5.62 5.71 5.85 | 62 | 33 |
6.25 6.54 6.93 6.97 7.32 7.39 7.62 7.87 8.26 8.53 8.65 8.66 9.02 9.22 | 14 | 9 | |
10.75 11.25 11.79 11.98 13.11 13.31 | 6 | 4 |
p | AINC | BINC | ||||||
---|---|---|---|---|---|---|---|---|
0.1 | estimates | 1.4459 | 0.9555 | 0.0920 | 0.0773 | 0.0805 | 689.4906 | 700.8987 |
SE | 1.0425 | 0.8231 | 0.0347 | 0.0456 | 0.0684 | |||
CV | 0.7210 | 0.8615 | 0.3775 | 0.5898 | 0.8496 | |||
0.3 | estimates | 1.7960 | 0.7450 | 0.0848 | 0.0772 | 0.0447 | 602.2144 | 613.6225 |
SE | 1.5946 | 0.7051 | 0.0265 | 0.0438 | 0.0381 | |||
CV | 0.8878 | 0.9464 | 0.3122 | 0.5673 | 0.8527 | |||
0.5 | estimates | 1.4435 | 0.9564 | 0.0921 | 0.0856 | 0.0634 | 527.9641 | 539.3722 |
SE | 1.2259 | 0.8965 | 0.0397 | 0.0609 | 0.0609 | |||
CV | 0.8492 | 0.9374 | 0.4308 | 0.7119 | 0.9602 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alotaibi, N.; Elbatal, I.; Almetwally, E.M.; Alyami, S.A.; Al-Moisheer, A.S.; Elgarhy, M. Bivariate Step-Stress Accelerated Life Tests for the Kavya–Manoharan Exponentiated Weibull Model under Progressive Censoring with Applications. Symmetry 2022, 14, 1791. https://doi.org/10.3390/sym14091791
Alotaibi N, Elbatal I, Almetwally EM, Alyami SA, Al-Moisheer AS, Elgarhy M. Bivariate Step-Stress Accelerated Life Tests for the Kavya–Manoharan Exponentiated Weibull Model under Progressive Censoring with Applications. Symmetry. 2022; 14(9):1791. https://doi.org/10.3390/sym14091791
Chicago/Turabian StyleAlotaibi, Naif, Ibrahim Elbatal, Ehab M. Almetwally, Salem A. Alyami, A. S. Al-Moisheer, and Mohammed Elgarhy. 2022. "Bivariate Step-Stress Accelerated Life Tests for the Kavya–Manoharan Exponentiated Weibull Model under Progressive Censoring with Applications" Symmetry 14, no. 9: 1791. https://doi.org/10.3390/sym14091791
APA StyleAlotaibi, N., Elbatal, I., Almetwally, E. M., Alyami, S. A., Al-Moisheer, A. S., & Elgarhy, M. (2022). Bivariate Step-Stress Accelerated Life Tests for the Kavya–Manoharan Exponentiated Weibull Model under Progressive Censoring with Applications. Symmetry, 14(9), 1791. https://doi.org/10.3390/sym14091791