Optimization Strategy of Regular NoC Mapping Using Genetic-Based Hyper-Heuristic Algorithm
<p>ARCG and APCG. (<b>a</b>) ARCG for 3 × 3 Mesh NoC, (<b>b</b>) APCG for 9 cores application.</p> "> Figure 2
<p>Hyper genetic algorithm.</p> "> Figure 3
<p>Invalid crossover due to the same parent genes.</p> "> Figure 4
<p>NoC mapping with isomorphic genes. (<b>a</b>) Original genetic, (<b>b</b>) isomorphic genes by 180 degree rotation, (<b>c</b>) isomorphic genes by horizontal flip, (<b>d</b>) isomorphic genes by 90 degree rotation.</p> "> Figure 5
<p>Isomorphism replacement crossover (IRC).</p> "> Figure 6
<p>The invalid crossover rate before and after the introduction of the IRC operator. (<b>a</b>) <span class="html-italic">P<sub>c</sub></span> = 0.10, (<b>b</b>) <span class="html-italic">P<sub>c</sub></span> = 0.20, (<b>c</b>) <span class="html-italic">P<sub>c</sub></span> = 0.60, (<b>d</b>) <span class="html-italic">P<sub>c</sub></span> = 0.80.</p> "> Figure 6 Cont.
<p>The invalid crossover rate before and after the introduction of the IRC operator. (<b>a</b>) <span class="html-italic">P<sub>c</sub></span> = 0.10, (<b>b</b>) <span class="html-italic">P<sub>c</sub></span> = 0.20, (<b>c</b>) <span class="html-italic">P<sub>c</sub></span> = 0.60, (<b>d</b>) <span class="html-italic">P<sub>c</sub></span> = 0.80.</p> "> Figure 7
<p>Mapping results before and after the introduction of the IRC operator. (<b>a</b>) <span class="html-italic">P<sub>c</sub></span> = 0.10, (<b>b</b>) <span class="html-italic">P<sub>c</sub></span> = 0.20, (<b>c</b>) <span class="html-italic">P<sub>c</sub></span> = 0.40, (<b>d</b>) <span class="html-italic">P<sub>c</sub></span> = 0.80.</p> "> Figure 8
<p>Performance differences compared to IRC-GHH versus GHH. (<b>a</b>) α = 0, (<b>b</b>) α = 0.5, (<b>c</b>) α = 1.</p> ">
Abstract
:1. Introduction
- (1)
- We proposed an optimization solution of NoC-specific application mapping based on genetic-based hyper-heuristic algorithm (GHH). Compared with the traditional GA, GHH has an available algorithm to choose its own pool of operators as well as a set of automatic feedback based on the current iteration state incentives; the algorithm can according to the specific mission requirements of the application of independent choice suitable operator, a new algorithm for optimization of this will be more able to adapt to specific NoC application tasks. We construct the fitness function of the GHH, design the relevant cross-mutation operator, and design the corresponding reward function. We hope that through the hyperheuristic algorithm, the algorithm can select operators more suitable for the current stage in different stages.
- (2)
- We proposed an isomorphic replacement strategy for NoC mappings. We studied the characteristics of network mapping problem and puts forward the concept of isomorphic solution; we believe that based on symmetry and rotating form an isomorphic solution with the same fitness, this solution can be innovative for late to introduce new operator-isomorphic replacement operator, to improve the ineffective crossover in the late iterations, in order to make the isomorphism replacement operators (IRC) play the key role at the last stage of the optimization iterations. We also improve the reward function so that isomorphic replacement operators can automatically be massively selected from the operator pool in a suitable situation.
2. Materials and Methods
2.1. NoC Mapping and Corresponding Terminologies
2.1.1. ARCG and APCG
2.1.2. Evaluation Model Construction
2.1.3. Genetic-Based Hyper-Heuristic Algorithm (GHH)
2.2. Optimization Strategy
2.2.1. Invalid Crossover and Isomorphic Genes
2.2.2. Isomorphism Replacement Crossover (IRC) Operator
Algorithm 1. Isomorphism Replacement Crossover (IRC) Operator. Gp: paternal genes, Goff: offspring genes, TC{ }: typical crossover strategy, IRC{ }: isomorphic replacement crossover strategy, Sizepop: size of the population, Pcross: crossover probability, S: similarity of genes, Sth: similarity threshold, SM: selection mode of isomorphic genes |
Input:Gp, TC{ }, IRC{ }, Sizepop, Pcross Output:Goff: 01: For i = 1 to Sizepop 02: If (rand() < Pcross) 03: Calculate the Similarity of the paternal genes S 04: If (S < Sth) 05: Goff: =TC{Gp} 06: Else 07: SM = rand(); 08: Goff: =IRC{Gp, SM}; 09: Endif 10: Endif 11: EndFor |
2.2.3. Optimization of Reward Mechanism
3. Experimental Results and Analysis
3.1. Invalid Crossover and Optimal Crossover Rate
3.2. Performance of GHH
3.3. Other Case Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sodani, A.; Gramunt, R.; Corbal, J.; Kim, H.; Vinod, K.; Chinthamani, S.; Hutsell, S.; Agarwal, R.; Liu, Y. Knights Landing: Second-Generation Intel Xeon Phi Product. IEEE Micro 2016, 36, 34–46. [Google Scholar] [CrossRef]
- Gangwar, A.; Xu, Z.; Agarwal, N.K.; Sreedharan, R.; Prasad, A. Traffic Driven Automated Synthesis of Network-on-Chip from Physically Aware Behavioral Specification. In Proceedings of the 2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Miami, FL, USA, 19 September 2019; pp. 122–127. [Google Scholar] [CrossRef]
- Liao, W.; Deng, H.; Luo, Y.; Xiao, S.; Li, C.; Yu, Z. An Efficient and Low-Overhead Chip-to-Chip Interconnect Protocol Design for NOC. In Proceedings of the 2019 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA), Chengdu, China, 13–15 November 2019; pp. 77–78. [Google Scholar] [CrossRef]
- Sorin, D.J.; Hill, M.D.; Wood, D.A. A Primer on Memory Consistency and Cache Coherence. Morgan Claypool 2011, 6, 1–212. [Google Scholar] [CrossRef]
- Tayu, S.; Ueno, S. A note on the energy-aware mapping for NoCs. In Proceedings of the 2014 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Ishigaki, Japan, 17–20 November 2014; pp. 647–650. [Google Scholar] [CrossRef]
- Zhong, L.; Sheng, J.; Jing, M.; Yu, Z.; Zeng, X.; Zhou, D. An optimized mapping algorithm based on Simulated Annealing for regular NoC architecture. In Proceedings of the 2011 9th IEEE International Conference on ASIC, Xiamen, China, 25–28 October 2011; pp. 389–392. [Google Scholar] [CrossRef]
- Wu, C.; Deng, C.; Liu, L.; Han, J.; Chen, J.; Yin, S.; Wei, S. A Multi-Objective Model Oriented Mapping Approach for NoC-based Computing Systems. IEEE Trans. Parallel Distrib. Syst. 2017, 28, 662–676. [Google Scholar] [CrossRef]
- Zhang, L.; Li, S.; Qu, L.; Kang, Z.; Wang, S.; Chen, J.; Wang, L. MAMAP: Congestion Relieved Memetic Algorithm based Mapping Method for Mapping Large-Scale SNNs onto NoC-based Neuromorphic Hardware. In Proceedings of the 2020 IEEE 22nd International Conference on High Performance Computing and Communications, IEEE 18th International Conference on Smart City; IEEE 6th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). Yanuca Island, Cuvu, Fiji, 14–16 December 2020; pp. 640–647. [Google Scholar] [CrossRef]
- Bhanu, P.V.; Govindan, R.; Kattamuri, P.; Soumya, J.; Cenkeramaddi, L.R. Flexible Spare Core Placement in Torus Topology Based NoCs and Its Validation on an FPGA. IEEE Access 2021, 9, 45935–45954. [Google Scholar] [CrossRef]
- Kullu, P.; Tosun, S. MARM-GA: Mapping Applications to Reconfigurable Mesh using Genetic Algorithm. In Proceedings of the 2019 22nd Euromicro Conference on Digital System Design (DSD), Kallithea, Greece, 28–30 August 2019; pp. 13–18. [Google Scholar] [CrossRef]
- Rocha, H.M.G.d.; Beck, A.C.S.; Maia, S.M.D.M.; Kreutz, M.E.; Pereira, M.M. A Routing based Genetic Algorithm for Task Mapping on MPSoC. In Proceedings of the 2020 X Brazilian Symposium on Computing Systems Engineering (SBESC), Florianopolis, Brazil, 24–27 November 2020; pp. 1–8. [Google Scholar] [CrossRef]
- Amin, W.; Hussain, F.; Anjum, S. iHPSA: An improved bio-inspired hybrid optimization algorithm for task mapping in Network on Chip. Microprocess. Microsyst. 2022, 90, 104493. [Google Scholar] [CrossRef]
- Khalifa, Y.M.A. Isomorphism elimination to enhanced design centering of analog circuits using GA and the regionalization method. In Proceedings of the 10th IEEE International Conference on Electronics, Circuits and Systems, 2003, ICECS 2003 Proceedings of the 2003. Sharjah, United Arab Emirates, 14–17 December 2003; Volume 3, pp. 1058–1061. [Google Scholar] [CrossRef]
- Weng, X.; Liu, Y.; Yang, Y. Network-on-chip heuristic mapping algorithm based on isomorphism elimination for NoC optimisation. IET Comput. Digit. Tech. 2020, 14, 272–280. [Google Scholar]
- Xu, C.; Yi, L.; Zhu, Z.; Yang, Y.T. An efficient energy and thermal-aware mapping for regular network-on-chip. Ieice Electron. Express 2017, 14, 20170769. [Google Scholar] [CrossRef]
- Elmiligi, H.; El-Kharashi, M.W.; Gebali, F. A Delay Model for Networks-on-Chip Output-Queuing Router. In Proceedings of the 2006 6th International Workshop on System on Chip for Real Time Applications, Cairo, Egypt, 27–29 December 2006; pp. 95–98. [Google Scholar] [CrossRef]
- Xu, C.; Yi, L.; Peng, L.; Yang, Y.T. Unified multi-objective mapping for network-on-chip using genetic based hyper-heuristic algorithms. IET Comput. Digit. Tech. 2018, 12, 158–166. [Google Scholar] [CrossRef]
- Sahu, P.K.; Chattopadhyay, S. A survey on application mapping strategies for Network-on-Chip design. J. Syst. Archit. 2013, 59, 60–76. [Google Scholar] [CrossRef]
- Amin, W.; Hussain, F.; Anjum, S.; Khan, S.; Baloch, N.K.; Nain, Z.; Kim, S.W. Performance Evaluation of Application Mapping Approaches for Network-on-Chip Designs. IEEE Access 2020, 8, 63607–63631. [Google Scholar] [CrossRef]
- Dick, R.P.; Rhodes, D.L.; Wolf, W. TGFF: Task graphs for free. In Proceedings of the Sixth International Workshop on Hardware/Software Codesign. (CODES/CASHE’98), Seattle, WA, USA, 18 March 1998; pp. 97–101. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
The population size | 100 |
The number of iterations | 2000 |
Initialization mode | Tournament |
The mutation rate | 0.1 |
Initial crossover rate | 0.2 |
Crossover operators | Discrete recombination Single point recombination IRC-discrete recombination IRC-single point recombination |
Mutation operators | Random mutation |
APCG | IP | Delay (α = 0) | Power (α = 1) | Overall Cost (α = 0.5) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SA | PSO | GA | IRC-GHH | SA | PSO | GA | IRC-GHH | SA | PSO | GA | IRC-GHH | ||
MWD | 12 | 0.970 | 0.964 | 0.965 | 0.961 | 0.888 | 0.888 | 0.866 | 0.855 | 0.723 | 0.757 | 0.706 | 0.644 |
MPEG-4 | 12 | 0.966 | 0.963 | 0.964 | 0.962 | 0.880 | 0.878 | 0.875 | 0.861 | 0.767 | 0.729 | 0.697 | 0.679 |
VOPD | 16 | 0.964 | 0.962 | 0.954 | 0.951 | 0.889 | 0.851 | 0.840 | 0.829 | 0.721 | 0.722 | 0.641 | 0.613 |
RAND25 | 25 | 0.994 | 0.993 | 0.984 | 0.983 | 0.982 | 0.976 | 0.949 | 0.948 | 0.950 | 0.953 | 0.903 | 0.894 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, C.; Ning, J.; Liu, Y.; Luo, M.; Chen, D.; Lin, X.; Yang, Y. Optimization Strategy of Regular NoC Mapping Using Genetic-Based Hyper-Heuristic Algorithm. Symmetry 2022, 14, 1637. https://doi.org/10.3390/sym14081637
Xu C, Ning J, Liu Y, Luo M, Chen D, Lin X, Yang Y. Optimization Strategy of Regular NoC Mapping Using Genetic-Based Hyper-Heuristic Algorithm. Symmetry. 2022; 14(8):1637. https://doi.org/10.3390/sym14081637
Chicago/Turabian StyleXu, Changqing, Jiahao Ning, Yi Liu, Mintao Luo, Dongdong Chen, Xiaoling Lin, and Yintang Yang. 2022. "Optimization Strategy of Regular NoC Mapping Using Genetic-Based Hyper-Heuristic Algorithm" Symmetry 14, no. 8: 1637. https://doi.org/10.3390/sym14081637
APA StyleXu, C., Ning, J., Liu, Y., Luo, M., Chen, D., Lin, X., & Yang, Y. (2022). Optimization Strategy of Regular NoC Mapping Using Genetic-Based Hyper-Heuristic Algorithm. Symmetry, 14(8), 1637. https://doi.org/10.3390/sym14081637