Algebraic Theory of Patterns as Generalized Symmetries
<p>Semiautomata presentations <math display="inline"><semantics> <mrow> <mi mathvariant="script">P</mi> <mo>(</mo> <mi mathvariant="script">X</mi> <mo>)</mo> </mrow> </semantics></math>: (<b>a</b>) Exact symmetry shift, (<b>b</b>) partial symmetry shift, (<b>c</b>) hidden symmetry shift, and (<b>d</b>) general pattern sofic shift.</p> "> Figure 2
<p>Fringes induced by spacetime shifts: Co-occurring depth-4 past lightcone <math display="inline"><semantics> <mrow> <msup> <mi mathvariant="monospace">L</mi> <mo>−</mo> </msup> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math> (red) and depth-4 spacetime patches resulting from concatenations of (<b>a</b>) left transition fringes <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mo>ℓ</mo> </msub> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math> (blue), (<b>b</b>) right transition fringes <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mi>r</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math> (blue), (<b>c</b>) forward transition fringes <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mi>t</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math> (blue), and (<b>d</b>) unions of left, right, and forward transition fringes <math display="inline"><semantics> <mrow> <mi>V</mi> <mo>(</mo> <msub> <mi>r</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </semantics></math> (blue). Arrows indicate the direction(s) in which local spacetime patches may be generated with successive concatenations to the seed past lightcone <math display="inline"><semantics> <mrow> <msup> <mi mathvariant="monospace">L</mi> <mo>−</mo> </msup> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 3
<p>Co-occurring past (<math display="inline"><semantics> <msup> <mi mathvariant="monospace">L</mi> <mo>−</mo> </msup> </semantics></math>) and future (<math display="inline"><semantics> <msup> <mi mathvariant="monospace">L</mi> <mo>+</mo> </msup> </semantics></math>) lightcones at a spacetime site <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </semantics></math> in <math display="inline"><semantics> <mrow> <mn>1</mn> <mo>+</mo> <mn>1</mn> </mrow> </semantics></math> dimensions with <math display="inline"><semantics> <mrow> <mi>c</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p> "> Figure 4
<p>ECA Rule 90 spacetime field depicted as white (0) and black (1) squares. The corresponding local causal-state field is overlaid with colored letters; simply the single causal state <span class="html-italic">A</span>. Three sample right-transition fringes for past lightcone depth-2 are highlighted in colored (orange, green, purple) boxes.</p> "> Figure 5
<p>Spacetime pattern classes: Spacetime fields <math display="inline"><semantics> <msubsup> <mi mathvariant="bold">x</mi> <mrow/> <mrow/> </msubsup> </semantics></math> (<b>above</b>) and corresponding local causal state fields <math display="inline"><semantics> <mrow> <msubsup> <mi mathvariant="script">S</mi> <mrow/> <mrow/> </msubsup> <mo>=</mo> <mi>ϵ</mi> <mrow> <mo>(</mo> <msubsup> <mi mathvariant="bold">x</mi> <mrow/> <mrow/> </msubsup> <mo>)</mo> </mrow> </mrow> </semantics></math> (<b>below</b>) for (<b>a</b>) an exact symmetry (ECA Rule 54 domain), (<b>b</b>) a partial symmetry (ECA Rule 18 domain), (<b>c</b>) a hidden symmetry (ECA Rule 22 domain), and (<b>d</b>) a general pattern (ECA Rule 54 evolving random initial configuration).</p> "> Figure 6
<p>Spacetime fields <math display="inline"><semantics> <msubsup> <mi mathvariant="bold">x</mi> <mrow/> <mrow/> </msubsup> </semantics></math> shown in <a href="#symmetry-14-01636-f005" class="html-fig">Figure 5</a> (<b>above</b>) and corresponding V state fields <math display="inline"><semantics> <mrow> <msubsup> <mi mathvariant="script">S</mi> <mrow/> <mrow/> </msubsup> <mo>=</mo> <mi>ϵ</mi> <mrow> <mo>(</mo> <msubsup> <mi mathvariant="bold">x</mi> <mrow/> <mrow/> </msubsup> <mo>)</mo> </mrow> </mrow> </semantics></math> (<b>below</b>) for (<b>a</b>) an exact symmetry, (<b>b</b>) a partial symmetry, (<b>c</b>) a hidden symmetry, and (<b>d</b>) a general pattern.</p> "> Figure 7
<p>Sample field from 0-Wildcard shift space in black (1) and white (0) squares with (<b>a</b>) local causal states and (<b>b</b>) <math display="inline"><semantics> <mi mathvariant="monospace">V</mi> </semantics></math> presentation local states (<b>b</b>) overlaid. In both cases, the local states can be assigned fixed-0 and wildcard semantics. So, they are labeled <math display="inline"><semantics> <mi mathvariant="sans-serif">F</mi> </semantics></math> and <math display="inline"><semantics> <mi mathvariant="sans-serif">W</mi> </semantics></math>, respectively. The local causal states in (<b>a</b>) have an additional “indeterminate” state assigned to the all-0 past lightcone, labeled as <math display="inline"><semantics> <mi mathvariant="sans-serif">X</mi> </semantics></math>; see, for example, the field at <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>60</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>34</mn> </mrow> </semantics></math>).</p> "> Figure 7 Cont.
<p>Sample field from 0-Wildcard shift space in black (1) and white (0) squares with (<b>a</b>) local causal states and (<b>b</b>) <math display="inline"><semantics> <mi mathvariant="monospace">V</mi> </semantics></math> presentation local states (<b>b</b>) overlaid. In both cases, the local states can be assigned fixed-0 and wildcard semantics. So, they are labeled <math display="inline"><semantics> <mi mathvariant="sans-serif">F</mi> </semantics></math> and <math display="inline"><semantics> <mi mathvariant="sans-serif">W</mi> </semantics></math>, respectively. The local causal states in (<b>a</b>) have an additional “indeterminate” state assigned to the all-0 past lightcone, labeled as <math display="inline"><semantics> <mi mathvariant="sans-serif">X</mi> </semantics></math>; see, for example, the field at <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>60</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>34</mn> </mrow> </semantics></math>).</p> "> Figure A1
<p>Semiautomaton presentations for straightforward semigroup construction (<b>a</b>) and its simplification under the future cover equivalence relation (<b>b</b>).</p> "> Figure A2
<p>Presenting semiautomaton for the Even Shift using <math display="inline"><semantics> <mrow> <mi>G</mi> <mo>=</mo> <mo>{</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mi>e</mi> <mo>,</mo> <mn>01</mn> <mo>,</mo> <mn>10</mn> <mo>,</mo> <mn>11</mn> <mo>,</mo> <mn>101</mn> <mo>}</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msup> <mn>0</mn> <mn>2</mn> </msup> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msup> <mn>1</mn> <mn>3</mn> </msup> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msup> <mn>01</mn> <mn>2</mn> </msup> <mo>=</mo> <msup> <mn>1</mn> <mn>2</mn> </msup> <mn>0</mn> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>010</mn> <mo>=</mo> <mi>e</mi> </mrow> </semantics></math>. The two components <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="script">P</mi> <mi>A</mi> </msub> <mrow> <mo>(</mo> <mi mathvariant="script">X</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="script">P</mi> <mi>B</mi> </msub> <mrow> <mo>(</mo> <mi mathvariant="script">X</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> are isomorphic and thus collapse together under <math display="inline"><semantics> <msub> <mo>∼</mo> <mi>F</mi> </msub> </semantics></math>. The recurrent component is the canonical machine presentation <math display="inline"><semantics> <mrow> <mi mathvariant="script">P</mi> <mo>(</mo> <mi mathvariant="script">X</mi> <mo>)</mo> </mrow> </semantics></math>, shown in <a href="#symmetry-14-01636-f001" class="html-fig">Figure 1</a>c.</p> "> Figure A3
<p>Two state stochastic <math display="inline"><semantics> <mi>ϵ</mi> </semantics></math>-machine presentation for a statistical pattern supported on the full-2 shift.</p> "> Figure A4
<p>Four-state stochastic <math display="inline"><semantics> <mi>ϵ</mi> </semantics></math>-machine presentation for a statistical pattern supported on the full-2 shift.</p> "> Figure A5
<p>Presenting semiautomaton for the domain of ECA Rule 54.</p> "> Figure A6
<p>Presenting semiautomaton for the domain of ECA Rule 18.</p> "> Figure A7
<p>Presenting semiautomaton for the domain of ECA Rule 22.</p> ">
Abstract
:1. Patterns in Nature
2. One-Dimensional Patterns
… some object O has a pattern P—O has a pattern ‘represented’, ‘described’, ‘captured’, and so on by P—if and only if we can use P to predict or compress O.
2.1. Statistical Field Theories
2.2. Symbolic Dynamics
2.3. Sofic Shifts as Topological Patterns
2.4. Exact Symmetries
2.5. Generalized Symmetries
2.6. Statistical Patterns Supported on Sofic Shifts
- ,
- for each and for each , and
- for each .
3. Patterns in Spacetime
3.1. Local Spacetime Presentations
3.2. The Shape of Local Futures
3.3. Generalized Spacetime Symmetries
4. Case Study: Stochastic Symmetries
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Examples and Constructions
Appendix A.1. Exact Symmetry Shifts
Appendix A.2. General Pattern: The Even Shift
Appendix B. Distinct Statistical Patterns Supported on the Same Sofic Shift Topological Pattern
Appendix C. Cellular Automata
Elementary Cellular Automata
Appendix D. ECA Domain Sofic Shifts
References
- Englert, F.; Brout, R. Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett. 1964, 13, 321. [Google Scholar] [CrossRef]
- Higgs, P.W. Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 1964, 13, 508. [Google Scholar] [CrossRef]
- Guralnik, G.S.; Hagen, C.R.; Kibble, T.W. Global conservation laws and massless particles. Phys. Rev. Lett. 1964, 13, 585. [Google Scholar] [CrossRef]
- Weinberg, S. A model of leptons. Phys. Rev. Lett. 1967, 19, 1264. [Google Scholar] [CrossRef]
- Cross, M.C.; Hohenberg, P.C. Pattern Formation Outside of Equilibrium. Rev. Mod. Phys. 1993, 65, 851–1112. [Google Scholar] [CrossRef]
- Ball, P. The Self-Made Tapestry: Pattern Formation in Nature; Oxford University Press: New York, NY, USA, 1999. [Google Scholar]
- Cross, M.; Greenside, H. Pattern Formation and Dynamics in Nonequilibrium Systems; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Bernard, H. Les Tourbillons Cellulaires dans une Nappe Liquide [The Cellular Vortices in a Liquid Layer]. Rev. Gén. Sci. Pure Appl. 1900, 11, 1261–1271. [Google Scholar]
- Paul, M.; Chiam, K.H.; Cross, M.; Fischer, P.; Greenside, H. Pattern Formation and Dynamics in Rayleigh–Bénard Convection: Numerical Simulations of Experimentally Realistic Geometries. Phys. Nonlinear Phenom. 2003, 184, 114–126. [Google Scholar] [CrossRef]
- Zhabotinsky, A.M. Periodical Oxidation of Malonic Acid in Solution (a Study of the Belousov Reaction Kinetics). Biofizika 1964, 9, 306–311. [Google Scholar]
- Epstein, I.; Pojman, J. An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos; Oxford University Press: Oxford, UK, 1998. [Google Scholar]
- Holmes, P.; Lumley, J.; Berkooz, G.; Rowley, C. Turbulence, Coherent Structures, Dynamical Systems and Symmetry; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Haller, G. Lagrangian Coherent Structures. Ann. Rev. Fluid Mech. 2015, 47, 137–162. [Google Scholar] [CrossRef]
- Marcus, P.S. Numerical simulation of Jupiter’s Great Red Spot. Nature 1988, 331, 693–696. [Google Scholar] [CrossRef]
- Sommeria, J.; Meyers, S.D.; Swinney, H.L. Laboratory simulation of Jupiter’s Great Red Spot. Nature 1988, 331, 689–693. [Google Scholar] [CrossRef]
- Tung, W.K. Group Theory in Physics: An Introduction to Symmetry Principles, Group Representations, and Special Functions in Classical and Quantum Physics; World Scientific Publishing Co. Inc.: Philidelphia, PL, USA, 1985. [Google Scholar]
- Rupe, A.; Crutchfield, J.P. Local Causal States and Discrete Coherent Structures. Chaos 2018, 28, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Rupe, A.; Kumar, N.; Epifanov, V.; Kashinath, K.; Pavlyk, O.; Schlimbach, F.; Patwary, M.; Maidanov, S.; Lee, V.; Prabhat; et al. DisCo: Physics-Based Unsupervised Discovery of Coherent Structures in Spatiotemporal Systems. In Proceedings of the 2019 IEEE/ACM Workshop on Machine Learning in High Performance Computing Environments (MLHPC), Denver, CO, USA, 18 November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 75–87. [Google Scholar]
- Schmidt, K. Dynamical Systems of Algebraic Origin; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1995. [Google Scholar]
- Lindgren, K.; Moore, C.; Nordahl, M. Complexity of Two-Dimensional Patterns. J. Stat. Phys. 1998, 91, 909–951. [Google Scholar] [CrossRef]
- Lind, D. Multi-dimensional symbolic dynamics. Proc. Symb. Dyn. Appl. Am. Math. Soc. 2004, 60, 61–80. [Google Scholar]
- Shalizi, C.R.; Crutchfield, J.P. Computational Mechanics: Pattern and Prediction, Structure and Simplicity. J. Stat. Phys. 2001, 104, 817–879. [Google Scholar] [CrossRef]
- Grenander, U. Elements of Pattern Theory; JHU Press: Baltimore, ML, USA, 1996. [Google Scholar]
- Mumford, D.; Desolneux, A. Pattern Theory: The Stochastic Analysis of Real-World Signals; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Sethna, J.P. Order Parameters, Broken Symmetry, and Topology. arXiv 1992, arXiv:9204009. [Google Scholar]
- Greenberg, J.M.; Hastings, S.P. Spatial patterns for discrete models of diffusion in excitable media. SIAM J. Appl. Math. 1978, 34, 515–523. [Google Scholar] [CrossRef]
- Robinson, M.D.; Feldman, D.P.; McKay, S.R. Local Entropy and Structure in a Two-dimensional Frustrated System. Chaos 2011, 21, 037114. [Google Scholar] [CrossRef]
- Lind, D.; Marcus, B. An Introduction to Symbolic Dynamics and Coding; Cambridge University Press: New York, NY, USA, 1995. [Google Scholar]
- Smale, S. Differentiable Dynamical Systems. Bull. Am. Math. Soc. 1967, 73, 797–817. [Google Scholar] [CrossRef]
- Parry, W. Intrinsic Markov Chains. Trans. Am. Math. Soc. 1964, 112, 55. [Google Scholar] [CrossRef]
- Weiss, B. Subshifts of Finite Type and Sofic Systems. Monastsh. Math. 1973, 77, 462. [Google Scholar] [CrossRef]
- Ginzburg, A. Algebraic Theory of Automata; Academic Press: Cambridge, MA, USA, 1968. [Google Scholar]
- Kitchens, B.; Tuncel, S. Semi-groups and Graphs. Israel J. Math. 1986, 53, 231. [Google Scholar] [CrossRef]
- Krieger, W. On sofic systems I. Israel J. Math. 1984, 48, 305–330. [Google Scholar] [CrossRef]
- Fischer, R. Sofic Systems and Graphs. Monastsh. Math 1975, 80, 179. [Google Scholar] [CrossRef]
- Fischer, R. Graphs and Symbolic Dynamics. Coll. Math. Soc. János Bólyai 16 Top. Inf. Theory 1975. [Google Scholar]
- Ash, R.B. Information Theory; John Wiley and Sons: New York, NY, USA, 1965. [Google Scholar]
- Hopcroft, J.E.; Motwani, R.; Ullman, J.D. Introduction to Automata Theory, Languages, and Computation, 3rd ed.; Prentice-Hall: New York, NY, USA, 2006. [Google Scholar]
- Marques-Pita, M.; Rocha, L. Schema Redescription in Cellular Automata: Revisiting Emergence in Complex Systems. In Proceedings of the Artificial Life (ALIFE), 2011 IEEE Symposium on, Paris, France, 13–15 April 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 233–240. [Google Scholar]
- Krohn, K.; Rhodes, J. Algebraic theory of machines. I. Prime decomposition theorem for finite semigroups and machines. Trans. Am. Math. Soc. 1965, 116, 450–464. [Google Scholar] [CrossRef]
- Rhodes, J. Applications of Automata Theory and Algebra via the Mathematical Theory of Complexity to Biology, Physics, Psychology, Philosophy, Games, and Codes; Nehaniv, C., Ed.; University of California: Berkeley, CA, USA; World Scientific Publishing Company: Singapore, 1971. [Google Scholar]
- Boyle, M.; Petersen, K. Hidden Markov processes in the context of symbolic dynamics. In Entropy of Hidden Markov Processes and Connections to Dynamical Systems; Marcus, B., Petersen, K., Weissman, T., Eds.; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Dudley, R.M. Real Analysis and Probability, 1st ed.; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Furstenberg, H. Stationary Processes and Prediction Theory; Princeton University Press: Princeton, NJ, USA, 1960; Volume 44. [Google Scholar]
- Riechers, P.; Crutchfield, J.P. Spectral Simplicity of Apparent Complexity, Part I: The Nondiagonalizable Metadynamics of Prediction. Chaos 2018, 28, 033115. [Google Scholar] [CrossRef]
- Riechers, P.; Crutchfield, J.P. Spectral Simplicity of Apparent Complexity, Part II: Exact Complexities and Complexity Spectra. Chaos 2018, 28, 033116. [Google Scholar] [CrossRef]
- Crutchfield, J.P. Between Order and Chaos. Nat. Phys. 2012, 8, 17–24. [Google Scholar] [CrossRef]
- Hochman, M. Multidimensional shifts of finite type and sofic shifts. In Combinatorics, Words and Symbolic Dynamics; Cambridge University Press: Cambridge, UK, 2016; pp. 296–359. [Google Scholar]
- Shalizi, C. Optimal Nonlinear Prediction of Random Fields on Networks. Discret. Math. Theor. Comput. Sci. 2003. [Google Scholar] [CrossRef]
- Hanson, J.E.; Crutchfield, J.P. The Attractor-Basin Portrait of a Cellular Automaton. J. Stat. Phys. 1992, 66, 1415–1462. [Google Scholar] [CrossRef]
- Rupe, A. Rule 90 Patterns Jupyter Notbook. 2022. Available online: https://github.com/adamrupe/ca_patterns/blob/main/notebooks/rule90_patterns.ipynb (accessed on 30 June 2022).
- Rupe, A. Rule 18 Domain Patterns Jupyter Notbook. 2022. Available online: https://github.com/adamrupe/ca_patterns/blob/main/notebooks/domain18_patterns.ipynb (accessed on 30 June 2022).
- Rupe, A. General CA Patterns Jupyter Notbook. 2022. Available online: https://github.com/adamrupe/ca_patterns/blob/main/notebooks/general_patterns.ipynb (accessed on 30 June 2022).
- Wolfram, S. Statistical Mechanics of Cellular Automata. Rev. Mod. Phys. 1983, 55, 601. [Google Scholar] [CrossRef]
- Hedlund, G.A. Endomorphisms and Automorphisms of the Shift Dynamical System. Theory Comput. Syst. 1969, 3, 320–375. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rupe, A.; Crutchfield, J.P. Algebraic Theory of Patterns as Generalized Symmetries. Symmetry 2022, 14, 1636. https://doi.org/10.3390/sym14081636
Rupe A, Crutchfield JP. Algebraic Theory of Patterns as Generalized Symmetries. Symmetry. 2022; 14(8):1636. https://doi.org/10.3390/sym14081636
Chicago/Turabian StyleRupe, Adam, and James P. Crutchfield. 2022. "Algebraic Theory of Patterns as Generalized Symmetries" Symmetry 14, no. 8: 1636. https://doi.org/10.3390/sym14081636
APA StyleRupe, A., & Crutchfield, J. P. (2022). Algebraic Theory of Patterns as Generalized Symmetries. Symmetry, 14(8), 1636. https://doi.org/10.3390/sym14081636